scummvm/engines/sci/graphics/view.cpp
Martin Kiewitz bcc010a56e SCI: remove some duplicate code
svn-id: r50535
2010-06-30 15:26:45 +00:00

690 lines
23 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/sci.h"
#include "sci/util.h"
#include "sci/engine/state.h"
#include "sci/graphics/screen.h"
#include "sci/graphics/palette.h"
#include "sci/graphics/view.h"
namespace Sci {
GfxView::GfxView(ResourceManager *resMan, GfxScreen *screen, GfxPalette *palette, GuiResourceId resourceId)
: _resMan(resMan), _screen(screen), _palette(palette), _resourceId(resourceId) {
assert(resourceId != -1);
initData(resourceId);
}
GfxView::~GfxView() {
// Iterate through the loops
for (uint16 loopNum = 0; loopNum < _loopCount; loopNum++) {
// and through the cells of each loop
for (uint16 celNum = 0; celNum < _loop[loopNum].celCount; celNum++) {
delete[] _loop[loopNum].cel[celNum].rawBitmap;
}
delete[] _loop[loopNum].cel;
}
delete[] _loop;
_resMan->unlockResource(_resource);
}
static const byte EGAmappingStraight[SCI_VIEW_EGAMAPPING_SIZE] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
void GfxView::initData(GuiResourceId resourceId) {
_resource = _resMan->findResource(ResourceId(kResourceTypeView, resourceId), true);
if (!_resource) {
error("view resource %d not found", resourceId);
}
_resourceData = _resource->data;
_resourceSize = _resource->size;
byte *celData, *loopData;
uint16 celOffset;
CelInfo *cel;
uint16 celCount = 0;
uint16 mirrorBits = 0;
uint32 palOffset = 0;
uint16 headerSize = 0;
uint16 loopSize = 0, celSize = 0;
int loopNo, celNo, EGAmapNr;
byte seekEntry;
bool isEGA = false;
bool isCompressed = true;
ViewType curViewType = _resMan->getViewType();
_loopCount = 0;
_embeddedPal = false;
_EGAmapping = NULL;
_isSci2Hires = false;
// If we find an SCI1/SCI1.1 view (not amiga), we switch to that type for
// EGA. This could get used to make view patches for EGA games, where the
// new views include more colors. Users could manually adjust old views to
// make them look better (like removing dithered colors that aren't caught
// by our undithering or even improve the graphics overall).
if (curViewType == kViewEga) {
if (_resourceData[1] == 0x80) {
curViewType = kViewVga;
} else {
if (READ_LE_UINT16(_resourceData + 4) == 1)
curViewType = kViewVga11;
}
}
switch (curViewType) {
case kViewEga: // View-format SCI0 (and Amiga 16 colors)
isEGA = true;
case kViewAmiga: // View-format Amiga (32 colors)
case kViewVga: // View-format SCI1
// LoopCount:WORD MirrorMask:WORD Version:WORD PaletteOffset:WORD LoopOffset0:WORD LoopOffset1:WORD...
_loopCount = _resourceData[0];
// bit 0x8000 of _resourceData[1] means palette is set
if (_resourceData[1] & 0x40)
isCompressed = false;
mirrorBits = READ_LE_UINT16(_resourceData + 2);
palOffset = READ_LE_UINT16(_resourceData + 6);
if (palOffset && palOffset != 0x100) {
// Some SCI0/SCI01 games also have an offset set. It seems that it
// points to a 16-byte mapping table but on those games using that
// mapping will actually screw things up. On the other side: VGA
// SCI1 games have this pointing to a VGA palette and EGA SCI1 games
// have this pointing to a 8x16 byte mapping table that needs to get
// applied then.
if (!isEGA) {
_palette->createFromData(&_resourceData[palOffset], _resourceSize - palOffset, &_viewPalette);
_embeddedPal = true;
} else {
// Only use the EGA-mapping, when being SCI1
if (getSciVersion() >= SCI_VERSION_1_EGA) {
_EGAmapping = &_resourceData[palOffset];
for (EGAmapNr = 0; EGAmapNr < SCI_VIEW_EGAMAPPING_COUNT; EGAmapNr++) {
if (memcmp(_EGAmapping, EGAmappingStraight, SCI_VIEW_EGAMAPPING_SIZE) != 0)
break;
_EGAmapping += SCI_VIEW_EGAMAPPING_SIZE;
}
// If all mappings are "straight", then we actually ignore the mapping
if (EGAmapNr == SCI_VIEW_EGAMAPPING_COUNT)
_EGAmapping = NULL;
else
_EGAmapping = &_resourceData[palOffset];
}
}
}
_loop = new LoopInfo[_loopCount];
for (loopNo = 0; loopNo < _loopCount; loopNo++) {
loopData = _resourceData + READ_LE_UINT16(_resourceData + 8 + loopNo * 2);
// CelCount:WORD Unknown:WORD CelOffset0:WORD CelOffset1:WORD...
celCount = READ_LE_UINT16(loopData);
_loop[loopNo].celCount = celCount;
_loop[loopNo].mirrorFlag = mirrorBits & 1 ? true : false;
mirrorBits >>= 1;
// read cel info
_loop[loopNo].cel = new CelInfo[celCount];
for (celNo = 0; celNo < celCount; celNo++) {
celOffset = READ_LE_UINT16(loopData + 4 + celNo * 2);
celData = _resourceData + celOffset;
// For VGA
// Width:WORD Height:WORD DisplaceX:BYTE DisplaceY:BYTE ClearKey:BYTE Unknown:BYTE RLEData starts now directly
// For EGA
// Width:WORD Height:WORD DisplaceX:BYTE DisplaceY:BYTE ClearKey:BYTE EGAData starts now directly
cel = &_loop[loopNo].cel[celNo];
cel->width = READ_LE_UINT16(celData);
cel->height = READ_LE_UINT16(celData + 2);
cel->displaceX = (signed char)celData[4];
cel->displaceY = celData[5];
cel->clearKey = celData[6];
if (isEGA) {
cel->offsetEGA = celOffset + 7;
cel->offsetRLE = 0;
cel->offsetLiteral = 0;
} else {
cel->offsetEGA = 0;
if (isCompressed) {
cel->offsetRLE = celOffset + 8;
cel->offsetLiteral = 0;
} else {
cel->offsetRLE = 0;
cel->offsetLiteral = celOffset + 8;
}
}
cel->rawBitmap = 0;
if (_loop[loopNo].mirrorFlag)
cel->displaceX = -cel->displaceX;
}
}
break;
case kViewVga11: // View-format SCI1.1+
// HeaderSize:WORD LoopCount:BYTE Unknown:BYTE Version:WORD Unknown:WORD PaletteOffset:WORD
headerSize = READ_SCI11ENDIAN_UINT16(_resourceData + 0) + 2; // headerSize is not part of the header, so it's added
assert(headerSize >= 16);
_loopCount = _resourceData[2];
assert(_loopCount);
_isSci2Hires = _resourceData[5] == 1 ? true : false;
palOffset = READ_SCI11ENDIAN_UINT32(_resourceData + 8);
// FIXME: After LoopCount there is another byte and its set for view 50
// within Laura Bow 2 CD, check what it means.
loopData = _resourceData + headerSize;
loopSize = _resourceData[12];
assert(loopSize >= 16);
celSize = _resourceData[13];
assert(celSize >= 32);
if (palOffset) {
_palette->createFromData(&_resourceData[palOffset], _resourceSize - palOffset, &_viewPalette);
_embeddedPal = true;
}
_loop = new LoopInfo[_loopCount];
for (loopNo = 0; loopNo < _loopCount; loopNo++) {
loopData = _resourceData + headerSize + (loopNo * loopSize);
seekEntry = loopData[0];
if (seekEntry != 255) {
if (seekEntry >= _loopCount)
error("Bad loop-pointer in sci 1.1 view");
_loop[loopNo].mirrorFlag = true;
loopData = _resourceData + headerSize + (seekEntry * loopSize);
} else {
_loop[loopNo].mirrorFlag = false;
}
celCount = loopData[2];
_loop[loopNo].celCount = celCount;
celData = _resourceData + READ_SCI11ENDIAN_UINT32(loopData + 12);
// read cel info
_loop[loopNo].cel = new CelInfo[celCount];
for (celNo = 0; celNo < celCount; celNo++) {
cel = &_loop[loopNo].cel[celNo];
cel->width = READ_SCI11ENDIAN_UINT16(celData);
cel->height = READ_SCI11ENDIAN_UINT16(celData + 2);
cel->displaceX = READ_SCI11ENDIAN_UINT16(celData + 4);
cel->displaceY = READ_SCI11ENDIAN_UINT16(celData + 6);
assert(cel->width && cel->height);
cel->clearKey = celData[8];
cel->offsetEGA = 0;
cel->offsetRLE = READ_SCI11ENDIAN_UINT32(celData + 24);
cel->offsetLiteral = READ_SCI11ENDIAN_UINT32(celData + 28);
// GK1-hires content is actually uncompressed, we need to swap both so that we process it as such
if ((cel->offsetRLE) && (!cel->offsetLiteral))
SWAP(cel->offsetRLE, cel->offsetLiteral);
cel->rawBitmap = 0;
if (_loop[loopNo].mirrorFlag)
cel->displaceX = -cel->displaceX;
celData += celSize;
}
}
break;
default:
error("ViewType was not detected, can't continue");
}
}
GuiResourceId GfxView::getResourceId() const {
return _resourceId;
}
int16 GfxView::getWidth(int16 loopNo, int16 celNo) const {
return _loopCount ? getCelInfo(loopNo, celNo)->width : 0;
}
int16 GfxView::getHeight(int16 loopNo, int16 celNo) const {
return _loopCount ? getCelInfo(loopNo, celNo)->height : 0;
}
const CelInfo *GfxView::getCelInfo(int16 loopNo, int16 celNo) const {
assert(_loopCount);
loopNo = CLIP<int16>(loopNo, 0, _loopCount - 1);
celNo = CLIP<int16>(celNo, 0, _loop[loopNo].celCount - 1);
return &_loop[loopNo].cel[celNo];
}
uint16 GfxView::getCelCount(int16 loopNo) const {
assert(_loopCount);
loopNo = CLIP<int16>(loopNo, 0, _loopCount - 1);
return _loop[loopNo].celCount;
}
Palette *GfxView::getPalette() {
return _embeddedPal ? &_viewPalette : NULL;
}
bool GfxView::isSci2Hires() {
return _isSci2Hires;
}
void GfxView::getCelRect(int16 loopNo, int16 celNo, int16 x, int16 y, int16 z, Common::Rect &outRect) const {
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
outRect.left = x + celInfo->displaceX - (celInfo->width >> 1);
outRect.right = outRect.left + celInfo->width;
outRect.bottom = y + celInfo->displaceY - z + 1;
outRect.top = outRect.bottom - celInfo->height;
}
void GfxView::getCelScaledRect(int16 loopNo, int16 celNo, int16 x, int16 y, int16 z, int16 scaleX, int16 scaleY, Common::Rect &outRect) const {
int16 scaledDisplaceX, scaledDisplaceY;
int16 scaledWidth, scaledHeight;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
// Scaling displaceX/Y, Width/Height
scaledDisplaceX = (celInfo->displaceX * scaleX) >> 7;
scaledDisplaceY = (celInfo->displaceY * scaleY) >> 7;
scaledWidth = (celInfo->width * scaleX) >> 7;
scaledHeight = (celInfo->height * scaleY) >> 7;
scaledWidth = CLIP<int16>(scaledWidth, 0, _screen->getWidth());
scaledHeight = CLIP<int16>(scaledHeight, 0, _screen->getHeight());
outRect.left = x + scaledDisplaceX - (scaledWidth >> 1);
outRect.right = outRect.left + scaledWidth;
outRect.bottom = y + scaledDisplaceY - z + 1;
outRect.top = outRect.bottom - scaledHeight;
}
void GfxView::unpackCel(int16 loopNo, int16 celNo, byte *outPtr, uint32 pixelCount) {
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
byte *rlePtr;
byte *literalPtr;
uint32 pixelNo = 0, runLength;
byte pixel;
if (celInfo->offsetEGA) {
// decompression for EGA views
literalPtr = _resourceData + _loop[loopNo].cel[celNo].offsetEGA;
while (pixelNo < pixelCount) {
pixel = *literalPtr++;
runLength = pixel >> 4;
memset(outPtr + pixelNo, pixel & 0x0F, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
}
} else {
// We fill the buffer with transparent pixels, so that we can later skip
// over pixels to automatically have them transparent
// Also some RLE compressed cels are possibly ending with the last
// non-transparent pixel (is this even possible with the current code?)
memset(outPtr, _loop[loopNo].cel[celNo].clearKey, pixelCount);
rlePtr = _resourceData + celInfo->offsetRLE;
if (!celInfo->offsetLiteral) { // no additional literal data
if (_resMan->isAmiga32color()) {
// decompression for amiga views
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
if (pixel & 0x07) { // fill with color
runLength = pixel & 0x07;
pixel = pixel >> 3;
while (runLength-- && pixelNo < pixelCount) {
outPtr[pixelNo++] = pixel;
}
} else { // fill with transparent
runLength = pixel >> 3;
pixelNo += runLength;
}
}
} else {
// decompression for data that has just one combined stream
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
runLength = pixel & 0x3F;
switch (pixel & 0xC0) {
case 0: // copy bytes as-is
while (runLength-- && pixelNo < pixelCount)
outPtr[pixelNo++] = *rlePtr++;
break;
case 0x80: // fill with color
memset(outPtr + pixelNo, *rlePtr++, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
break;
case 0xC0: // fill with transparent
pixelNo += runLength;
break;
}
}
}
} else {
literalPtr = _resourceData + celInfo->offsetLiteral;
if (celInfo->offsetRLE) {
if (g_sci->getPlatform() == Common::kPlatformMacintosh && getSciVersion() >= SCI_VERSION_1_1) {
// compression for SCI1.1+ Mac
while (pixelNo < pixelCount) {
uint32 pixelLine = pixelNo;
runLength = *rlePtr++;
pixelNo += runLength;
runLength = *rlePtr++;
while (runLength-- && pixelNo < pixelCount) {
outPtr[pixelNo] = *literalPtr++;
if (outPtr[pixelNo] == 255)
outPtr[pixelNo] = 0;
pixelNo++;
}
pixelNo = pixelLine + celInfo->width;
}
} else {
// decompression for data that has separate rle and literal streams
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
runLength = pixel & 0x3F;
switch (pixel & 0xC0) {
case 0: // copy bytes as-is
while (runLength-- && pixelNo < pixelCount)
outPtr[pixelNo++] = *literalPtr++;
break;
case 0x80: // fill with color
memset(outPtr + pixelNo, *literalPtr++, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
break;
case 0xC0: // fill with transparent
pixelNo += runLength;
break;
}
}
}
} else {
// literal stream only, so no compression
memcpy(outPtr, literalPtr, pixelCount);
pixelNo = pixelCount;
}
}
}
}
const byte *GfxView::getBitmap(int16 loopNo, int16 celNo) {
loopNo = CLIP<int16>(loopNo, 0, _loopCount -1);
celNo = CLIP<int16>(celNo, 0, _loop[loopNo].celCount - 1);
if (_loop[loopNo].cel[celNo].rawBitmap)
return _loop[loopNo].cel[celNo].rawBitmap;
uint16 width = _loop[loopNo].cel[celNo].width;
uint16 height = _loop[loopNo].cel[celNo].height;
// allocating memory to store cel's bitmap
int pixelCount = width * height;
_loop[loopNo].cel[celNo].rawBitmap = new byte[pixelCount];
byte *pBitmap = _loop[loopNo].cel[celNo].rawBitmap;
// unpack the actual cel bitmap data
unpackCel(loopNo, celNo, pBitmap, pixelCount);
if (!_resMan->isVGA()) {
unditherBitmap(pBitmap, width, height, _loop[loopNo].cel[celNo].clearKey);
}
// mirroring the cel if needed
if (_loop[loopNo].mirrorFlag) {
for (int i = 0; i < height; i++, pBitmap += width)
for (int j = 0; j < width / 2; j++)
SWAP(pBitmap[j], pBitmap[width - j - 1]);
}
return _loop[loopNo].cel[celNo].rawBitmap;
}
/**
* Called after unpacking an EGA cel, this will try to undither (parts) of the
* cel if the dithering in here matches dithering used by the current picture.
*/
void GfxView::unditherBitmap(byte *bitmapPtr, int16 width, int16 height, byte clearKey) {
int16 *unditherMemorial = _screen->unditherGetMemorial();
// It makes no sense to go further, if no memorial data from current picture
// is available
if (!unditherMemorial)
return;
// Makes no sense to process bitmaps that are 3 pixels wide or less
if (width <= 3)
return;
// If EGA mapping is used for this view, dont do undithering as well
if (_EGAmapping)
return;
// Walk through the bitmap and remember all combinations of colors
int16 bitmapMemorial[SCI_SCREEN_UNDITHERMEMORIAL_SIZE];
byte *curPtr;
byte color1, color2;
int16 y, x;
memset(&bitmapMemorial, 0, sizeof(bitmapMemorial));
// Count all seemingly dithered pixel-combinations as soon as at least 4
// pixels are adjacent
curPtr = bitmapPtr;
for (y = 0; y < height; y++) {
color1 = curPtr[0]; color2 = (curPtr[1] << 4) | curPtr[2];
curPtr += 3;
for (x = 3; x < width; x++) {
color1 = (color1 << 4) | (color2 >> 4);
color2 = (color2 << 4) | *curPtr++;
if (color1 == color2)
bitmapMemorial[color1]++;
}
}
// Now compare both memorial tables to find out matching
// dithering-combinations
bool unditherTable[SCI_SCREEN_UNDITHERMEMORIAL_SIZE];
byte color, unditherCount = 0;
memset(&unditherTable, false, sizeof(unditherTable));
for (color = 0; color < 255; color++) {
if ((bitmapMemorial[color] > 5) && (unditherMemorial[color] > 200)) {
// match found, check if colorKey is contained -> if so, we ignore
// of course
color1 = color & 0x0F; color2 = color >> 4;
if ((color1 != clearKey) && (color2 != clearKey) && (color1 != color2)) {
// so set this and the reversed color-combination for undithering
unditherTable[color] = true;
unditherTable[(color1 << 4) | color2] = true;
unditherCount++;
}
}
}
// Nothing found to undither -> exit straight away
if (!unditherCount)
return;
// We now need to replace color-combinations
curPtr = bitmapPtr;
for (y = 0; y < height; y++) {
color = *curPtr;
for (x = 1; x < width; x++) {
color = (color << 4) | curPtr[1];
if (unditherTable[color]) {
// Some color with black? Turn colors around, otherwise it won't
// be the right color at all.
if ((color & 0xF0) == 0)
color = (color << 4) | (color >> 4);
curPtr[0] = color; curPtr[1] = color;
}
curPtr++;
}
curPtr++;
}
}
void GfxView::draw(const Common::Rect &rect, const Common::Rect &clipRect, const Common::Rect &clipRectTranslated,
int16 loopNo, int16 celNo, byte priority, uint16 EGAmappingNr, bool upscaledHires) {
const Palette *palette = _embeddedPal ? &_viewPalette : &_palette->_sysPalette;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
const byte *bitmap = getBitmap(loopNo, celNo);
const int16 celHeight = celInfo->height;
const int16 celWidth = celInfo->width;
const byte clearKey = celInfo->clearKey;
const byte drawMask = (priority == 255) ? GFX_SCREEN_MASK_VISUAL : GFX_SCREEN_MASK_VISUAL|GFX_SCREEN_MASK_PRIORITY;
int x, y;
if (_embeddedPal) {
// Merge view palette in...
_palette->set(&_viewPalette, false);
}
const int16 width = MIN(clipRect.width(), celWidth);
const int16 height = MIN(clipRect.height(), celHeight);
bitmap += (clipRect.top - rect.top) * celWidth + (clipRect.left - rect.left);
if (!_EGAmapping) {
for (y = 0; y < height; y++, bitmap += celWidth) {
for (x = 0; x < width; x++) {
const byte color = bitmap[x];
if (color != clearKey) {
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (!upscaledHires) {
if (priority >= _screen->getPriority(x2, y2))
_screen->putPixel(x2, y2, drawMask, palette->mapping[color], priority, 0);
} else {
// UpscaledHires means view is hires and is supposed to
// get drawn onto lowres screen.
// FIXME(?): we can't read priority directly with the
// hires coordinates. may not be needed at all in kq6
_screen->putPixelOnDisplay(x2, y2, palette->mapping[color]);
}
}
}
}
} else {
byte *EGAmapping = _EGAmapping + (EGAmappingNr * SCI_VIEW_EGAMAPPING_SIZE);
for (y = 0; y < height; y++, bitmap += celWidth) {
for (x = 0; x < width; x++) {
const byte color = EGAmapping[bitmap[x]];
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (color != clearKey && priority >= _screen->getPriority(x2, y2))
_screen->putPixel(x2, y2, drawMask, color, priority, 0);
}
}
}
}
/**
* We don't fully follow sierra sci here, I did the scaling algo myself and it
* is definitely not pixel-perfect with the one sierra is using. It shouldn't
* matter because the scaled cel rect is definitely the same as in sierra sci.
*/
void GfxView::drawScaled(const Common::Rect &rect, const Common::Rect &clipRect, const Common::Rect &clipRectTranslated,
int16 loopNo, int16 celNo, byte priority, int16 scaleX, int16 scaleY) {
const Palette *palette = _embeddedPal ? &_viewPalette : &_palette->_sysPalette;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
const byte *bitmap = getBitmap(loopNo, celNo);
const int16 celHeight = celInfo->height;
const int16 celWidth = celInfo->width;
const byte clearKey = celInfo->clearKey;
const byte drawMask = (priority == 255) ? GFX_SCREEN_MASK_VISUAL : GFX_SCREEN_MASK_VISUAL|GFX_SCREEN_MASK_PRIORITY;
uint16 scalingX[640];
uint16 scalingY[480];
int16 scaledWidth, scaledHeight;
int16 pixelNo, scaledPixel, scaledPixelNo, prevScaledPixelNo;
if (_embeddedPal) {
// Merge view palette in...
_palette->set(&_viewPalette, false);
}
scaledWidth = (celInfo->width * scaleX) >> 7;
scaledHeight = (celInfo->height * scaleY) >> 7;
scaledWidth = CLIP<int16>(scaledWidth, 0, _screen->getWidth());
scaledHeight = CLIP<int16>(scaledHeight, 0, _screen->getHeight());
// Do we really need to do this?!
memset(scalingX, 0, sizeof(scalingX));
memset(scalingY, 0, sizeof(scalingY));
// Create height scaling table
pixelNo = 0;
scaledPixel = scaledPixelNo = prevScaledPixelNo = 0;
while (pixelNo < celHeight) {
scaledPixelNo = scaledPixel >> 7;
assert(scaledPixelNo < ARRAYSIZE(scalingY));
if (prevScaledPixelNo < scaledPixelNo)
memset(&scalingY[prevScaledPixelNo], pixelNo, scaledPixelNo - prevScaledPixelNo);
scalingY[scaledPixelNo] = pixelNo;
prevScaledPixelNo = scaledPixelNo + 1;
pixelNo++;
scaledPixel += scaleY;
}
scaledPixelNo++;
if (scaledPixelNo < scaledHeight)
memset(&scalingY[scaledPixelNo], pixelNo - 1, scaledHeight - scaledPixelNo);
// Create width scaling table
pixelNo = 0;
scaledPixel = scaledPixelNo = prevScaledPixelNo = 0;
while (pixelNo < celWidth) {
scaledPixelNo = scaledPixel >> 7;
assert(scaledPixelNo < ARRAYSIZE(scalingX));
if (prevScaledPixelNo < scaledPixelNo)
memset(&scalingX[prevScaledPixelNo], pixelNo, scaledPixelNo - prevScaledPixelNo);
scalingX[scaledPixelNo] = pixelNo;
prevScaledPixelNo = scaledPixelNo + 1;
pixelNo++;
scaledPixel += scaleX;
}
scaledPixelNo++;
if (scaledPixelNo < scaledWidth)
memset(&scalingX[scaledPixelNo], pixelNo - 1, scaledWidth - scaledPixelNo);
scaledWidth = MIN(clipRect.width(), scaledWidth);
scaledHeight = MIN(clipRect.height(), scaledHeight);
const int16 offsetY = clipRect.top - rect.top;
const int16 offsetX = clipRect.left - rect.left;
// Happens in SQ6, first room
if (offsetX < 0 || offsetY < 0)
return;
assert(scaledHeight + offsetY <= ARRAYSIZE(scalingY));
assert(scaledWidth + offsetX <= ARRAYSIZE(scalingX));
for (int y = 0; y < scaledHeight; y++) {
for (int x = 0; x < scaledWidth; x++) {
const byte color = bitmap[scalingY[y + offsetY] * celWidth + scalingX[x + offsetX]];
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (color != clearKey && priority >= _screen->getPriority(x2, y2)) {
_screen->putPixel(x2, y2, drawMask, palette->mapping[color], priority, 0);
}
}
}
}
} // End of namespace Sci