scummvm/engines/scumm/he/logic_he.cpp
2010-10-23 15:46:50 +00:00

1082 lines
23 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#ifdef ENABLE_HE
#include "scumm/he/intern_he.h"
#include "scumm/he/logic_he.h"
namespace Scumm {
LogicHE::LogicHE(ScummEngine_v90he *vm) : _vm(vm) {
}
LogicHE::~LogicHE() {
}
LogicHErace::LogicHErace(ScummEngine_v90he *vm) : LogicHE(vm) {
// Originally it used 0x930 and stored both floats and doubles inside
_userData = (float *)calloc(550, sizeof(float));
_userDataD = (double *)calloc(30, sizeof(double));
// FIXME: of the 550 entries in _userData, only 516 till 532 are used
// FIXME: similarly, in _userDataD only 9 till 17 are used for computations
// (some of the other entries are also set, but never read, hence useless).
}
LogicHErace::~LogicHErace() {
free(_userData);
free(_userDataD);
}
void LogicHE::writeScummVar(int var, int32 value) {
_vm->writeVar(var, value);
}
static int32 scumm_round(double arg) {
return (int32)(arg + 0.5);
}
int LogicHE::versionID() {
return 1;
}
int LogicHE::getFromArray(int arg0, int idx2, int idx1) {
_vm->VAR(_vm->VAR_U32_ARRAY_UNK) = arg0;
return _vm->readArray(116, idx2, idx1);
}
void LogicHE::putInArray(int arg0, int idx2, int idx1, int val) {
_vm->VAR(_vm->VAR_U32_ARRAY_UNK) = arg0;
_vm->writeArray(116, idx2, idx1, val);
}
int32 LogicHE::dispatch(int op, int numArgs, int32 *args) {
#if 1
Common::String str;
str = Common::String::printf("LogicHE::dispatch(%d, %d, [", op, numArgs);
if (numArgs > 0)
str += Common::String::printf("%d", args[0]);
for (int i = 1; i < numArgs; i++) {
str += Common::String::printf(", %d", args[i]);
}
str += "])";
debug(0, "%s", str.c_str());
#else
// Used for parallel trace utility
for (int i = 0; i < numArgs; i++)
debug(0, "args[%d] = %d;", i, args[i]);
debug(0, "dispatch(%d, %d, args);", op, numArgs);
#endif
return 1;
}
/***********************
* Putt-Putt Joins the Race
*
*/
int LogicHErace::versionID() {
return 1;
}
int32 LogicHErace::dispatch(int op, int numArgs, int32 *args) {
int32 res;
switch (op) {
case 1003:
res = op_1003(args);
break;
case 1004:
res = op_1004(args);
break;
case 1100:
res = op_1100(args);
break;
case 1101:
res = op_1101(args);
break;
case 1102:
res = op_1102(args);
break;
case 1103:
res = op_1103(args);
break;
case 1110:
res = op_1110();
break;
case 1120:
res = op_1120(args);
break;
case 1130:
res = op_1130(args);
break;
case 1140:
res = op_1140(args);
break;
default:
res = 0;
break;
}
return res;
}
#define RAD2DEG (180 / PI)
#define DEG2RAD (PI / 180)
int32 LogicHErace::op_1003(int32 *args) {
int value = args[2] ? args[2] : 1;
writeScummVar(108, (int32)(atan2((double)args[0], (double)args[1]) * RAD2DEG * value));
return 1;
}
int32 LogicHErace::op_1004(int32 *args) {
int value = args[1] ? args[1] : 1;
writeScummVar(108, (int32)(sqrt((float)args[0]) * value));
return 1;
}
int32 LogicHErace::op_1100(int32 *args) {
// _userData 516,517,518 describe a 3D translation?
_userData[516] = (float)args[0] / args[10];
_userData[517] = (float)args[1] / args[10];
_userData[518] = (float)args[2] / args[10];
// _userData 519,520,521 describe rotation angles around the x,y,z axes?
_userData[519] = (float)args[3] / args[10];
_userData[520] = (float)args[4] / args[10];
_userData[521] = (float)args[5] / args[10];
op_sub1(_userData[520]);
op_sub2(_userData[521]);
// _userData[532] seems to be some kind of global scale factor
_userData[532] = (float)args[10];
_userData[524] = (float)args[8]; // not used
_userData[525] = (float)args[9]; // not used
_userData[522] = (float)args[6] / args[10]; // not used
_userData[523] = (float)args[7] / args[10]; // only used to compute 528 and 529
// The following two are some kind of scale factors
_userData[526] = (float)args[6] / args[8] / args[10];
_userData[527] = (float)args[7] / args[9] / args[10];
// Set var 108 and 109 -- the value set here corresponds to the values
// set by op_1110!
writeScummVar(108, (int32)((float)args[6] / args[8] * args[10]));
writeScummVar(109, (int32)((float)args[7] / args[9] * args[10]));
_userData[528] = (float)(_userData[519] - _userData[523] * 0.5);
_userData[529] = (float)(_userData[519] + _userData[523] * 0.5);
writeScummVar(110, (int32)(_userData[528] * args[10]));
writeScummVar(111, (int32)(_userData[529] * args[10]));
// 530 and 531 are only used to set vars 112 and 113, so no need
// to store them permanently
_userData[530] = (float)(_userData[517] / tan(_userData[529] * DEG2RAD));
_userData[531] = (float)(_userData[517] / tan(_userData[528] * DEG2RAD));
writeScummVar(112, (int32)(_userData[530] * args[10]));
writeScummVar(113, (int32)(_userData[531] * args[10]));
return 1;
}
int32 LogicHErace::op_1101(int32 *args) {
// Update rotation params?
int32 retval;
float temp;
temp = args[0] / _userData[532];
if (_userData[519] != temp) {
_userData[519] = temp;
op_sub3(temp);
retval = 1;
} else {
retval = (int32)temp;
}
temp = args[1] / _userData[532];
if (_userData[520] != temp) {
_userData[520] = temp;
op_sub1(temp);
retval = 1;
}
temp = args[2] / _userData[532];
if (_userData[521] != temp) {
_userData[521] = temp;
op_sub2(temp);
retval = 1;
}
return retval;
}
int32 LogicHErace::op_1102(int32 *args) {
// Update translation params?
int32 retval;
float temp;
temp = args[0] / _userData[532];
if (_userData[516] != temp) {
_userData[516] = temp;
retval = 1;
} else {
retval = (int32)_userData[532];
}
temp = args[1] / _userData[532];
if (_userData[517] != temp) {
_userData[517] = temp;
retval = 1;
}
temp = args[2] / _userData[532];
if (_userData[518] != temp) {
_userData[518] = temp;
retval = 1;
}
return retval;
}
int32 LogicHErace::op_1103(int32 *args) {
double angle = args[0] / args[1] * DEG2RAD;
writeScummVar(108, (int32)(sin(angle) * args[2]));
writeScummVar(109, (int32)(cos(angle) * args[2]));
return 1;
}
int32 LogicHErace::op_1110() {
writeScummVar(108, (int32)(_userData[526] * _userData[532] * _userData[532]));
writeScummVar(109, (int32)(_userData[527] * _userData[532] * _userData[532]));
writeScummVar(110, (int32)(_userData[532]));
return 1;
}
int32 LogicHErace::op_1120(int32 *args) {
double a0, a1, a2;
double b0, b1, b2;
double res1, res2;
a0 = args[0] / _userData[532] - _userData[516];
a1 = args[1] / _userData[532] - _userData[517];
a2 = args[2] / _userData[532] - _userData[518];
// Perform matrix multiplication (multiplying by a rotation matrix)
b2 = a2 * _userDataD[17] + a1 * _userDataD[14] + a0 * _userDataD[11];
b1 = a2 * _userDataD[16] + a1 * _userDataD[13] + a0 * _userDataD[10];
b0 = a2 * _userDataD[15] + a1 * _userDataD[12] + a0 * _userDataD[9];
res1 = (atan2(b0, b2) * RAD2DEG) / _userData[526];
res2 = (atan2(b1, b2) * RAD2DEG - _userData[528]) / _userData[527];
writeScummVar(108, (int32)res1);
writeScummVar(109, (int32)res2);
return 1;
}
int32 LogicHErace::op_1130(int32 *args) {
double cs = cos(args[0] / _userData[532] * DEG2RAD);
double sn = sin(args[0] / _userData[532] * DEG2RAD);
writeScummVar(108, (int32)(cs * args[1] + sn * args[2]));
writeScummVar(109, (int32)(cs * args[2] - sn * args[1]));
return 1;
}
int32 LogicHErace::op_1140(int32 *args) {
// This functions seems to perform some kind of projection: We project
// the vector (arg2,arg3) onto the vector (arg0,arg1), but also apply
// some kind of distortion factor ?!?
double x = args[2], y = args[3];
// We start by normalizing the vector described by arg2 and arg3.
// So compute its length and divide the x and y coordinates
const double sq = sqrt(x*x + y*y);
x /= sq;
y /= sq;
// Compute the scalar product of the vectors (arg0,arg1) and (x,y)
const double scalarProduct = x * args[0] + y * args[1];
// Finally compute the projection of (arg2,arg3) onto (arg0,arg1)
double projX = args[0] - 2 * scalarProduct * x;
double projY = args[1] - 2 * scalarProduct * y;
projX = projX * 20.0 / 23.0; // FIXME: Why is this here?
writeScummVar(108, (int32)projX);
if (args[3] >= 0) // FIXME: Why is this here?
projY = projY * 5.0 / 6.0;
writeScummVar(109, (int32)projY);
return 1;
}
void LogicHErace::op_sub1(float arg) {
// Setup a rotation matrix
_userDataD[10] = _userDataD[12] = _userDataD[14] = _userDataD[16] = 0;
_userDataD[13] = 1;
_userDataD[9] = cos(arg * DEG2RAD);
_userDataD[15] = sin(arg * DEG2RAD);
_userDataD[11] = -_userDataD[15];
_userDataD[17] = _userDataD[9];
}
void LogicHErace::op_sub2(float arg) {
// Setup a rotation matrix -- but it is NEVER USED!
_userDataD[20] = _userDataD[21] = _userDataD[24] = _userDataD[25] = 0;
_userDataD[26] = 1;
_userDataD[19] = sin(arg * DEG2RAD);
_userDataD[18] = cos(arg * DEG2RAD);
_userDataD[21] = -_userDataD[19];
_userDataD[22] = _userDataD[18];
}
void LogicHErace::op_sub3(float arg) {
// Setup a rotation matrix -- but it is NEVER USED!
_userDataD[1] = _userDataD[2] = _userDataD[3] = _userDataD[6] = 0;
_userDataD[0] = 1;
_userDataD[4] = cos(arg * DEG2RAD);
_userDataD[5] = sin(arg * DEG2RAD);
_userDataD[7] = -_userDataD[5];
_userDataD[8] = _userDataD[4];
}
/***********************
* Freddi Fish's One-Stop Fun Shop
* Pajama Sam's One-Stop Fun Shop
* Putt-Putt's One-Stop Fun Shop
*
*/
int LogicHEfunshop::versionID() {
return 1;
}
int32 LogicHEfunshop::dispatch(int op, int numArgs, int32 *args) {
switch (op) {
case 1004:
op_1004(args);
break;
case 1005:
op_1005(args);
break;
default:
break;
}
return 0;
}
void LogicHEfunshop::op_1004(int32 *args) {
double data[8], at, sq;
int32 x, y;
int i=0;
for (i = 0; i <= 6; i += 2) {
data[i] = getFromArray(args[0], 0, 519 + i);
data[i + 1] = getFromArray(args[0], 0, 519 + i + 1);
}
int s = checkShape((int32)data[0], (int32)data[1], (int32)data[4], (int32)data[5],
(int32)data[2], (int32)data[3], (int32)data[6], (int32)data[7], &x, &y);
if (s != 1) {
error("LogicHEfunshop::op_1004: Your shape has defied the laws of physics");
return;
}
for (i = 0; i <= 6; i += 2) {
data[i] -= (double)x;
data[i + 1] -= (double)y;
}
double a1 = (double)args[1] * DEG2RAD;
for (i = 0; i <= 6; i += 2) {
at = atan2(data[i + 1], data[i]);
sq = sqrt(data[i + 1] * data[i + 1] + data[i] * data[i]);
if (at <= 0)
at += 2 * PI;
data[i] = cos(at + a1) * sq;
data[i + 1] = sin(at + a1) * sq;
}
double minx = data[0];
double miny = data[1];
for (i = 0; i <= 6; i += 2) {
if (data[i] < minx)
minx = data[i];
if (data[i + 1] < miny)
miny = data[i + 1];
}
for (i = 0; i <= 6; i += 2) {
data[i] -= minx;
data[i + 1] -= miny;
putInArray(args[0], 0, 519 + i, scumm_round(data[i]));
putInArray(args[0], 0, 519 + i + 1, scumm_round(data[i + 1]));
}
}
void LogicHEfunshop::op_1005(int32 *args) {
double data[8];
double args1, args2;
int i;
for (i = 520; i <= 526; i += 2) {
data[i - 520] = getFromArray(args[0], 0, i - 1);
data[i - 520 + 1] = getFromArray(args[0], 0, i);
}
args1 = (double)args[1] * 0.01 + 1;
args2 = (double)args[2] * 0.01 + 1;
for (i = 0; i < 4; i++) {
data[2 * i] *= args1;
data[2 * i + 1] *= args2;
}
for (i = 520; i <= 526; i += 2) {
putInArray(args[0], 0, i - 1, scumm_round(data[i - 520]));
putInArray(args[0], 0, i, scumm_round(data[i - 520 + 1]));
}
}
int LogicHEfunshop::checkShape(int32 data0, int32 data1, int32 data4, int32 data5, int32 data2, int32 data3, int32 data6, int32 data7, int32 *x, int32 *y) {
int32 diff5_1, diff0_4, diff7_3, diff2_6;
int32 diff1, diff2;
int32 delta, delta2;
int32 sum1, sum2;
diff0_4 = data0 - data4;
diff5_1 = data5 - data1;
diff1 = data1 * data4 - data0 * data5;
sum1 = diff0_4 * data3 + diff1 + diff5_1 * data2;
sum2 = diff0_4 * data7 + diff1 + diff5_1 * data6;
if (sum1 != 0 && sum2 != 0) {
sum2 ^= sum1;
if (sum2 >= 0)
return 0;
}
diff2_6 = data2 - data6;
diff7_3 = data7 - data3;
diff2 = data3 * data6 - data2 * data7;
sum1 = diff2_6 * data1 + diff2 + diff7_3 * data0;
sum2 = diff2_6 * data5 + diff2 + diff7_3 * data4;
if (sum1 != 0 && sum2 != 0) {
sum2 ^= sum1;
if (sum2 >= 0)
return 0;
}
delta = diff2_6 * diff5_1 - diff0_4 * diff7_3;
if (delta == 0) {
return 2;
}
if (delta < 0) {
data7 = -((delta + 1) >> 1);
} else {
data7 = delta >> 1;
}
delta2 = diff2 * diff0_4 - diff1 * diff2_6;
if (delta2 < 0) {
delta2 -= data7;
} else {
delta2 += data7;
}
*x = delta2 / delta;
delta2 = diff1 * diff7_3 - diff2 * diff5_1;
if (delta2 < 0) {
delta2 -= data7;
} else {
delta2 += data7;
}
*y = delta2 / delta;
return 1;
}
/***********************
* Backyard Football
* Backyard Football 2002
* Backyard Football Demo
*
*/
int LogicHEfootball::versionID() {
return 1;
}
int32 LogicHEfootball::dispatch(int op, int numArgs, int32 *args) {
int res = 0;
switch (op) {
case 1004:
res = op_1004(args);
break;
case 1006:
res = op_1006(args);
break;
case 1007:
res = op_1007(args);
break;
case 1010:
res = op_1010(args);
break;
case 1022:
res = op_1022(args);
break;
case 1023:
res = op_1023(args);
break;
case 1024:
res = op_1024(args);
break;
case 8221968:
// Someone had a fun and used his birthday as opcode number
res = getFromArray(args[0], args[1], args[2]);
break;
case 1492: case 1493: case 1494: case 1495: case 1496:
case 1497: case 1498: case 1499: case 1500: case 1501:
case 1502: case 1503: case 1504: case 1505: case 1506:
case 1507: case 1508: case 1509: case 1510: case 1511:
case 1512: case 1513: case 1514: case 1555:
// DirectPlay-related
// 1513: initialize
// 1555: set fake lag
break;
case 2200: case 2201: case 2202: case 2203: case 2204:
case 2205: case 2206: case 2207: case 2208: case 2209:
case 2210: case 2211: case 2212: case 2213: case 2214:
case 2215: case 2216: case 2217: case 2218: case 2219:
case 2220: case 2221: case 2222: case 2223: case 2224:
case 2225: case 2226: case 2227: case 2228:
// Boneyards-related
break;
case 3000: case 3001: case 3002: case 3003: case 3004:
// Internet-related
// 3000: check for updates
// 3001: check network status
// 3002: autoupdate
// 3003: close connection
break;
default:
LogicHE::dispatch(op, numArgs, args);
warning("Tell sev how to reproduce it (%d)", op);
}
return res;
}
int LogicHEfootball::op_1004(int32 *args) {
// Identical to LogicHEsoccer::op_1004
double res, a2, a4, a5;
a5 = ((double)args[4] - (double)args[1]) / ((double)args[5] - (double)args[2]);
a4 = ((double)args[3] - (double)args[0]) / ((double)args[5] - (double)args[2]);
a2 = (double)args[2] - (double)args[0] * a4 - args[1] * a5;
res = (double)args[6] * a4 + (double)args[7] * a5 + a2;
writeScummVar(108, (int32)res);
writeScummVar(109, (int32)a2);
writeScummVar(110, (int32)a5);
writeScummVar(111, (int32)a4);
return 1;
}
int LogicHEfootball::op_1006(int32 *args) {
// This seems to be more or less the inverse of op_1010
const double a1 = args[1];
double res;
// 2.9411764e-4 = 1/3400
// 5.3050399e-2 = 1/18.85 = 20/377
// 1.1764706e-2 = 1/85 = 40/3400
// 1.2360656e-1 = 377/3050
res = (1.0 - a1 * 2.9411764e-4 * 5.3050399e-2) * 1.2360656e-1 * args[0] +
a1 * 1.1764706e-2 + 46;
// Shortened / optimized version of that formula:
// res = (377.0 - a1 / 170.0) / 3050.0 * args[0] + a1 / 85.0 + 46;
writeScummVar(108, (int32)res);
// 1.2360656e-1 = 377/3050
// 1.1588235e-1 = 197/1700 = 394/3400
res = 640.0 - args[2] * 1.2360656e-1 - a1 * 1.1588235e-1 - 26;
writeScummVar(109, (int32)res);
return 1;
}
int LogicHEfootball::op_1007(int32 *args) {
double res, temp;
temp = (double)args[1] * 0.32;
if (temp > 304.0)
res = -args[2] * 0.142;
else
res = args[2] * 0.142;
res += temp;
writeScummVar(108, (int32)res);
res = (1000.0 - args[2]) * 0.48;
writeScummVar(109, (int32)res);
return 1;
}
int LogicHEfootball::op_1010(int32 *args) {
// This seems to be more or less the inverse of op_1006
double a1 = (640.0 - (double)args[1] - 26.0) / 1.1588235e-1;
// 2.9411764e-4 = 1/3400
// 5.3050399e-2 = 1/18.85 = 20/377
// 1.1764706e-2 = 1/85 = 40/3400
// 1.2360656e-1 = 377/3050
double a0 = ((double)args[0] - 46 - a1 * 1.1764706e-2) /
((1.0 - a1 * 2.9411764e-4 * 5.3050399e-2) * 1.2360656e-1);
writeScummVar(108, (int32)a0);
writeScummVar(109, (int32)a1);
return 1;
}
int LogicHEfootball::op_1022(int32 *args) {
double res;
double var10 = args[4] - args[1];
double var8 = args[5] - args[2];
double var6 = args[3] - args[0];
res = sqrt(var8 * var8 + var6 * var6 + var10 * var10);
if (res >= (double)args[6]) {
var8 = (double)args[6] * var8 / res;
var10 = (double)args[6] * var10 / res;
res = (double)args[6] * var6 / res;
}
writeScummVar(108, (int32)res);
writeScummVar(109, (int32)var10);
writeScummVar(110, (int32)var8);
return 1;
}
int LogicHEfootball::op_1023(int32 *args) {
double var10, var18, var20, var28, var30, var30_;
double argf[7];
for (int i = 0; i < 7; i++)
argf[i] = args[i];
var10 = (argf[3] - argf[1]) / (argf[2] - argf[0]);
var28 = var10 * var10 + 1;
var20 = argf[0] * var10;
var18 = (argf[5] + argf[1] + var20) * argf[4] * var10 * 2 +
argf[6] * argf[6] * var28 + argf[4] * argf[4] -
argf[0] * argf[0] * var10 * var10 -
argf[5] * argf[0] * var10 * 2 -
argf[5] * argf[1] * 2 -
argf[1] * argf[1] - argf[5] * argf[5];
if (var18 >= 0) {
var18 = sqrt(var18);
var30_ = argf[4] + argf[5] * var10 + argf[1] * var10 + argf[0] * var10 * var10;
var30 = (var30_ - var18) / var28;
var18 = (var30_ + var18) / var28;
if ((argf[0] - var30 < 0) && (argf[0] - var18 < 0)) {
var30_ = var30;
var30 = var18;
var18 = var30_;
}
var28 = var18 * var10 - var20 - argf[1];
var20 = var30 * var10 - var20 - argf[1];
} else {
var18 = 0;
var20 = 0;
var28 = 0;
var30 = 0;
}
writeScummVar(108, (int32)var18);
writeScummVar(109, (int32)var28);
writeScummVar(110, (int32)var30);
writeScummVar(111, (int32)var20);
return 1;
}
int LogicHEfootball::op_1024(int32 *args) {
writeScummVar(108, 0);
writeScummVar(109, 0);
writeScummVar(110, 0);
writeScummVar(111, 0);
return 1;
}
/***********************
* Backyard Soccer
*
*/
int LogicHEsoccer::versionID() {
return 1;
}
LogicHEsoccer::LogicHEsoccer(ScummEngine_v90he *vm) : LogicHE(vm) {
// Originally it used 0x1b0d bytes
_userDataD = (double *)calloc(1732, sizeof(double));
}
int32 LogicHEsoccer::dispatch(int op, int numArgs, int32 *args) {
int res = 0;
switch (op) {
case 1001:
res = op_1001(args);
break;
case 1002:
res = op_1002(args);
break;
case 1004:
res = op_1004(args);
break;
case 8221968:
// Someone had a fun and used his birthday as opcode number
res = getFromArray(args[0], args[1], args[2]);
break;
default:
// original range is 1001 - 1021
LogicHE::dispatch(op, numArgs, args);
}
return res;
}
int LogicHEsoccer::op_1001(int32 *args) {
return (int)(args[0] * sin((float)args[1]));
}
int LogicHEsoccer::op_1002(int32 *args) {
return _vm->VAR(2) * args[0];
}
int LogicHEsoccer::op_1003(int32 *args) {
double data[6], out[3];
int i;
for (i = 0; i < 6; i++) {
data[i] = getFromArray(args[0], 0, i);
}
out[0] = data[1] * data[5] - data[4] * data[2];
out[1] = data[5] * data[0] - data[3] * data[2];
out[2] = data[4] * data[0] - data[3] * data[1];
for (i = 0; i < 3; i++) {
putInArray(args[0], 0, i, scumm_round(out[i]));
}
return 1;
}
int LogicHEsoccer::op_1004(int32 *args) {
// Identical to LogicHEfootball::op_1004
double res, a2, a4, a5;
a5 = ((double)args[4] - (double)args[1]) / ((double)args[5] - (double)args[2]);
a4 = ((double)args[3] - (double)args[0]) / ((double)args[5] - (double)args[2]);
a2 = (double)args[2] - (double)args[0] * a4 - args[1] * a5;
res = (double)args[6] * a4 + (double)args[7] * a5 + a2;
writeScummVar(108, (int32)res);
writeScummVar(109, (int32)a2);
writeScummVar(110, (int32)a5);
writeScummVar(111, (int32)a4);
return 1;
}
int LogicHEsoccer::op_1006(int32 *args) {
double a1 = args[1] * 0.01;
double a2 = args[2] * 0.01;
double a3 = args[3] * 0.01;
double var108, var109;
_userDataD[529] = args[4];
var108 = atan2(a1, a3) * _userDataD[523] - args[4];
var109 = _userDataD[526] - _userDataD[528] + (_userDataD[521] - atan2(_userDataD[524] - a2, a3)) * _userDataD[522];
writeScummVar(108, (int32)var108);
writeScummVar(109, (int32)var109);
return 1;
}
int LogicHEsoccer::op_1007(int32 *args) {
// TODO: Used when the HE logo is shown
return 1;
}
int LogicHEsoccer::op_1008(int32 *args) {
// TODO: Used during a match (kicking?)
return 1;
}
int LogicHEsoccer::op_1012(int32 *args) {
// TODO: Used after op_1019
return 1;
}
int LogicHEsoccer::op_1014(int32 *args) {
// TODO: Used many times during a match
return 1;
}
int LogicHEsoccer::op_1019(int32 *args) {
// TODO: Used at the beginning of a match
return 1;
}
int LogicHEsoccer::op_1021(int32 *args) {
// TODO: Used during a match (ball movement?)
return 1;
}
/***********************
* Backyard Baseball 2001
*
*/
int LogicHEbaseball2001::versionID() {
return 1;
}
int32 LogicHEbaseball2001::dispatch(int op, int numArgs, int32 *args) {
int res = 0;
switch (op) {
case 3001:
// Check network status
break;
default:
LogicHE::dispatch(op, numArgs, args);
}
return res;
}
/***********************
* Backyard Basketball
*
*/
int LogicHEbasketball::versionID() {
return 1;
}
int32 LogicHEbasketball::dispatch(int op, int numArgs, int32 *args) {
int res = 0;
switch (op) {
case 1001:
break;
case 1006:
break;
case 1011:
break;
case 1012:
break;
case 1035:
break;
case 1050:
break;
case 1051:
break;
case 1052:
break;
case 1056:
break;
case 1057:
break;
case 1058:
break;
case 1060:
break;
case 1064:
break;
case 1067:
break;
case 1073:
break;
case 1075:
break;
case 1076:
break;
case 1080:
break;
case 1081:
break;
case 1090:
break;
case 1091:
break;
case 1513:
break;
default:
LogicHE::dispatch(op, numArgs, args);
}
return res;
}
/***********************
* Moonbase Commander
*
*/
int LogicHEmoonbase::versionID() {
if (_vm->_game.features & GF_DEMO)
return -100;
else
return 100;
}
} // End of namespace Scumm
#endif // ENABLE_HE