scummvm/common/system.h
Martin Gerhardy 9d82fa51df COMMON: removed USE_TTS check from engines
OSystem now just returns a nullptr if there is no text to speech manager instance
(because none is compiled into the binary, or the system doesn't provide support
for it). This removed the need for the engine authors to add scummvm osystem compile
time options checks into their engine code
2021-05-03 14:13:41 +03:00

1778 lines
54 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef COMMON_SYSTEM_H
#define COMMON_SYSTEM_H
#include "common/scummsys.h"
#include "common/noncopyable.h"
#include "common/array.h" // For OSystem::getGlobalKeymaps()
#include "common/list.h" // For OSystem::getSupportedFormats()
#include "common/ustr.h"
#include "graphics/pixelformat.h"
#include "graphics/pixelbuffer.h"
#include "graphics/mode.h"
namespace Audio {
class Mixer;
}
namespace Graphics {
struct Surface;
}
namespace GUI {
class GuiObject;
class OptionsContainerWidget;
}
namespace Common {
class EventManager;
struct Rect;
class SaveFileManager;
class SearchSet;
class String;
#if defined(USE_TASKBAR)
class TaskbarManager;
#endif
#if defined(USE_UPDATES)
class UpdateManager;
#endif
class TextToSpeechManager;
#if defined(USE_SYSDIALOGS)
class DialogManager;
#endif
class TimerManager;
class SeekableReadStream;
class WriteStream;
class HardwareInputSet;
class Keymap;
class KeymapperDefaultBindings;
class Encoding;
typedef Array<Keymap *> KeymapArray;
}
/**
* @defgroup common_system OSystem
* @ingroup common
*
* @brief API related to OSystem - the main interface for ScummVM backends.
*
* @{
*/
class AudioCDManager;
class FilesystemFactory;
class PaletteManager;
/**
* Structure describing time and date.
*
* This is a clone of struct @c tm from time.h.
* We implement our own since not all systems provide time.h.
* This is not a one-to-one replacement of the @c tm struct,
* as only the fields that we need were added.
*
* @note For now, the members are named exactly as in struct @c tm to ease
* the transition.
*/
struct TimeDate {
int tm_sec; /**< Seconds (0 - 60). */
int tm_min; /**< Minutes (0 - 59). */
int tm_hour; /**< Hours (0 - 23). */
int tm_mday; /**< Day of month (1 - 31). */
int tm_mon; /**< Month of year (0 - 11). */
int tm_year; /**< Year - 1900. */
int tm_wday; /**< Days since Sunday (0 - 6). */
};
namespace LogMessageType {
/**
* Enumeration for log message types.
* @ingroup common_system
*
*/
enum Type {
kInfo, /**< Info logs. */
kError, /**< Error logs. */
kWarning, /**< Warning logs. */
kDebug /**< Debug logs. */
};
} // End of namespace LogMessageType
/**
* Interface for ScummVM backends.
*
* If you want to port ScummVM to a system that is not currently
* covered by any of our backends, this is the place to start.
* ScummVM will create an instance of a subclass of this interface
* and use it to interact with the system.
*
* In particular, a backend provides:
*
* - A video surface for ScummVM to draw in
* - Methods to create timers
* - Methods to handle user input events
* - Control audio CD playback
* - Sound output
*/
class OSystem : Common::NonCopyable {
friend class Common::Encoding;
protected:
OSystem();
virtual ~OSystem();
protected:
/**
* @defgroup common_system_module Subsystem modules
* @ingroup common_system
* @{
*
* For backend authors only, the following pointers (= "slots") to various
* subsystem managers / factories / etc. can and should be set to
* a suitable instance of the respective type.
*
* For some of the slots, a default instance is set if your backend
* does not do so. For details, refer to the documentation of
* each slot.
*
* A backend may set up slot values in its initBackend() method,
* its constructor, or somewhere in between. But it must set a slot's value
* no later than in its initBackend() implementation, because
* OSystem::initBackend() will create any default instances if
* none have been set yet (and for other slots, will verify that
* one has been set; if not, an error may be generated).
*/
/**
* No default value is provided for _audiocdManager by OSystem.
* However, BaseBackend::initBackend() does set a default value
* if none has been set before.
*
* @note _audiocdManager is deleted by the OSystem destructor.
*/
AudioCDManager *_audiocdManager;
/**
* No default value is provided for _eventManager by OSystem.
* However, EventsBaseBackend::initBackend() does set a default value
* if none has been set before.
*
* @note _eventManager is deleted by the OSystem destructor.
*/
Common::EventManager *_eventManager;
/**
* No default value is provided for _timerManager by OSystem.
*
* @note _timerManager is deleted by the OSystem destructor.
*/
Common::TimerManager *_timerManager;
/**
* No default value is provided for _savefileManager by OSystem.
*
* @note _savefileManager is deleted by the OSystem destructor.
*/
Common::SaveFileManager *_savefileManager;
#if defined(USE_TASKBAR)
/**
* No default value is provided for _taskbarManager by OSystem.
*
* @note _taskbarManager is deleted by the OSystem destructor.
*/
Common::TaskbarManager *_taskbarManager;
#endif
#if defined(USE_UPDATES)
/**
* No default value is provided for _updateManager by OSystem.
*
* @note _updateManager is deleted by the OSystem destructor.
*/
Common::UpdateManager *_updateManager;
#endif
/**
* No default value is provided for _textToSpeechManager by OSystem.
*
* @note _textToSpeechManager is deleted by the OSystem destructor.
*/
Common::TextToSpeechManager *_textToSpeechManager;
#if defined(USE_SYSDIALOGS)
/**
* No default value is provided for _dialogManager by OSystem.
*
* @note _dialogManager is deleted by the OSystem destructor.
*/
Common::DialogManager *_dialogManager;
#endif
/**
* No default value is provided for _fsFactory by OSystem.
*
* Note that _fsFactory is typically required very early on,
* so it usually should be set in the backends constructor or shortly
* thereafter, and before initBackend() is called.
*
* @note _fsFactory is deleted by the OSystem destructor.
*/
FilesystemFactory *_fsFactory;
/**
* Used by the default clipboard implementation, for backends that don't
* implement clipboard support.
*/
Common::U32String _clipboard;
/** Workaround for a bug in the osx_intel toolchain introduced by
* 014bef9eab9fb409cfb3ec66830e033e4aaa29a9. Adding this variable fixes it.
*/
bool _dummyUnused;
/** @} */
private:
/**
* Indicate if initBackend() has been called.
*/
bool _backendInitialized;
//@}
public:
/**
* Destoy this OSystem instance.
*/
void destroy();
/**
* Call this method once, after g_system is created.
*/
virtual void init() {}
/**
* The following method is called once, from main.cpp, after all
* config data (including command line params etc.) is fully loaded.
*
* @note Subclasses should always invoke the implementation of their
* parent class. They should do so near the end of their own
* implementation.
*/
virtual void initBackend();
/**
* Return false if initBackend() has not yet been called and true otherwise.
*
* Some functionalities such as mutexes cannot be used until the backend
* is initialized.
*/
bool backendInitialized() const { return _backendInitialized; }
/**
* Allow the backend to perform engine-specific initialization.
*
* Called just before the engine is run.
*/
virtual void engineInit() { }
/**
* Allow the backend to perform engine-specific deinitialization.
*
* Called after the engine finishes.
*/
virtual void engineDone() { }
/**
* @defgroup common_system_flags Feature flags
* @ingroup common_system
* @{
*/
/**
* A feature in this context means an ability of the backend which can be
* either on or off.
*
* Examples include:
* - Fullscreen mode
* - Aspect ration correction
* - Virtual keyboard for text entry (on PDAs)
*
* There is a difference between the *availability* of a feature
* that can be checked using hasFeature(), and its *state*.
* For example, the SDL backend *has* the kFeatureFullscreenMode,
* so hasFeature returns true for it. On the other hand,
* fullscreen mode may be active or not. This can be determined
* by checking the state using getFeatureState(). Finally, to
* switch between fullscreen and windowed mode, use setFeatureState().
*
* Some features, for example kFeatureClipboardSupport and kFeatureOpenUrl
* have no state and can only be used to check if the corresponding feature
* is available or not. Calling getFeatureState() or setFeatureState()
* for them is pointless.
*/
enum Feature {
/**
* If supported, this feature flag can be used to switch between
* windowed and fullscreen mode.
*/
kFeatureFullscreenMode,
/**
* Control aspect ratio correction.
*
* Aspect ratio correction is used for correcting games running at 320x200
* (i.e with an aspect ratio of 8:5), but which on their original hardware
* were displayed with the standard 4:3 ratio
* (which means that the original graphics used non-square pixels).
* When the backend supports this, then games running at
* 320x200 pixels should be scaled up to 320x240 pixels.
* For all other resolutions, ignore this feature flag.
*
* @note Backend implementors can find utility functions in common/scaler.h.
* These functions can be used to implement aspect ratio correction.
* You can use stretch200To240() can stretch a rect, including (very fast)
* particular, interpolation, and works in-place.
*/
kFeatureAspectRatioCorrection,
/**
* If supported, this flag can be used to switch between unfiltered and
* filtered graphics modes.
*/
kFeatureFilteringMode,
/**
* Indicates that GUI runs in HiDPI mode
*/
kFeatureHiDPI,
/**
* Indicate if stretch modes are supported by the backend.
*/
kFeatureStretchMode,
/**
* Determine whether a virtual keyboard is to be shown or not.
* This would mostly be implemented by backends for handheld devices,
* like PocketPC, Palms, Symbian phones like the P800, Zaurus, etc.
*/
kFeatureVirtualKeyboard,
/**
* Backends supporting this feature allow specifying a custom palette
* for the cursor. The custom palette is used if the feature state
* is set to true by the client code using setFeatureState().
*
* It is currently used only by some Macintosh versions of Humongous
* Entertainment games. If the backend doesn't implement this feature
* then the engine switches to b/w versions of cursors.
* The GUI also relies on this feature for mouse cursors.
*/
kFeatureCursorPalette,
/**
* A backend has this feature if its overlay pixel format has an alpha
* channel which offers at least 3-4 bits of accuracy (as opposed to
* just a single alpha bit).
*
* This feature has no associated state.
*/
kFeatureOverlaySupportsAlpha,
/**
* Client code can set the state of this feature to true in order to
* iconify the application window.
*/
kFeatureIconifyWindow,
/**
* This feature flag can be used to check if hardware-accelerated
* OpenGL is supported and can be used for 3D game rendering.
*/
kFeatureOpenGLForGame,
/**
* If supported, this feature flag can be used to check if
* waiting for vertical sync before refreshing the screen to reduce
* tearing is enabled.
*/
kFeatureVSync,
/**
* When a backend supports this feature, it guarantees the graphics
* context is not destroyed when switching to and from fullscreen.
*
* For OpenGL, that means the context is kept with all of its content:
* texture, programs, etc.
*
* For TinyGL, that means the backbuffer surface is kept.
*/
kFeatureFullscreenToggleKeepsContext,
/**
* The presence of this feature indicates whether the displayLogFile()
* call is supported.
*
* This feature has no associated state.
*/
kFeatureDisplayLogFile,
/**
* The presence of this feature indicates whether the system clipboard is
* available.
*
* If this feature is not present, the hasTextInClipboard(),
* getTextFromClipboard(), and setTextInClipboard() calls can still be used,
* however it should not be used in scenarios where the user is expected to
* copy data outside of the application.
*
* This feature has no associated state.
*/
kFeatureClipboardSupport,
/**
* The presence of this feature indicates whether the openUrl()
* call is supported.
*
* This feature has no associated state.
*/
kFeatureOpenUrl,
/**
* Show on-screen control.
*/
kFeatureOnScreenControl,
/**
* Mouse emulation mode.
*/
kFeatureTouchpadMode,
/**
* Swap menu and back buttons.
*/
kFeatureSwapMenuAndBackButtons,
/**
* Keyboard mouse and joystick mouse speed.
*/
kFeatureKbdMouseSpeed,
/**
* Change analog joystick deadzone.
*/
kFeatureJoystickDeadzone,
/**
* Shaders.
*/
kFeatureShader,
/**
* Support for using the native system file browser dialog
* through the DialogManager.
*/
kFeatureSystemBrowserDialog,
/**
* For platforms that should not have a Quit button.
*/
kFeatureNoQuit
};
/**
* Determine whether the backend supports the specified feature.
*/
virtual bool hasFeature(Feature f) { return false; }
/**
* Enable or disable the specified feature.
*
* For example, this may be used to enable fullscreen mode
* or to deactivate aspect correction, etc.
*/
virtual void setFeatureState(Feature f, bool enable) {}
/**
* Query the state of the specified feature.
*
* For example, test whether fullscreen mode is active or not.
*/
virtual bool getFeatureState(Feature f) { return false; }
/** @} */
/**
* @defgroup common_system_graphics Graphics
* @ingroup common_system
* @{
*
* The way graphics work in the OSystem class is meant to make
* it possible for game frontends to implement everything they need in
* an efficient manner. The downside of this is that it may be
* rather complicated for backend authors to fully understand and
* implement the semantics of the OSystem interface.
*
* The graphics visible to the user in the end are actually
* composed of three layers: the game graphics, the overlay
* graphics, and the mouse.
*
* First, there are the game graphics. The methods in this section
* deal with them exclusively. In particular, the size of the game
* graphics is defined by a call to initSize(), and
* copyRectToScreen() blits the data in the current pixel format
* into the game layer. Let W and H denote the width and height of
* the game graphics.
*
* Before the user sees these graphics, the backend may apply some
* transformations to it. For example, they may be scaled to better
* fit the visible screen or aspect ratio correction may be
* performed (see kFeatureAspectRatioCorrection). As a result of
* this, a pixel of the game graphics may occupy a region bigger
* than a single pixel on the screen. p_w and p_h are defined to be
* the width and, respectively, height of a game pixel on the screen.
*
* In addition, there is a vertical "shake offset" (as defined by
* setShakePos) that is used in some games to provide a shaking
* effect. Note that shaking is applied to all three layers, i.e.
* also to the overlay and the mouse. The shake offset is denoted
* by S.
*
* Putting this together, a pixel (x,y) of the game graphics is
* transformed to a rectangle of height p_h and width p_w
* appearing at position (p_w * x, p_hw * (y + S)) on the real
* screen. In addition, a backend may choose to offset
* everything, e.g. to center the graphics on the screen.
*
* The next layer is the overlay. It is composed over the game
* graphics. Historically, the overlay size had always been a
* multiple of the game resolution. For example, if the game
* resolution was 320x200 and the user selected a 2x scaler and did
* not enable aspect ratio correction, it had a size of 640x400.
* An exception was the aspect ratio correction, which did allow
* for non multiples of the vertical resolution of the game screen.
* Currently, the overlay size does not need to have any relation to
* the game resolution though, for example the overlay resolution
* might be the same as the physical screen resolution.
* The overlay is forced to a 16 bpp mode right now.
*
* Finally, there is the mouse layer. This layer does not have to
* actually exist within the backend -- it all depends on how a
* backend chooses to implement mouse cursors. However, in the default
* SDL backend, it really is a separate layer. The mouse can
* have a palette of its own, if the backend supports it.
*
* Graphics do not need to be thread-safe and in fact most/all backends
* using OpenGL are not. So do *not* try to call any of these functions
* from a timer and/or audio callback (like readBuffer of AudioStreams).
*/
/**
* Description of a graphics mode.
*/
struct GraphicsMode {
/**
* The name of the graphics mode.
*
* This name is matched when selecting a mode using the command line
* or using the config file. Examples: "1x", "advmame2x", "hq3x".
*/
const char *name;
/**
* Human-readable description of the scaler.
*
* Examples: "Normal (no scaling)", "AdvMAME2x", "HQ3x".
*/
const char *description;
/**
* ID of the graphics mode.
*
* How to use this is entirely up to the backend. This value is passed
* to the setGraphicsMode(int) method by the client code.
*/
int id;
};
/**
* Retrieve a list of all graphics modes supported by this backend.
*
* This can be both video modes as well as graphic filters/scalers.
* It is completely up to the backend maintainer to decide what is
* appropriate here and what not.
* The list is terminated by an all-zero entry.
*
* @return List of supported graphics modes.
*/
virtual const GraphicsMode *getSupportedGraphicsModes() const {
static const GraphicsMode noGraphicsModes[] = {{"NONE", "Normal", 0}, {nullptr, nullptr, 0 }};
return noGraphicsModes;
}
/**
* Return the ID of the 'default' graphics mode. What exactly this means
* is up to the backend. This mode is set by the client code when no user
* overrides are present (i.e. if no custom graphics mode is selected using
* the command line or a config file).
*
* @return ID of the 'default' graphics mode.
*/
virtual int getDefaultGraphicsMode() const { return 0; }
enum GfxModeFlags {
kGfxModeNoFlags = 0, /**< No flags. */
kGfxModeRender3d = (1 << 0) /**< Indicate 3D hardware-accelerated in-game GFX. */
};
/**
* Switch to the specified graphics mode.
*
* If switching to the new mode fails, this method returns false.
*
* The flag 'kGfxModeRender3d' is optional. It allows to switch to 3D-only rendering mode.
* In this mode, the game engine is allowed to use OpenGL(ES) directly.
*
* @param mode ID of the new graphics mode.
* @param flags Flags for the new graphics mode.
*
* @return True if the switch was successful, false otherwise.
*/
virtual bool setGraphicsMode(int mode, uint flags = kGfxModeNoFlags) { return (mode == 0); }
/**
* Switch to the graphics mode with the given name.
*
* If @p name is unknown, or if switching to the new mode fails, this method returns false.
*
* @param name Name of the new graphics mode.
*
* @return True if the switch was successful, false otherwise.
*
* @note This is implemented using the setGraphicsMode(int) method, as well
* as getSupportedGraphicsModes() and getDefaultGraphicsMode().
* In particular, backends do not have to overload this!
*/
bool setGraphicsMode(const char *name);
/**
* Determine which graphics mode is currently active.
*
* @return ID of the active graphics mode.
*/
virtual int getGraphicsMode() const { return 0; }
#ifdef USE_RGB_COLOR
/**
* Determine the pixel format currently in use for screen rendering.
*
* @return the active screen pixel format.
*
* @see Graphics::PixelFormat
*/
virtual Graphics::PixelFormat getScreenFormat() const = 0;
/**
* Return a list of all pixel formats supported by the backend.
*
* The first item in the list must be directly supported by hardware
* and provide the largest color space of those formats with direct
* hardware support. It is also strongly recommended that remaining
* formats are placed in the order of descending preference for the
* backend to use.
*
* Example: a backend that supports 32-bit ABGR and 16-bit 555 BGR in hardware
* and provides conversion from equivalent RGB(A) modes should order its list
* in the following way:
* 1) Graphics::PixelFormat(4, 0, 0, 0, 0, 0, 8, 16, 24)
* 2) Graphics::PixelFormat(2, 3, 3, 3, 8, 0, 5, 10, 0)
* 3) Graphics::PixelFormat(4, 0, 0, 0, 0, 24, 16, 8, 0)
* 4) Graphics::PixelFormat(2, 3, 3, 3, 8, 10, 5, 0, 0)
* 5) Graphics::PixelFormat::createFormatCLUT8()
*
* @see Graphics::PixelFormat
*
* @note Backends supporting RGB color should accept game data in RGB color
* order, even if hardware uses BGR or some other color order.
*/
virtual Common::List<Graphics::PixelFormat> getSupportedFormats() const = 0;
#else
inline Graphics::PixelFormat getScreenFormat() const {
return Graphics::PixelFormat::createFormatCLUT8();
}
inline Common::List<Graphics::PixelFormat> getSupportedFormats() const {
Common::List<Graphics::PixelFormat> list;
list.push_back(Graphics::PixelFormat::createFormatCLUT8());
return list;
}
#endif
/**
* Retrieve a list of supported levels of anti-aliasing.
*
* Anti-aliasing only works when using one of the hardware-accelerated
* renderers. An empty list means anti-aliasing is not supported.
*/
virtual Common::Array<uint> getSupportedAntiAliasingLevels() const {
return Common::Array<uint>();
}
/**
* Retrieve a list of all hardware shaders supported by this backend.
*
* This can be only hardware shaders.
* It is completely up to the backend maintainer to decide what is
* appropriate here and what not.
* The list is terminated by an all-zero entry.
*
* @return List of supported shaders.
*/
virtual const GraphicsMode *getSupportedShaders() const {
static const OSystem::GraphicsMode no_shader[2] = {{"NONE", "Normal (no shader)", 0}, {nullptr, nullptr, 0}};
return no_shader;
}
/**
* Return the ID of the 'default' shader mode.
*
* What exactly this means is up to the backend.
* This mode is set by the client code when no user overrides
* are present (i.e. if no custom shader mode is selected using
* the command line or a config file).
*
* @return ID of the 'default' shader mode.
*/
virtual int getDefaultShader() const { return 0; }
/**
* Switch to the specified shader mode.
*
* If switching to the new mode fails, this method returns false.
*
* @param id ID of the new shader mode.
*
* @return True if the switch was successful, false otherwise.
*/
virtual bool setShader(int id) { return false; }
/**
* Switch to the shader mode with the given name.
*
* If @p name is unknown, or if switching to the new mode fails,
* this method returns false.
*
* @param name Name of the new shader mode.
*
* @return True if the switch was successful, false otherwise.
*
* @note This is implemented using the setShader(int) method, as well
* as getSupportedShaders() and getDefaultShader().
* In particular, backends do not have to overload this!
*/
bool setShader(const char *name);
/**
* Determine which shader is currently active.
*
* @return ID of the active shader.
*/
virtual int getShader() const { return 0; }
/**
* Retrieve a list of all stretch modes supported by this backend.
*
* It is completely up to the backend maintainer to decide what is
* appropriate here and what not.
* The list is terminated by an all-zero entry.
*
* @return a list of supported stretch modes
*/
virtual const GraphicsMode *getSupportedStretchModes() const {
static const GraphicsMode noStretchModes[] = {{"NONE", "Normal", 0}, {nullptr, nullptr, 0 }};
return noStretchModes;
}
/**
* Return the ID of the 'default' stretch mode.
*
* What exactly this means is up to the backend. This mode is set
* by the client code when no user overrides are present
* (i.e. if no custom stretch mode is selected using the command line or a config file).
*
* @return ID of the 'default' graphics mode.
*/
virtual int getDefaultStretchMode() const { return 0; }
/**
* Switch to the specified stretch mode.
*
* If switching to the new mode fails, this method returns false.
*
* @param mode ID of the new graphics mode.
*
* @return True if the switch was successful, false otherwise.
*/
virtual bool setStretchMode(int mode) { return false; }
/**
* Switch to the stretch mode with the given name.
*
* If @p name is unknown, or if switching to the new mode fails,
* this method returns false.
*
* @param name Name of the new stretch mode.
*
* @return True if the switch was successful, false otherwise.
*
* @note This is implemented using the setStretchMode(int) method, as well
* as getSupportedStretchModes() and getDefaultStretchMode().
* In particular, backends do not have to overload this!
*/
bool setStretchMode(const char *name);
/**
* Determine which stretch mode is currently active.
*
* @return ID of the active stretch mode.
*/
virtual int getStretchMode() const { return 0; }
/**
* Set the size and color format of the virtual screen.
*
* Typical sizes include:
* - 320x200 (e.g. for most SCUMM games, and Simon)
* - 320x240 (e.g. for FM-TOWN SCUMM games)
* - 640x480 (e.g. for Curse of Monkey Island)
*
* This is the resolution for which the client code generates data.
* This is not necessarily equal to the actual display size. For example,
* a backend may magnify the graphics to fit on the screen (see also the
* GraphicsMode), stretch the data to perform aspect ratio correction,
* or shrink it to fit on small screens (in cell phones).
*
* Typical formats include:
* - CLUT8 (e.g. 256 color, for most games)
* - RGB555 (e.g. 16-bit color, for later SCUMM HE games)
* - RGB565 (e.g. 16-bit color, for Urban Runner)
*
* This is the pixel format for which the client code generates data.
* It is not necessarily equal to the hardware pixel format. For example,
* a backend may perform color lookup of 8-bit graphics before pushing
* a screen to hardware, or correct the ARGB color order.
*
* @param width New virtual screen width.
* @param height New virtual screen height.
* @param format New virtual screen pixel format.
*/
virtual void initSize(uint width, uint height, const Graphics::PixelFormat *format = nullptr) = 0;
/**
* Send a list of graphics modes to the backend so it can make a decision
* about the best way to set up the display hardware.
*
* Engines that switch between different virtual screen sizes during a game
* should call this function prior to any call to initSize. Engines that use
* only a single screen size do not need to call this function.
*
* @param modes List of graphics modes the engine will probably use.
*/
virtual void initSizeHint(const Graphics::ModeList &modes) {}
/**
* Return an int value that is changed whenever any screen
* parameters (like the resolution) change, i.e. whenever
* EVENT_SCREEN_CHANGED is sent.
*
* You can track this value in your code to detect screen changes in case
* you do not have full control over the event loop(s)
* being used (like the GUI code).
*
* @return Integer that can be used to track screen changes.
*
* @note Backends that generate EVENT_SCREEN_CHANGED events must
* overload this method appropriately.
*/
virtual int getScreenChangeID() const { return 0; }
/**
* Begin a new GFX transaction, which is a sequence of GFX mode changes.
*
* The idea behind GFX transactions is to make it possible to activate
* several different GFX changes at once as a "batch" operation. For
* example, assume we are running in 320x200 with a 2x scaler (thus using
* 640x400 pixels in total). Now, we want to switch to 640x400 with the 1x
* scaler. Without transactions, we have to choose whether we want to first
* switch the scaler mode, or first to 640x400 mode. In either case,
* depending on the backend implementation, problems may occur.
* For example, the window might briefly switch to 320x200 or 1280x800.
* Using transactions, this can be avoided.
*
* @note Transaction support is optional, and the default implementations
* of the relevant methods simply do nothing.
*
* @see endGFXTransaction
*/
virtual void beginGFXTransaction() {}
/**
* This type can save the different errors which can happen while
* changing GFX config values inside GFX transactions.
*
* endGFXTransaction returns an ORed combination of the '*Failed' values
* if any problem occurs. It returns '0' on success.
*
* @see endGFXTransaction
*/
enum TransactionError {
kTransactionSuccess = 0, /**< Everything fine (use EQUAL check for this one!) */
kTransactionAspectRatioFailed = (1 << 0), /**< Failed switching aspect ratio correction mode */
kTransactionFullscreenFailed = (1 << 1), /**< Failed switching fullscreen mode */
kTransactionModeSwitchFailed = (1 << 2), /**< Failed switching the GFX graphics mode (setGraphicsMode) */
kTransactionSizeChangeFailed = (1 << 3), /**< Failed switching the screen dimensions (initSize) */
kTransactionFormatNotSupported = (1 << 4), /**< Failed setting the color format */
kTransactionFilteringFailed = (1 << 5), /**< Failed setting the filtering mode */
kTransactionStretchModeSwitchFailed = (1 << 6) /**< Failed setting the stretch mode */
};
/**
* End (and thereby commit) the current GFX transaction.
*
* @see beginGFXTransaction
* @see kTransactionError
*
* @return ORed combination of TransactionError values or 0 on success.
*/
virtual TransactionError endGFXTransaction() { return kTransactionSuccess; }
/**
* Return the currently set virtual screen height.
*
* @see initSize
*
* @return Currently set virtual screen height.
*/
virtual int16 getHeight() = 0;
/**
* Return the currently set virtual screen width.
*
* @see initSize
*
* @return Currently set virtual screen width.
*/
virtual int16 getWidth() = 0;
/**
* Return the palette manager singleton.
*
* For more information, see @ref PaletteManager.
*/
virtual PaletteManager *getPaletteManager() = 0;
/**
* Blit a bitmap to the virtual screen.
*
* The real screen will not immediately be updated to reflect the changes.
* Client code must call updateScreen to ensure any changes are visible
* to the user. This can be used to optimize drawing and reduce flicker.
*
* If the current pixel format has one byte per pixel, the graphics data
* uses 8 bits per pixel, using the palette specified via setPalette.
* If more than one byte per pixel is in use, the graphics data uses the
* pixel format returned by getScreenFormat.
*
* @param buf Buffer containing the graphics data source.
* @param pitch Pitch of the buffer (number of bytes in a scanline).
* @param x x coordinate of the destination rectangle.
* @param y y coordinate of the destination rectangle.
* @param w Width of the destination rectangle.
* @param h Height of the destination rectangle.
*
* @note The specified destination rectangle must be completly contained
* in the visible screen space, and must be non-empty. If not, a
* backend may or may not perform clipping, trigger an assert, or
* silently corrupt memory.
*
* @see updateScreen
* @see getScreenFormat
*/
virtual void copyRectToScreen(const void *buf, int pitch, int x, int y, int w, int h) = 0;
/**
* Lock the active screen framebuffer and return a Graphics::Surface
* representing it.
*
* The caller can then perform arbitrary graphics transformations
* on the framebuffer (blitting, scrolling, etc.).
* Must be followed by a matching call to unlockScreen().
* Code that is calling this should make sure to only lock the framebuffer
* for the shortest time possible, as the whole system is potentially stalled
* while the lock is active.
*
* @return 0 if an error occurs. Otherwise, a surface with the pixel
* format described by getScreenFormat is returned.
*
* The returned surface must *not* be deleted by the client code.
*
* @see getScreenFormat
*/
virtual Graphics::Surface *lockScreen() = 0;
/**
* Unlock the screen framebuffer, and mark it as dirty, i.e. during the
* next updateScreen() call, the whole screen will be updated.
*/
virtual void unlockScreen() = 0;
/**
* Fill the screen with the given color value.
*/
virtual void fillScreen(uint32 col) = 0;
/**
* Flush the whole screen, i.e. render the current content of the screen
* framebuffer to the display.
*
* This method may be called very often by engines. Backends are hence
* supposed to only perform any redrawing if it is necessary and otherwise
* return immediately. See
* <https://wiki.scummvm.org/index.php/HOWTO-Backends#updateScreen.28.29_method>
*/
virtual void updateScreen() = 0;
/**
* Set current shake position, a feature needed for some SCUMM screen
* effects.
*
* The effect causes the displayed graphics to be shifted upwards
* by the specified (always positive) offset. The area at the bottom of the
* screen which is moved into view by this is filled with black. This does
* not cause any graphic data to be lost. To restore the original
* view, the game engine only has to call this method again with offset
* equal to zero. No calls to copyRectToScreen are necessary.
*
* @param shakeXOffset Shake x offset.
* @param shakeYOffset Shake y offset.
*
* @note This is currently used in the SCUMM, QUEEN, KYRA, SCI, DREAMWEB,
* SUPERNOVA, TEENAGENT, TOLTECS, ULTIMA, and PETKA engines.
*/
virtual void setShakePos(int shakeXOffset, int shakeYOffset) = 0;
/**
* Set the area of the screen that has the focus.
*
* For example, when a character is speaking, they will have the focus.
* This allows for pan-and-scan style views where the backend
* can follow the speaking character or area of interest on the screen.
*
* The backend is responsible for clipping the rectangle and deciding how best to
* zoom the screen to show any shape and size rectangle the engine provides.
*
* @param rect Rectangle on the screen to be focused on.
*
* @see clearFocusRectangle
*/
virtual void setFocusRectangle(const Common::Rect& rect) {}
/**
* Clear the focus set by a call to setFocusRectangle().
*
* This allows the engine to clear the focus when no particular area
* of the screen has the focus.
*
* @see setFocusRectangle
*/
virtual void clearFocusRectangle() {}
/**
* Instruct the backend to capture a screenshot of the current screen.
*
* The backend can persist it the way it considers appropriate.
*/
virtual void saveScreenshot() {}
/** @} */
/**
* @defgroup common_system_overlay Overlay
* @ingroup common_system
* @{
*
* To display dialogs atop the game graphics, backends
* must provide an overlay mode.
*
* The overlay is currently forced at 16 bpp.
*
* For 'coolness' we usually want to have an overlay that is blended over
* the game graphics. On backends that support alpha blending, this is
* no issue but on other systems this needs some trickery.
*
* Essentially, we fake (alpha) blending on these systems by copying the
* current game graphics into the overlay buffer when activating the overlay,
* and then manually compose whatever graphics we want to show in the overlay.
* This works because we assume the game to be "paused" whenever an overlay
* is active.
*/
/** Activate the overlay mode. */
virtual void showOverlay() = 0;
/** Deactivate the overlay mode. */
virtual void hideOverlay() = 0;
/** Return true if the overlay mode is activated, false otherwise. */
virtual bool isOverlayVisible() const = 0;
/**
* Return the pixel format description of the overlay.
*
* @see Graphics::PixelFormat
*/
virtual Graphics::PixelFormat getOverlayFormat() const = 0;
/**
* Reset the overlay.
*
* After calling this method while the overlay mode is active, the user
* should be seeing only the game graphics. How this is achieved depends
* on how the backend implements the overlay. It either sets all pixels of
* the overlay to be transparent (when alpha blending is used) or,
* in case of fake alpha blending, it might just put a copy of the
* current game graphics screen into the overlay.
*/
virtual void clearOverlay() = 0;
/**
* Copy the content of the overlay into a buffer provided by the caller.
*
* This is only used to implement fake alpha blending.
*/
virtual void grabOverlay(void *buf, int pitch) = 0;
/**
* Blit a graphics buffer to the overlay.
*
* In a sense, this is the reverse of grabOverlay.
*
* @param buf Buffer containing the graphics data source.
* @param pitch Pitch of the buffer (number of bytes in a scanline).
* @param x x coordinate of the destination rectangle.
* @param y y coordinate of the destination rectangle.
* @param w Width of the destination rectangle.
* @param h Height of the destination rectangle.
*
* @see copyRectToScreen
* @see grabOverlay
*/
virtual void copyRectToOverlay(const void *buf, int pitch, int x, int y, int w, int h) = 0;
/**
* Return the height of the overlay.
*
* @see getHeight
*/
virtual int16 getOverlayHeight() = 0;
/**
* Return the width of the overlay.
*
* @see getWidth
*/
virtual int16 getOverlayWidth() = 0;
/** @} */
/** @defgroup common_system_mouse Mouse
* @ingroup common_system
* @{
*
* This is the lower level implementation as provided by the
* backends. The engines should use the Graphics::CursorManager
* class instead of using this directly.
*/
/**
* Show or hide the mouse cursor.
*
* Currently, the backend is not required to immediately draw the
* mouse cursor on showMouse(true).
*
* @todo We might want to reconsider this fact,
* check Graphics::CursorManager::showMouse for some details about
* this.
*
* @see Graphics::CursorManager::showMouse
*/
virtual bool showMouse(bool visible) = 0;
/**
* Lock or unlock the mouse cursor within the window.
*
*/
virtual bool lockMouse(bool lock) { return false; }
/**
* Move ("warp") the mouse cursor to the specified position in virtual
* screen coordinates.
*
* @param x New x position of the mouse.
* @param y New y position of the mouse.
*/
virtual void warpMouse(int x, int y) = 0;
/**
* Set the bitmap used for drawing the cursor.
*
* @param buf Pixmap data to be used.
* @param w Width of the mouse cursor.
* @param h Height of the mouse cursor.
* @param hotspotX Horizontal offset from the left side to the hotspot.
* @param hotspotY Vertical offset from the top side to the hotspot.
* @param keycolor Transparency color value. This should not exceed the maximum color value of the specified format.
* In case it does, the behavior is undefined. The backend might just error out or simply ignore the
* value. (The SDL backend will just assert to prevent abuse of this).
* @param dontScale Whether the cursor should never be scaled. An exception is high ppi displays, where the cursor
* might be too small to notice otherwise, these are allowed to scale the cursor anyway.
* @param format Pointer to the pixel format that the cursor graphic uses (0 means CLUT8).
*/
virtual void setMouseCursor(const void *buf, uint w, uint h, int hotspotX, int hotspotY, uint32 keycolor, bool dontScale = false, const Graphics::PixelFormat *format = nullptr) = 0;
/**
* Replace the specified range of cursor palette with new colors.
*
* The palette entries from 'start' till (start+num-1) will be replaced - so
* a full palette update is accomplished via start=0, num=256.
*
* Backends which implement this should have the kFeatureCursorPalette flag set.
*
* @see setPalette
* @see kFeatureCursorPalette
*/
virtual void setCursorPalette(const byte *colors, uint start, uint num) {}
/** @} */
/** @defgroup common_system_event_time Events and Time
* @ingroup common_system
* @{
*/
/** Get the number of milliseconds since the program was started.
*
* @param skipRecord Skip recording of this value by the event recorder.
* This might be needed particularly when we are in
* an on-screen GUI loop where the player can pause
* the recording.
*/
virtual uint32 getMillis(bool skipRecord = false) = 0;
/** Delay/sleep for the specified amount of milliseconds. */
virtual void delayMillis(uint msecs) = 0;
/**
* Get the current time and date, in the local timezone.
*
* On many systems, this corresponds to the combination of time()
* and localtime().
*/
virtual void getTimeAndDate(TimeDate &t) const = 0;
/**
* Return the timer manager singleton.
*
* For more information, see @ref TimerManager.
*/
virtual Common::TimerManager *getTimerManager();
/**
* Return the event manager singleton.
*
* For more information, see @ref EventManager.
*/
inline Common::EventManager *getEventManager() {
return _eventManager;
}
/**
* Register hardware inputs with keymapper.
*
* @return HardwareInputSet with all keys and recommended mappings.
*
* For more information, see @ref keymapper.
*/
virtual Common::HardwareInputSet *getHardwareInputSet() { return nullptr; }
/**
* Return a platform-specific global keymap.
*
* @return Keymap with actions appropriate for the platform.
*
* The caller will use and delete the return object.
*
* For more information, see @ref keymapper.
*/
virtual Common::KeymapArray getGlobalKeymaps() { return Common::KeymapArray(); }
/**
* Return platform-specific default keybindings.
*
* @return KeymapperDefaultBindings populated with keybindings.
*
* For more information, see @ref keymapper.
*/
virtual Common::KeymapperDefaultBindings *getKeymapperDefaultBindings() { return nullptr; }
/** @} */
/**
* @defgroup common_system_mutex Mutex handling
* @ingroup common_system
* @{
*
* Historically, the OSystem API used to have a method that allowed
* creating threads. Hence, mutex support was needed for thread syncing.
* To ease portability, we decided to remove the threading API.
* Instead, we now use timers (see setTimerCallback() and Common::Timer).
* But since those can be implemented using threads (and in fact, that is
* how our primary backend, the SDL one, does it on many systems), we
* still must do mutex syncing in our timer callbacks.
* In addition, the sound mixer uses a mutex in case the backend runs it
* from a dedicated thread (as the SDL backend does).
*
* Hence, backends that do not use threads to implement the timers can simply
* use dummy implementations for these methods.
*/
typedef struct OpaqueMutex *MutexRef;
/**
* Create a new mutex.
*
* @return The newly created mutex, or 0 if an error occurred.
*/
virtual MutexRef createMutex() = 0;
/**
* Lock the given mutex.
*
* @note ScummVM code assumes that the mutex implementation supports
* recursive locking. That is, a thread can lock a mutex twice without
* deadlocking. In case of a multilock, the mutex must be unlocked
* as many times as it was locked befored it really becomes unlocked.
*
* @param mutex The mutex to lock.
*/
virtual void lockMutex(MutexRef mutex) = 0;
/**
* Unlock the given mutex.
*
* @param mutex The mutex to unlock.
*/
virtual void unlockMutex(MutexRef mutex) = 0;
/**
* Delete the given mutex.
*
* Make sure the mutex is unlocked before you delete it.
* If you delete a locked mutex, the behavior is undefined.
* In particular, your program may crash.
*
* @param mutex The mutex to delete.
*/
virtual void deleteMutex(MutexRef mutex) = 0;
/** @} */
/** @defgroup common_system_sound Sound
* @ingroup common_system
* @{
*/
/**
* Return the audio mixer.
*
* For more information, see @ref Audio::Mixer.
*/
virtual Audio::Mixer *getMixer() = 0;
/** @} */
/** @defgroup common_system_audio Audio CD
* @ingroup common_system
* @{
*/
/**
* Return the audio CD manager.
*
* For more information, see @ref AudioCDManager.
*/
inline AudioCDManager *getAudioCDManager() {
return _audiocdManager;
}
/** @} */
/** @defgroup common_system_misc Miscellaneous
* @ingroup common_system
* @{
*/
/** Quit (exit) the application. */
virtual void quit() = 0;
/**
* Signal that a fatal error inside the client code has occurred.
*
* This should quit the application.
*/
virtual void fatalError();
/**
* Set a window caption or any other comparable status display to the
* given value.
*
* @param caption The window caption to use.
*/
virtual void setWindowCaption(const Common::U32String &caption) {}
/**
* Display a message in an 'on-screen display'.
*
* Displays a message in such a way that it is visible on or near the screen,
* for example in a transparent rectangle over the regular screen content,
* or in a message box beneath it.
*
* The message is expected to be provided in the current TranslationManager
* charset.
*
* @note There is a default implementation in BaseBackend that uses a
* TimedMessageDialog to display the message. Hence, implementing
* this is optional.
*
* @param msg The message to display on the screen.
*/
virtual void displayMessageOnOSD(const Common::U32String &msg) = 0;
/**
* Display an icon that indicates background activity.
*
* The icon is displayed in an 'on-screen display'. It is visible above
* the regular screen content or near it.
*
* The caller keeps ownership of the icon. It is acceptable to free
* the surface just after the call.
*
* There is no preferred pixel format for the icon. The backend should
* convert its copy of the icon to an appropriate format.
*
* The caller must call this method again with a null pointer
* as a parameter to indicate the icon should no longer be displayed.
*
* @param icon The icon to display on the screen.
*/
virtual void displayActivityIconOnOSD(const Graphics::Surface *icon) = 0;
/** @} */
/**
* @addtogroup common_system_module
* @{
*/
/**
* Return the SaveFileManager, which is used to store and load savestates
* and other modifiable persistent game data.
*
* For more information, see @ref SaveFileManager.
*/
virtual Common::SaveFileManager *getSavefileManager();
#if defined(USE_TASKBAR)
/**
* Return the TaskbarManager, which is used to handle progress bars,
* icon overlay, tasks, and recent items list on the taskbar.
*
* @return The TaskbarManager for the current architecture.
*/
virtual Common::TaskbarManager *getTaskbarManager() {
return _taskbarManager;
}
#endif
#if defined(USE_UPDATES)
/**
* Return the UpdateManager, which is used to handle auto-updating
* and updating of ScummVM in general.
*
* @return The UpdateManager for the current architecture.
*/
virtual Common::UpdateManager *getUpdateManager() {
return _updateManager;
}
#endif
/**
* Return the TextToSpeechManager, used to handle text-to-speech features.
*
* @return The TextToSpeechManager for the current architecture.
*/
virtual Common::TextToSpeechManager *getTextToSpeechManager() {
return _textToSpeechManager;
}
#if defined(USE_SYSDIALOGS)
/**
* Return the DialogManager, which is used to handle system dialogs.
*
* @return The DialogManager for the current architecture.
*/
virtual Common::DialogManager *getDialogManager() {
return _dialogManager;
}
#endif
/**
* Return the FilesystemFactory object, depending on the current architecture.
*
* @return The FSNode factory for the current architecture.
*/
virtual FilesystemFactory *getFilesystemFactory();
/** @} */
/**
* @addtogroup common_system_misc
* @{
*/
/** Add system-specific Common::Archive objects to the given SearchSet.
* For example, on Unix, the directory corresponding to DATA_PATH (if set), or, on
* Mac OS X, the 'Resource' dir in the app bundle.
*
* @todo Come up with a better name.
*
* @param s SearchSet to which the system-specific dirs, if any, are added.
* @param priority Priority with which those dirs are added.
*/
virtual void addSysArchivesToSearchSet(Common::SearchSet &s, int priority = 0) {}
/**
* Open the default config file for reading by returning a suitable
* ReadStream instance.
*
* It is the caller's responsiblity to delete the stream after use.
*/
virtual Common::SeekableReadStream *createConfigReadStream();
/**
* Open the default config file for writing by returning a suitable
* WriteStream instance.
*
* It is the callers responsiblity to delete the stream after use.
*
* May return 0 to indicate that writing to the config file is not possible.
*/
virtual Common::WriteStream *createConfigWriteStream();
/**
* Get the default file name (or even path) where the user configuration
* of ScummVM will be saved.
*
* Note that not all ports can use this.
*/
virtual Common::String getDefaultConfigFileName();
/**
* Register the default values for the settings the backend uses into the
* configuration manager.
*
* @param target name of a config manager target
*/
virtual void registerDefaultSettings(const Common::String &target) const {}
/**
* Return a GUI widget container for configuring the specified target options.
*
* The returned widget is shown in the Backend tab in the options dialog.
* Backends can build custom options dialogs.
*
* Backends that don't want to have a Backend tab in the options dialog
* can return nullptr.
*
* @param boss the widget / dialog the returned widget is a child of
* @param name the name the returned widget must use
* @param target name of a config manager target
*/
virtual GUI::OptionsContainerWidget *buildBackendOptionsWidget(GUI::GuiObject *boss, const Common::String &name, const Common::String &target) const { return nullptr; }
/**
* Notify the backend that the settings editable from the game tab in the
* options dialog may have changed and that they need to be applied if
* necessary.
*/
virtual void applyBackendSettings() {}
/**
* Log the given message.
*
* It is up to the backend where to log the different messages.
* The backend should aim at using a non-buffered output for it,
* so that no log data is lost in case of a crash.
*
* The default implementation outputs them on stdout/stderr.
*
* @param type Type of the message.
* @param message The message itself.
*/
virtual void logMessage(LogMessageType::Type type, const char *message) = 0;
/**
* Open the log file in a way that allows the user to review it,
* and possibly email it (or parts of it) to the ScummVM team,
* for example as part of a bug report.
*
* On a desktop operating system, this would typically launch
* some kind of an (external) text editor / viewer.
* On a phone, it can also cause a context switch to another
* application. Finally, on some ports, it might not be supported
* at all, and do nothing.
*
* The kFeatureDisplayLogFile feature flag can be used to
* test whether this call has been implemented by the active
* backend.
*
* @return True on success, false if an error occurred.
*
* @note An error might mean that the log file did not exist,
* or that the editor could not launch. However, a return value of true does
* not guarantee that the user will actually see the log file.
*
* @note It is up to the backend to ensure that the system is in a state
* that allows the user to actually see the displayed log files. This
* might for example require leaving fullscreen mode.
*/
virtual bool displayLogFile() { return false; }
/**
* Check whether there is text available in the clipboard.
*
* The kFeatureClipboardSupport feature flag can be used to
* test whether this call has been implemented by the active
* backend.
*
* @return True if there is text in the clipboard, false otherwise.
*/
virtual bool hasTextInClipboard() { return !_clipboard.empty(); }
/**
* Return clipboard contents as a string.
*
* The kFeatureClipboardSupport feature flag can be used to
* test whether this call has been implemented by the active
* backend.
*
* @return clipboard contents ("" if hasTextInClipboard() == false).
*/
virtual Common::U32String getTextFromClipboard() { return _clipboard; }
/**
* Set the content of the clipboard to the given string.
*
* The kFeatureClipboardSupport feature flag can be used to
* test whether this call has been implemented by the active
* backend.
*
* @return True if the text has been properly set in the clipboard, false otherwise.
*/
virtual bool setTextInClipboard(const Common::U32String &text) { _clipboard = text; return true; }
/**
* Open the given URL in the default browser (if available on the target
* system).
*
* @return True on success, false otherwise.
*
* @note It is up to the backend to ensure that the system is in a state
* that allows the user to actually see the web page. This might for
* example require leaving fullscreen mode.
*
* @param url The URL to open.
*/
virtual bool openUrl(const Common::String &url) {return false; }
/**
* Return the locale of the system.
*
* This returns the currently set locale of the system on which
* ScummVM is run.
*
* The format of the locale is language_country. These should match
* the POSIX locale values.
*
* For information about POSIX locales, see the following link:
* https://en.wikipedia.org/wiki/Locale_(computer_software)#POSIX_platforms
*
* The default implementation returns "en_US".
*
* @return Locale of the system.
*/
virtual Common::String getSystemLanguage() const;
/**
* Return whether the connection is limited (if available on the target system).
*
* @return True if the connection is limited.
*/
virtual bool isConnectionLimited();
//@}
};
/** The global OSystem instance. Initialized in main(). */
extern OSystem *g_system;
/** @} */
#endif