mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-15 06:18:33 +00:00
102 lines
3.4 KiB
C++
102 lines
3.4 KiB
C++
/* ResidualVM - A 3D game interpreter
|
|
*
|
|
* ResidualVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#ifndef MATH_MATRIX4_H
|
|
#define MATH_MATRIX4_H
|
|
|
|
#include "math/rotation3d.h"
|
|
#include "math/squarematrix.h"
|
|
#include "math/vector3d.h"
|
|
#include "math/matrix3.h"
|
|
|
|
namespace Math {
|
|
|
|
// matrix 4 is a rotation matrix + position
|
|
template<>
|
|
class Matrix<4, 4> : public MatrixType<4, 4>, public Rotation3D<Matrix<4, 4> > {
|
|
public:
|
|
Matrix();
|
|
Matrix(const MatrixBase<4, 4> &m);
|
|
|
|
void transform(Vector3d *v, bool translate) const;
|
|
void inverseTranslate(Vector3d *v);
|
|
void inverseRotate(Vector3d *v);
|
|
|
|
Vector3d getPosition() const;
|
|
void setPosition(const Vector3d &v);
|
|
|
|
Matrix3 getRotation() const;
|
|
void setRotation(const Matrix3 &m);
|
|
|
|
void translate(const Vector3d &v);
|
|
|
|
/**
|
|
* Builds a matrix that maps the given local space forward direction vector to point towards the given
|
|
* target direction, and the given local up direction towards the given target world up direction.
|
|
*
|
|
* @param modelForward The forward direction in the local space of the object.
|
|
* @param targetDirection The desired world space direction the object should look at.
|
|
* @param modelUp The up direction in the local space of the object. This vector must be
|
|
* perpendicular to the vector localForward.
|
|
* @param worldUp The global up direction of the scene in world space. The worldUp and targetDirection
|
|
* vectors cannot be collinear, but they do not need to be perpendicular either.
|
|
* All the parameters MUST be normalized.
|
|
*/
|
|
void buildFromTargetDir(const Math::Vector3d &modelForward, const Math::Vector3d &targetDirection,
|
|
const Math::Vector3d &modelUp, const Math::Vector3d &worldUp);
|
|
|
|
/**
|
|
* Inverts a matrix in place.
|
|
* This function avoid having to do generic Gaussian elimination on the matrix
|
|
* by assuming that the top-left 3x3 part of the matrix is orthonormal
|
|
* (columns and rows 0, 1 and 2 orthogonal and unit length).
|
|
* See e.g. Eric Lengyel's Mathematics for 3D Game Programming and Computer Graphics, p. 82.
|
|
*/
|
|
void invertAffineOrthonormal();
|
|
|
|
void transpose();
|
|
|
|
inline Matrix<4, 4> operator*(const Matrix<4, 4> &m2) const {
|
|
Matrix<4, 4> result;
|
|
const float *d1 = getData();
|
|
const float *d2 = m2.getData();
|
|
float *r = result.getData();
|
|
|
|
for (int i = 0; i < 16; i += 4) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
r[i + j] = (d1[i + 0] * d2[j + 0])
|
|
+ (d1[i + 1] * d2[j + 4])
|
|
+ (d1[i + 2] * d2[j + 8])
|
|
+ (d1[i + 3] * d2[j + 12]);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
typedef Matrix<4, 4> Matrix4;
|
|
|
|
} // end of namespace Math
|
|
|
|
#endif
|