scummvm/video/codecs/svq1.cpp
2012-04-08 03:29:40 +01:00

950 lines
28 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Sorenson Video 1 Codec
// Based off ffmpeg's SVQ1 decoder (written by Mike Melanson)
#include "video/codecs/svq1.h"
#include "video/codecs/svq1_cb.h"
#include "video/codecs/svq1_vlc.h"
#include "common/stream.h"
#include "common/bitstream.h"
#include "common/rect.h"
#include "common/system.h"
#include "common/debug.h"
#include "common/textconsole.h"
#include "common/huffman.h"
#include "graphics/yuv_to_rgb.h"
namespace Video {
#define SVQ1_BLOCK_SKIP 0
#define SVQ1_BLOCK_INTER 1
#define SVQ1_BLOCK_INTER_4V 2
#define SVQ1_BLOCK_INTRA 3
SVQ1Decoder::SVQ1Decoder(uint16 width, uint16 height) {
debug(1, "SVQ1Decoder::SVQ1Decoder(width:%d, height:%d)", width, height);
_width = width;
_height = height;
_frameWidth = _frameHeight = 0;
_surface = 0;
_last[0] = 0;
_last[1] = 0;
_last[2] = 0;
// Setup Variable Length Code Tables
_blockType = new Common::Huffman(0, 4, s_svq1BlockTypeCodes, s_svq1BlockTypeLengths);
for (int i = 0; i < 6; i++) {
_intraMultistage[i] = new Common::Huffman(0, 8, s_svq1IntraMultistageCodes[i], s_svq1IntraMultistageLengths[i]);
_interMultistage[i] = new Common::Huffman(0, 8, s_svq1InterMultistageCodes[i], s_svq1InterMultistageLengths[i]);
}
_intraMean = new Common::Huffman(0, 256, s_svq1IntraMeanCodes, s_svq1IntraMeanLengths);
_interMean = new Common::Huffman(0, 512, s_svq1InterMeanCodes, s_svq1InterMeanLengths);
_motionComponent = new Common::Huffman(0, 33, s_svq1MotionComponentCodes, s_svq1MotionComponentLengths);
}
SVQ1Decoder::~SVQ1Decoder() {
if (_surface) {
_surface->free();
delete _surface;
}
delete[] _last[0];
delete[] _last[1];
delete[] _last[2];
delete _blockType;
delete _intraMean;
delete _interMean;
delete _motionComponent;
for (int i = 0; i < 6; i++) {
delete _intraMultistage[i];
delete _interMultistage[i];
}
}
const Graphics::Surface *SVQ1Decoder::decodeImage(Common::SeekableReadStream *stream) {
debug(1, "SVQ1Decoder::decodeImage()");
Common::BitStream32BEMSB frameData(*stream);
uint32 frameCode = frameData.getBits(22);
debug(1, " frameCode: %d", frameCode);
if ((frameCode & ~0x70) || !(frameCode & 0x60)) { // Invalid
warning("Invalid Image at frameCode");
return _surface;
}
// swap some header bytes (why?)
//if (frameCode != 0x20) {
// uint32 *src = stream;
//
// for (i = 4; i < 8; i++) {
// src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i];
// }
//}
#if 0
static const uint16 checksum_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
#endif
byte temporalReference = frameData.getBits(8);
debug(1, " temporalReference: %d", temporalReference);
const char* types[4] = { "I (Key)", "P (Delta from Previous)", "B (Delta from Next)", "Invalid" };
byte frameType = frameData.getBits(2);
debug(1, " frameType: %d = %s Frame", frameType, types[frameType]);
if (frameType == 0) { // I Frame
// TODO: Validate checksum if present
if (frameCode == 0x50 || frameCode == 0x60) {
uint32 checksum = frameData.getBits(16);
debug(1, " checksum:0x%02x", checksum);
//uint16 calculate_packet_checksum (const uint8 *data, const int length) {
// int value;
//for (int i = 0; i < length; i++)
// value = checksum_table[data[i] ^ (value >> 8)] ^ ((value & 0xFF) << 8);
}
static const uint8 stringXORTable[256] = {
0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54,
0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D,
0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06,
0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F,
0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0,
0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9,
0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2,
0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B,
0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9,
0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0,
0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B,
0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2,
0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D,
0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44,
0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F,
0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16,
0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB,
0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92,
0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9,
0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0,
0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F,
0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36,
0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D,
0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64,
0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26,
0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F,
0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74,
0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D,
0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82,
0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB,
0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0,
0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9
};
if ((frameCode ^ 0x10) >= 0x50) {
// Decode embedded string
Common::String str;
uint8 stringLen = frameData.getBits(8);
byte xorVal = stringXORTable[stringLen];
for (uint16 i = 0; i < stringLen-1; i++) {
byte data = frameData.getBits(8);
str += data ^ xorVal;
xorVal = stringXORTable[data];
}
debug(1, " Embedded String of %d Characters: \"%s\"", stringLen, str.c_str());
}
byte unk1 = frameData.getBits(2); // Unknown
debug(1, " unk1: %d", unk1);
byte unk2 = frameData.getBits(2); // Unknown
debug(1, " unk2: %d", unk2);
bool unk3 = frameData.getBit(); // Unknown
debug(1, " unk3: %d", unk3);
static const struct { uint w, h; } standardFrameSizes[7] = {
{ 160, 120 }, // 0
{ 128, 96 }, // 1
{ 176, 144 }, // 2
{ 352, 288 }, // 3
{ 704, 576 }, // 4
{ 240, 180 }, // 5
{ 320, 240 } // 6
};
byte frameSizeCode = frameData.getBits(3);
debug(1, " frameSizeCode: %d", frameSizeCode);
if (frameSizeCode == 7) {
_frameWidth = frameData.getBits(12);
_frameHeight = frameData.getBits(12);
} else {
_frameWidth = standardFrameSizes[frameSizeCode].w;
_frameHeight = standardFrameSizes[frameSizeCode].h;
}
debug(1, " frameWidth: %d", _frameWidth);
debug(1, " frameHeight: %d", _frameHeight);
// Now we'll create the surface
if (!_surface) {
_surface = new Graphics::Surface();
_surface->create(_frameWidth, _frameHeight, g_system->getScreenFormat());
_surface->w = _width;
_surface->h = _height;
}
} else if (frameType == 2) { // B Frame
warning("B Frames not supported by SVQ1 decoder");
return _surface;
} else if (frameType == 3) { // Invalid
warning("Invalid Frame Type");
return _surface;
}
bool checksumPresent = frameData.getBit();
debug(1, " checksumPresent: %d", checksumPresent);
if (checksumPresent) {
bool usePacketChecksum = frameData.getBit();
debug(1, " usePacketChecksum: %d", usePacketChecksum);
bool componentChecksumsAfterImageData = frameData.getBit();
debug(1, " componentChecksumsAfterImageData: %d", componentChecksumsAfterImageData);
byte unk4 = frameData.getBits(2);
debug(1, " unk4: %d", unk4);
if (unk4 != 0)
warning("Invalid Frame Header in SVQ1 Frame Decode");
}
bool unk5 = frameData.getBit();
debug(1, " unk5: %d", unk5);
if (unk5) {
bool unk6 = frameData.getBit();
debug(1, " unk6: %d", unk6);
byte unk7 = frameData.getBits(4);
debug(1, " unk7: %d", unk7);
bool unk8 = frameData.getBit();
debug(1, " unk8: %d", unk8);
byte unk9 = frameData.getBits(2);
debug(1, " unk9: %d", unk9);
while (frameData.getBit()) {
byte unk10 = frameData.getBits(8);
debug(1, " unk10: %d", unk10);
}
}
byte *current[3];
// FIXME - Added extra _width of 16px blocks to stop out of
// range access causing crashes. Need to correct code...
current[0] = new byte[_frameWidth * _frameHeight + (_frameWidth * 16)];
current[1] = new byte[(_frameWidth / 4) * (_frameHeight / 4) + (_frameWidth / 4 * 16)];
current[2] = new byte[(_frameWidth / 4) * (_frameHeight / 4) + (_frameWidth / 4 * 16)];
// Decode Y, U and V component planes
for (int i = 0; i < 3; i++) {
int linesize, width, height;
if (i == 0) {
// Y Size is width * height
width = _frameWidth;
if (width % 16) {
width /= 16;
width++;
width *= 16;
}
assert(width % 16 == 0);
height = _frameHeight;
if (height % 16) {
height /= 16;
height++;
height *= 16;
}
assert(height % 16 == 0);
linesize = _frameWidth;
} else {
// U and V size is width/4 * height/4
width = _frameWidth / 4;
if (width % 16) {
width /= 16;
width++;
width *= 16;
}
assert(width % 16 == 0);
height = _frameHeight / 4;
if (height % 16) {
height /= 16;
height++;
height *= 16;
}
assert(height % 16 == 0);
linesize = _frameWidth / 4;
}
if (frameType == 0) { // I Frame
// Keyframe (I)
byte *currentP = current[i];
for (uint16 y = 0; y < height; y += 16) {
for (uint16 x = 0; x < width; x += 16) {
if (int result = svq1DecodeBlockIntra(&frameData, &currentP[x], linesize) != 0) {
warning("Error in svq1DecodeBlock %i (keyframe)", result);
return _surface;
}
}
currentP += 16 * linesize;
}
} else {
// Delta frame (P or B)
// Prediction Motion Vector
Common::Point *pmv = new Common::Point[(width/8) + 3];
byte *previous;
if(frameType == 2) { // B Frame
warning("B Frame not supported currently");
//previous = _next[i];
} else
previous = _last[i];
byte *currentP = current[i];
for (uint16 y = 0; y < height; y += 16) {
for (uint16 x = 0; x < width; x += 16) {
if (int result = svq1DecodeDeltaBlock(&frameData, &currentP[x], previous, linesize, pmv, x, y) != 0) {
warning("Error in svq1DecodeDeltaBlock %i", result);
return _surface;
}
}
pmv[0].x = pmv[0].y = 0;
currentP += 16*linesize;
}
delete[] pmv;
}
}
convertYUV410ToRGB(_surface, current[0], current[1], current[2], _frameWidth, _frameHeight, _frameWidth, _frameWidth / 4);
for (int i = 0; i < 3; i++) {
delete[] _last[i];
_last[i] = current[i];
}
return _surface;
}
int SVQ1Decoder::svq1DecodeBlockIntra(Common::BitStream *s, uint8 *pixels, int pitch) {
uint8 *list[63];
uint32 *dst;
int entries[6];
int i, j, m, n;
int mean, stages;
unsigned int x, y, width, height, level;
uint32 n1, n2, n3, n4;
// initialize list for breadth first processing of vectors
list[0] = pixels;
// recursively process vector
for (i=0, m=1, n=1, level=5; i < n; i++) {
// SVQ1_PROCESS_VECTOR()
for (; level > 0; i++) {
// process next depth
if (i == m) {
m = n;
if (--level == 0)
break;
}
// divide block if next bit set
if (s->getBit() == 0)
break;
// add child nodes
list[n++] = list[i];
list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));
}
// destination address and vector size
dst = (uint32 *) list[i];
width = 1 << ((4 + level) /2);
height = 1 << ((3 + level) /2);
// get number of stages (-1 skips vector, 0 for mean only)
stages = _intraMultistage[level]->getSymbol(*s) - 1;
if (stages == -1) {
for (y=0; y < height; y++) {
memset (&dst[y*(pitch / 4)], 0, width);
}
continue; // skip vector
}
if ((stages > 0) && (level >= 4)) {
warning("Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i", stages, level);
return -1; // invalid vector
}
mean = _intraMean->getSymbol(*s);
if (stages == 0) {
for (y=0; y < height; y++) {
memset (&dst[y*(pitch / 4)], mean, width);
}
} else {
// SVQ1_CALC_CODEBOOK_ENTRIES(svq1_intra_codebooks);
const uint32 *codebook = s_svq1IntraCodebooks[level];
uint32 bit_cache = s->getBits(4*stages);
// calculate codebook entries for this vector
for (j=0; j < stages; j++) {
entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1);
}
mean -= (stages * 128);
n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
// SVQ1_DO_CODEBOOK_INTRA()
for (y=0; y < height; y++) {
for (x=0; x < (width / 4); x++, codebook++) {
n1 = n4;
n2 = n4;
// SVQ1_ADD_CODEBOOK()
// add codebook entries to vector
for (j=0; j < stages; j++) {
n3 = codebook[entries[j]] ^ 0x80808080;
n1 += ((n3 & 0xFF00FF00) >> 8);
n2 += (n3 & 0x00FF00FF);
}
// clip to [0..255]
if (n1 & 0xFF00FF00) {
n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 += 0x7F007F00;
n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 &= (n3 & 0x00FF00FF);
}
if (n2 & 0xFF00FF00) {
n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 += 0x7F007F00;
n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 &= (n3 & 0x00FF00FF);
}
// store result
dst[x] = (n1 << 8) | n2;
}
dst += (pitch / 4);
}
}
}
return 0;
}
int SVQ1Decoder::svq1DecodeBlockNonIntra(Common::BitStream *s, uint8 *pixels, int pitch) {
uint8 *list[63];
uint32 *dst;
int entries[6];
int i, j, m, n;
int mean, stages;
int x, y, width, height, level;
uint32 n1, n2, n3, n4;
// initialize list for breadth first processing of vectors
list[0] = pixels;
// recursively process vector
for (i=0, m=1, n=1, level=5; i < n; i++) {
// SVQ1_PROCESS_VECTOR()
for (; level > 0; i++) {
// process next depth
if (i == m) {
m = n;
if (--level == 0)
break;
}
// divide block if next bit set
if (s->getBit() == 0)
break;
// add child nodes
list[n++] = list[i];
list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));
}
// destination address and vector size
dst = (uint32 *) list[i];
width = 1 << ((4 + level) /2);
height = 1 << ((3 + level) /2);
// get number of stages (-1 skips vector, 0 for mean only)
stages = _interMultistage[level]->getSymbol(*s) - 1;
if (stages == -1) continue; // skip vector
if ((stages > 0) && (level >= 4)) {
warning("Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i", stages, level);
return -1; // invalid vector
}
mean = _interMean->getSymbol(*s) - 256;
// SVQ1_CALC_CODEBOOK_ENTRIES(svq1_inter_codebooks);
const uint32 *codebook = s_svq1InterCodebooks[level];
uint32 bit_cache = s->getBits(4*stages);
// calculate codebook entries for this vector
for (j=0; j < stages; j++) {
entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1);
}
mean -= (stages * 128);
n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
// SVQ1_DO_CODEBOOK_NONINTRA()
for (y=0; y < height; y++) {
for (x=0; x < (width / 4); x++, codebook++) {
n3 = dst[x];
// add mean value to vector
n1 = ((n3 & 0xFF00FF00) >> 8) + n4;
n2 = (n3 & 0x00FF00FF) + n4;
//SVQ1_ADD_CODEBOOK()
// add codebook entries to vector
for (j=0; j < stages; j++) {
n3 = codebook[entries[j]] ^ 0x80808080;
n1 += ((n3 & 0xFF00FF00) >> 8);
n2 += (n3 & 0x00FF00FF);
}
// clip to [0..255]
if (n1 & 0xFF00FF00) {
n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 += 0x7F007F00;
n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 &= (n3 & 0x00FF00FF);
}
if (n2 & 0xFF00FF00) {
n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 += 0x7F007F00;
n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 &= (n3 & 0x00FF00FF);
}
// store result
dst[x] = (n1 << 8) | n2;
}
dst += (pitch / 4);
}
}
return 0;
}
// median of 3
static inline int mid_pred(int a, int b, int c) {
if (a > b) {
if (c > b) {
if (c > a) b = a;
else b = c;
}
} else {
if (b > c) {
if (c > a) b = c;
else b = a;
}
}
return b;
}
int SVQ1Decoder::svq1DecodeMotionVector(Common::BitStream *s, Common::Point *mv, Common::Point **pmv) {
for (int i=0; i < 2; i++) {
// get motion code
int diff = _motionComponent->getSymbol(*s);
if (diff < 0)
return -1;
else if (diff) {
if (s->getBit()) diff= -diff;
}
// add median of motion vector predictors and clip result
if (i == 1)
mv->y = ((diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26;
else
mv->x = ((diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26;
}
return 0;
}
void SVQ1Decoder::svq1SkipBlock(uint8 *current, uint8 *previous, int pitch, int x, int y) {
uint8 *src;
uint8 *dst;
src = &previous[x + y*pitch];
dst = current;
for (int i = 0; i < 16; i++) {
memcpy(dst, src, 16);
src += pitch;
dst += pitch;
}
}
static void put_pixels8_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
for (int i = 0; i < h; i++) {
*((uint32*)(block)) = READ_UINT32(pixels);
*((uint32*)(block + 4)) = READ_UINT32(pixels + 4);
pixels += line_size;
block += line_size;
}
}
static inline uint32 rnd_avg32(uint32 a, uint32 b) {
return (a | b) - (((a ^ b) & ~((0x01)*0x01010101UL)) >> 1);
}
static inline void put_pixels8_l2(uint8 *dst, const uint8 *src1, const uint8 *src2,
int dst_stride, int src_stride1, int src_stride2, int h) {
for (int i = 0; i < h; i++){
uint32 a, b;
a= READ_UINT32(&src1[i*src_stride1]);
b= READ_UINT32(&src2[i*src_stride2]);
*((uint32*)&dst[i*dst_stride]) = rnd_avg32(a, b);
a= READ_UINT32(&src1[i*src_stride1 + 4]);
b= READ_UINT32(&src2[i*src_stride2 + 4]);
*((uint32*)&dst[i*dst_stride + 4]) = rnd_avg32(a, b);
}
}
static inline void put_pixels8_x2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_l2(block, pixels, pixels+1, line_size, line_size, line_size, h);
}
static inline void put_pixels8_y2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_l2(block, pixels, pixels+line_size, line_size, line_size, line_size, h);
}
static inline void put_pixels8_xy2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
for (int j = 0; j < 2; j++) {
uint32 a = READ_UINT32(pixels);
uint32 b = READ_UINT32(pixels+1);
uint32 l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL;
uint32 h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
uint32 l1, h1;
pixels += line_size;
for (int i = 0; i < h; i += 2) {
a = READ_UINT32(pixels);
b = READ_UINT32(pixels+1);
l1 = (a & 0x03030303UL) + (b & 0x03030303UL);
h1 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
*((uint32*)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL);
pixels += line_size;
block += line_size;
a = READ_UINT32(pixels);
b = READ_UINT32(pixels+1);
l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL;
h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
*((uint32*)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL);
pixels += line_size;
block += line_size;
}
pixels += 4 - line_size*(h + 1);
block += 4 - line_size*h;
}
}
static void put_pixels16_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_c(block, pixels, line_size, h);
put_pixels8_c(block+8, pixels+8, line_size, h);
}
static void put_pixels16_x2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_x2_c(block, pixels, line_size, h);
put_pixels8_x2_c(block+8, pixels+8, line_size, h);
}
static void put_pixels16_y2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_y2_c(block, pixels, line_size, h);
put_pixels8_y2_c(block+8, pixels+8, line_size, h);
}
static void put_pixels16_xy2_c(uint8 *block, const uint8 *pixels, int line_size, int h) {
put_pixels8_xy2_c(block, pixels, line_size, h);
put_pixels8_xy2_c(block+8, pixels+8, line_size, h);
}
int SVQ1Decoder::svq1MotionInterBlock(Common::BitStream *ss,
uint8 *current, uint8 *previous, int pitch,
Common::Point *motion, int x, int y) {
uint8 *src;
uint8 *dst;
Common::Point mv;
Common::Point *pmv[3];
int result;
// predict and decode motion vector
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] = pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
}
result = svq1DecodeMotionVector(ss, &mv, pmv);
if (result != 0)
return result;
motion[0].x =
motion[(x / 8) + 2].x =
motion[(x / 8) + 3].x = mv.x;
motion[0].y =
motion[(x / 8) + 2].y =
motion[(x / 8) + 3].y = mv.y;
if(y + (mv.y >> 1)<0)
mv.y= 0;
if(x + (mv.x >> 1)<0)
mv.x= 0;
#if 0
int w = (s->width+15)&~15;
int h = (s->height+15)&~15;
if(x + (mv.x >> 1)<0 || y + (mv.y >> 1)<0 || x + (mv.x >> 1) + 16 > w || y + (mv.y >> 1) + 16> h)
debug(1, "%d %d %d %d", x, y, x + (mv.x >> 1), y + (mv.y >> 1));
#endif
src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch];
dst = current;
// Halfpel motion compensation with rounding (a+b+1)>>1.
// 4 motion compensation functions for the 4 halfpel positions
// for 16x16 blocks
switch(((mv.y & 1)*2) + (mv.x & 1)) {
case 0:
put_pixels16_c(dst, src, pitch, 16);
break;
case 1:
put_pixels16_x2_c(dst, src, pitch, 16);
break;
case 2:
put_pixels16_y2_c(dst, src, pitch, 16);
break;
case 3:
put_pixels16_xy2_c(dst, src, pitch, 16);
break;
default:
error("Motion Compensation Function Lookup Error. Should Not Happen!");
break;
}
return 0;
}
int SVQ1Decoder::svq1MotionInter4vBlock(Common::BitStream *ss,
uint8 *current, uint8 *previous, int pitch,
Common::Point *motion, int x, int y) {
uint8 *src;
uint8 *dst;
Common::Point mv;
Common::Point *pmv[4];
int i, result;
// predict and decode motion vector (0)
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] = pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
}
result = svq1DecodeMotionVector(ss, &mv, pmv);
if (result != 0)
return result;
// predict and decode motion vector (1)
pmv[0] = &mv;
if (y == 0) {
pmv[1] = pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 3];
}
result = svq1DecodeMotionVector(ss, &motion[0], pmv);
if (result != 0)
return result;
// predict and decode motion vector (2)
pmv[1] = &motion[0];
pmv[2] = &motion[(x / 8) + 1];
result = svq1DecodeMotionVector(ss, &motion[(x / 8) + 2], pmv);
if (result != 0)
return result;
// predict and decode motion vector (3)
pmv[2] = &motion[(x / 8) + 2];
pmv[3] = &motion[(x / 8) + 3];
result = svq1DecodeMotionVector(ss, pmv[3], pmv);
if (result != 0)
return result;
// form predictions
for (i=0; i < 4; i++) {
int mvx = pmv[i]->x + (i&1)*16;
int mvy = pmv[i]->y + (i>>1)*16;
///XXX /FIXME clipping or padding?
if(y + (mvy >> 1)<0)
mvy = 0;
if(x + (mvx >> 1)<0)
mvx = 0;
#if 0
int w = (s->width+15)&~15;
int h = (s->height+15)&~15;
if(x + (mvx >> 1)<0 || y + (mvy >> 1)<0 || x + (mvx >> 1) + 8 > w || y + (mvy >> 1) + 8> h)
debug(1, "%d %d %d %d", x, y, x + (mvx >> 1), y + (mvy >> 1));
#endif
src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1))*pitch];
dst = current;
// Halfpel motion compensation with rounding (a+b+1)>>1.
// 4 motion compensation functions for the 4 halfpel positions
// for 8x8 blocks
switch(((mvy & 1)*2) + (mvx & 1)) {
case 0:
put_pixels8_c(dst, src, pitch, 8);
break;
case 1:
put_pixels8_x2_c(dst, src, pitch, 8);
break;
case 2:
put_pixels8_y2_c(dst, src, pitch, 8);
break;
case 3:
put_pixels8_xy2_c(dst, src, pitch, 8);
break;
default:
error("Motion Compensation Function Lookup Error. Should Not Happen!");
break;
}
// select next block
if (i & 1) {
current += 8*(pitch - 1);
} else {
current += 8;
}
}
return 0;
}
int SVQ1Decoder::svq1DecodeDeltaBlock(Common::BitStream *ss,
uint8 *current, uint8 *previous, int pitch,
Common::Point *motion, int x, int y) {
uint32 block_type;
int result = 0;
// get block type
block_type = _blockType->getSymbol(*ss);
// reset motion vectors
if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) {
motion[0].x =
motion[0].y =
motion[(x / 8) + 2].x =
motion[(x / 8) + 2].y =
motion[(x / 8) + 3].x =
motion[(x / 8) + 3].y = 0;
}
switch (block_type) {
case SVQ1_BLOCK_SKIP:
svq1SkipBlock(current, previous, pitch, x, y);
break;
case SVQ1_BLOCK_INTER:
result = svq1MotionInterBlock(ss, current, previous, pitch, motion, x, y);
if (result != 0) {
warning("Error in svq1MotionInterBlock %i", result);
break;
}
result = svq1DecodeBlockNonIntra(ss, current, pitch);
break;
case SVQ1_BLOCK_INTER_4V:
result = svq1MotionInter4vBlock(ss, current, previous, pitch, motion, x, y);
if (result != 0) {
warning("Error in svq1MotionInter4vBlock %i", result);
break;
}
result = svq1DecodeBlockNonIntra(ss, current, pitch);
break;
case SVQ1_BLOCK_INTRA:
result = svq1DecodeBlockIntra(ss, current, pitch);
break;
}
return result;
}
} // End of namespace Video