scummvm/engines/twp/graph.cpp
2024-03-24 22:49:08 +01:00

349 lines
9.8 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "twp/graph.h"
namespace Twp {
IndexedPriorityQueue::IndexedPriorityQueue(Common::Array<float> &keys)
: _keys(keys) {
}
void IndexedPriorityQueue::insert(int index) {
_data.push_back(index);
reorderUp();
}
int IndexedPriorityQueue::pop() {
int r = _data[0];
_data[0] = _data[_data.size() - 1];
_data.pop_back();
reorderDown();
return r;
}
void IndexedPriorityQueue::reorderUp() {
if (_data.empty())
return;
size_t a = _data.size() - 1;
while (a > 0) {
if (_keys[_data[a]] >= _keys[_data[a - 1]])
return;
int tmp = _data[a];
_data[a] = _data[a - 1];
_data[a - 1] = tmp;
a--;
}
}
void IndexedPriorityQueue::reorderDown() {
if (_data.empty())
return;
for (int a = 0; a < static_cast<int>(_data.size() - 1); a++) {
if (_keys[_data[a]] <= _keys[_data[a + 1]])
return;
int tmp = _data[a];
_data[a] = _data[a + 1];
_data[a + 1] = tmp;
}
}
bool IndexedPriorityQueue::isEmpty() {
return _data.empty();
}
Graph::Graph() {}
GraphEdge::GraphEdge(int s, int t, float c)
: start(s), to(t), cost(c) {
}
void Graph::addNode(const Math::Vector2d &node) {
_nodes.push_back(node);
_edges.push_back(Common::Array<GraphEdge>());
}
AStar::AStar(Graph *graph)
: _fCost(graph->_nodes.size()), _gCost(graph->_nodes.size()), _spt(graph->_nodes.size()), _sf(graph->_nodes.size()) {
_graph = graph;
}
void AStar::search(int source, int target) {
IndexedPriorityQueue pq(_fCost);
pq.insert(source);
while (!pq.isEmpty()) {
int NCN = pq.pop();
_spt[NCN] = _sf[NCN];
if (NCN != target) {
for (size_t i = 0; i < _graph->_edges[NCN].size(); i++) {
GraphEdge &edge = _graph->_edges[NCN][i];
float Hcost = length(_graph->_nodes[edge.to] - _graph->_nodes[target]);
float Gcost = _gCost[NCN] + edge.cost;
if (!_sf[edge.to]) {
_fCost[edge.to] = Gcost + Hcost;
_gCost[edge.to] = Gcost;
pq.insert(edge.to);
_sf[edge.to] = &edge;
} else if (Gcost < _gCost[edge.to] && !_spt[edge.to]) {
_fCost[edge.to] = Gcost + Hcost;
_gCost[edge.to] = Gcost;
pq.reorderUp();
_sf[edge.to] = &edge;
}
}
}
}
}
void Graph::addEdge(const GraphEdge &e) {
if (!edge(e.start, e.to)) {
_edges[e.start].push_back(e);
}
if (!edge(e.to, e.start)) {
GraphEdge e2(e.to, e.start, e.cost);
_edges[e.to].push_back(e2);
}
}
GraphEdge *Graph::edge(int start, int to) {
Common::Array<GraphEdge> &edges = _edges[start];
for (size_t i = 0; i < edges.size(); i++) {
GraphEdge *e = &edges[i];
if (e->to == to)
return e;
}
return nullptr;
}
Common::Array<int> Graph::getPath(int source, int target) {
Common::Array<int> result;
AStar astar(this);
if (target >= 0) {
astar.search(source, target);
int nd = target;
result.push_back(nd);
while ((nd != source) && (astar._spt[nd] != nullptr)) {
nd = astar._spt[nd]->start;
result.push_back(nd);
}
return reverse(result);
}
return result;
}
void PathFinder::setWalkboxes(const Common::Array<Walkbox> &walkboxes) {
_walkboxes = walkboxes;
_graph = nullptr;
}
Math::Vector2d Walkbox::getClosestPointOnEdge(const Math::Vector2d &p) const {
int vi1 = -1;
int vi2 = -1;
float minDist = 100000.0f;
const Common::Array<Vector2i> &polygon = getPoints();
for (size_t i = 0; i < polygon.size(); i++) {
float dist = distanceToSegment(p, (Math::Vector2d)polygon[i], (Math::Vector2d)polygon[(i + 1) % polygon.size()]);
if (dist < minDist) {
minDist = dist;
vi1 = i;
vi2 = (i + 1) % polygon.size();
}
}
Math::Vector2d p1 = (Math::Vector2d)polygon[vi1];
Math::Vector2d p2 = (Math::Vector2d)polygon[vi2];
float x1 = p1.getX();
float y1 = p1.getY();
float x2 = p2.getX();
float y2 = p2.getY();
float x3 = p.getX();
float y3 = p.getY();
float u = (((x3 - x1) * (x2 - x1)) + ((y3 - y1) * (y2 - y1))) / (((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)));
float xu = x1 + u * (x2 - x1);
float yu = y1 + u * (y2 - y1);
if (u < 0)
return Math::Vector2d(x1, y1);
if (u > 1)
return Math::Vector2d(x2, y2);
return Math::Vector2d(xu, yu);
}
bool PathFinder::inLineOfSight(const Math::Vector2d &start, const Math::Vector2d &to) {
const float epsilon = 0.5f;
// Not in LOS if any of the ends is outside the polygon
if (!_walkboxes[0].contains(start) || !_walkboxes[0].contains(to))
return false;
// In LOS if it's the same start and end location
if (length(start - to) < epsilon)
return true;
// Not in LOS if any edge is intersected by the start-end line segment
for (uint i = 0; i < _walkboxes.size(); i++) {
const Walkbox &walkbox = _walkboxes[i];
const Common::Array<Vector2i> &polygon = walkbox.getPoints();
const uint size = polygon.size();
for (uint j = 0; j < size; j++) {
Math::Vector2d v1 = (Math::Vector2d)polygon[j];
Math::Vector2d v2 = (Math::Vector2d)polygon[(j + 1) % size];
if (!lineSegmentsCross(start, to, v1, v2))
continue;
// In some cases a 'snapped' endpoint is just a little over the line due to rounding errors. So a 0.5 margin is used to tackle those cases.
if ((distanceToSegment(start, v1, v2) > epsilon) && (distanceToSegment(to, v1, v2) > epsilon))
return false;
}
}
// Finally the middle point in the segment determines if in LOS or not
const Math::Vector2d v2 = (start + to) / 2.0f;
if (!_walkboxes[0].contains(v2))
return false;
for (uint i = 1; i < _walkboxes.size(); i++) {
if (_walkboxes[i].contains(v2, false))
return false;
}
return true;
}
Common::SharedPtr<Graph> PathFinder::createGraph() {
Common::SharedPtr<Graph> result(new Graph());
for (uint i = 0; i < _walkboxes.size(); i++) {
const Walkbox &walkbox = _walkboxes[i];
if (walkbox.getPoints().size() > 2) {
bool firstWalkbox = (i == 0);
if (!walkbox.isVisible())
firstWalkbox = true;
for (uint j = 0; j < walkbox.getPoints().size(); j++) {
if (walkbox.concave(j) == firstWalkbox) {
Math::Vector2d vertex = (Math::Vector2d)walkbox.getPoints()[j];
result->_concaveVertices.push_back(vertex);
result->addNode(vertex);
}
}
}
}
for (uint i = 0; i < result->_concaveVertices.size(); i++) {
for (uint j = 0; j < result->_concaveVertices.size(); j++) {
const Math::Vector2d c1(result->_concaveVertices[i]);
const Math::Vector2d c2(result->_concaveVertices[j]);
if (inLineOfSight(c1, c2)) {
const float d = distance(c1, c2);
result->addEdge(GraphEdge(i, j, d));
}
}
}
return result;
}
Common::Array<Math::Vector2d> PathFinder::calculatePath(const Math::Vector2d &s, const Math::Vector2d &t) {
Math::Vector2d start(s);
Math::Vector2d to(t);
Common::Array<Math::Vector2d> result;
if (!_walkboxes.empty()) {
// find the walkbox where the actor is and put it first
for (uint i = 0; i < _walkboxes.size(); i++) {
const Walkbox &wb = _walkboxes[i];
if (wb.contains(start) && (i != 0)) {
_graph.reset();
SWAP(_walkboxes[0], _walkboxes[i]);
break;
}
}
// if no walkbox has been found => find the nearest walkbox
if (!_walkboxes[0].contains(start)) {
Common::Array<float> dists(_walkboxes.size());
for (uint i = 0; i < _walkboxes.size(); i++) {
const Walkbox &wb = _walkboxes[i];
dists[i] = distance(wb.getClosestPointOnEdge(start), start);
}
const size_t index = minIndex(dists);
if (index != 0) {
_graph.reset();
SWAP(_walkboxes[0], _walkboxes[index]);
}
}
if (!_graph)
_graph = createGraph();
// create new node on start position
_walkgraph = *_graph;
const uint startNodeIndex = _walkgraph._nodes.size();
// if destination is not inside current walkable area, then get the closest point
const Walkbox &wb = _walkboxes[0];
if (wb.isVisible() && !wb.contains(start)) {
start = wb.getClosestPointOnEdge(start);
}
if (wb.isVisible() && !wb.contains(to)) {
to = wb.getClosestPointOnEdge(to);
}
// we don't want the actor to walk in a different walkbox
// then check if endpoint is inside one of the other walkboxes and find the closest point on edge
for (uint i = 1; i < _walkboxes.size(); i++) {
if (_walkboxes[i].contains(to)) {
to = _walkboxes[i].getClosestPointOnEdge(to);
break;
}
}
_walkgraph.addNode(start);
for (uint i = 0; i < _walkgraph._concaveVertices.size(); i++) {
const Math::Vector2d c = _walkgraph._concaveVertices[i];
if (inLineOfSight(start, c))
_walkgraph.addEdge(GraphEdge(startNodeIndex, i, distance(start, c)));
}
// create new node on end position
const uint endNodeIndex = _walkgraph._nodes.size();
_walkgraph.addNode(to);
for (uint i = 0; i < _walkgraph._concaveVertices.size(); i++) {
const Math::Vector2d c = _walkgraph._concaveVertices[i];
if (inLineOfSight(to, c))
_walkgraph.addEdge(GraphEdge(i, endNodeIndex, distance(to, c)));
}
if (inLineOfSight(start, to))
_walkgraph.addEdge(GraphEdge(startNodeIndex, endNodeIndex, distance(start, to)));
const Common::Array<int> indices = _walkgraph.getPath(startNodeIndex, endNodeIndex);
for (uint i = 0; i < indices.size(); i++) {
const int index = indices[i];
result.push_back(_walkgraph._nodes[index]);
}
}
return result;
}
} // namespace Twp