scummvm/engines/xeen/sound_driver_adlib.cpp
2021-12-26 18:48:43 +01:00

427 lines
11 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "xeen/sound_driver_adlib.h"
#include "xeen/xeen.h"
namespace Xeen {
#define CALLBACKS_PER_SECOND 73
const byte SoundDriverAdlib::OPERATOR1_INDEXES[CHANNEL_COUNT] = {
0, 1, 2, 8, 9, 0xA, 0x10, 0x11, 0x12
};
const byte SoundDriverAdlib::OPERATOR2_INDEXES[CHANNEL_COUNT] = {
3, 4, 5, 0xB, 0xC, 0xD, 0x13, 0x14, 0x15
};
const uint SoundDriverAdlib::WAVEFORMS[24] = {
0, 347, 388, 436, 462, 519, 582, 646,
0, 362, 406, 455, 484, 542, 607, 680,
0, 327, 367, 412, 436, 489, 549, 618
};
/*------------------------------------------------------------------------*/
SoundDriverAdlib::SoundDriverAdlib() : _field180(0), _field181(0), _field182(0),
_musicVolume(0), _sfxVolume(0) {
Common::fill(&_musInstrumentPtrs[0], &_musInstrumentPtrs[16], (const byte *)nullptr);
Common::fill(&_fxInstrumentPtrs[0], &_fxInstrumentPtrs[16], (const byte *)nullptr);
_opl = OPL::Config::create();
_opl->init();
_opl->start(new Common::Functor0Mem<void, SoundDriverAdlib>(this, &SoundDriverAdlib::onTimer), CALLBACKS_PER_SECOND);
initialize();
}
SoundDriverAdlib::~SoundDriverAdlib() {
_opl->stop();
delete _opl;
}
void SoundDriverAdlib::onTimer() {
Common::StackLock slock(_driverMutex);
execute();
flush();
}
void SoundDriverAdlib::initialize() {
write(1, 0x20);
write(8, 0);
write(0xBD, 0);
resetFrequencies();
SoundDriverAdlib::resetFX();
}
void SoundDriverAdlib::playFX(uint effectId, const byte *data) {
Common::StackLock slock(_driverMutex);
SoundDriver::playFX(effectId, data);
}
void SoundDriverAdlib::playSong(const byte *data) {
Common::StackLock slock(_driverMutex);
SoundDriver::playSong(data);
_field180 = 0;
resetFrequencies();
}
int SoundDriverAdlib::songCommand(uint commandId, byte musicVolume, byte sfxVolume) {
Common::StackLock slock(_driverMutex);
SoundDriver::songCommand(commandId, musicVolume, sfxVolume);
if (commandId == STOP_SONG) {
_field180 = 0;
resetFrequencies();
} else if (commandId == RESTART_SONG) {
_field180 = 0;
_streams[stMUSIC]._playing = true;
} else if (commandId < 0x100) {
if (_streams[stMUSIC]._playing) {
_field180 = commandId;
_field182 = 63;
}
} else if (commandId == SET_VOLUME) {
_musicVolume = musicVolume;
_sfxVolume = sfxVolume;
} else if (commandId == GET_STATUS) {
return _field180;
}
return 0;
}
void SoundDriverAdlib::write(int reg, int val) {
_queue.push(RegisterValue(reg, val));
debugC(9, kDebugSound, "%.2x %.2x", reg, val);
}
void SoundDriverAdlib::flush() {
Common::StackLock slock(_driverMutex);
while (!_queue.empty()) {
RegisterValue v = _queue.pop();
_opl->writeReg(v._regNum, v._value);
}
}
void SoundDriverAdlib::pausePostProcess() {
if (_field180 && ((_field181 += _field180) < 0)) {
if (--_field182 < 0) {
_streams[stMUSIC]._playing = false;
_field180 = 0;
resetFrequencies();
} else {
for (int channelNum = 6; channelNum >= 0; --channelNum) {
if (_channels[channelNum]._volume < 63)
setOutputLevel(channelNum, ++_channels[channelNum]._volume);
}
}
}
for (int channelNum = 8; channelNum > 6; --channelNum) {
Channel &chan = _channels[channelNum];
if (!chan._changeFrequency || (chan._freqCtr += chan._freqCtrChange) >= 0)
continue;
uint freq = chan._frequency & 0x3FF;
uint val = chan._frequency >> 8;
byte val1 = val & 0x20;
byte val2 = val & 0x1C;
freq += chan._freqChange;
if (chan._freqChange < 0) {
if (freq <= 388) {
freq <<= 1;
if (!(freq & 0x3FF))
--freq;
}
val2 = (val2 - 4) & 0x1C;
} else {
if (freq >= 734) {
freq >>= 1;
if (!(freq & 0x3FF))
++freq;
}
val2 = (val2 + 4) & 0x1C;
}
freq &= 0x3FF;
freq |= (val2 << 8);
freq |= val1;
chan._frequency = freq;
setFrequency(channelNum, freq);
}
}
void SoundDriverAdlib::resetFX() {
_channels[7]._frequency = 0;
setFrequency(7, 0);
_channels[7]._volume = 63;
setOutputLevel(7, 63);
_channels[8]._frequency = 0;
setFrequency(8, 0);
_channels[8]._volume = 63;
setOutputLevel(8, 63);
}
void SoundDriverAdlib::resetFrequencies() {
for (int opNum = 6; opNum >= 0; --opNum) {
_channels[opNum]._frequency = 0;
setFrequency(opNum, 0);
}
}
void SoundDriverAdlib::setFrequency(byte operatorNum, uint frequency) {
write(0xA0 + operatorNum, frequency & 0xff);
write(0xB0 + operatorNum, (frequency >> 8));
}
uint SoundDriverAdlib::calcFrequency(byte note) {
return WAVEFORMS[note & 0x1F] + ((note & 0xE0) << 5);
}
void SoundDriverAdlib::setOutputLevel(byte channelNum, uint level) {
Channel &c = _channels[channelNum];
write(0x40 + OPERATOR2_INDEXES[channelNum], calculateLevel(level, c._isFx) | (c._totalLevel & 0xC0));
}
void SoundDriverAdlib::playInstrument(byte channelNum, const byte *data, bool isFx) {
byte op1 = OPERATOR1_INDEXES[channelNum];
byte op2 = OPERATOR2_INDEXES[channelNum];
int totalLevel;
debugC(2, kDebugSound, "---START-playInstrument - %d", channelNum);
_channels[channelNum]._isFx = isFx;
write(0x20 + op1, *data++);
totalLevel = *data++;
write(0x40 + op1, calculateLevel(totalLevel, isFx));
write(0x60 + op1, *data++);
write(0x80 + op1, *data++);
write(0xE0 + op1, *data++);
write(0x20 + op2, *data++);
totalLevel = *data++;
_channels[channelNum]._totalLevel = totalLevel;
if (totalLevel > 63) {
totalLevel = 63;
if (_field180)
totalLevel = (totalLevel & 0xC0) | _field182;
}
write(0x40 + op2, calculateLevel(totalLevel, isFx));
write(0x60 + op2, *data++);
write(0x80 + op2, *data++);
write(0xE0 + op2, *data++);
write(0xC0 + channelNum, *data++);
debugC(2, kDebugSound, "---END-playInstrument");
}
bool SoundDriverAdlib::musSetInstrument(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musSetInstrument %d", param);
_musInstrumentPtrs[param] = srcP;
srcP += 26;
return false;
}
bool SoundDriverAdlib::musSetPitchWheel(const byte *&srcP, byte param) {
// Adlib does not support this
debugC(3, kDebugSound, "musSetPitchWheel");
srcP += 2;
return false;
}
bool SoundDriverAdlib::musSetPanning(const byte *&srcP, byte param) {
// Adlib does not support this
debugC(3, kDebugSound, "musSetPanning");
++srcP;
return false;
}
bool SoundDriverAdlib::musFade(const byte *&srcP, byte param) {
++srcP;
if (param < 7)
setFrequency(param, _channels[param]._frequency);
debugC(3, kDebugSound, "musFade");
return false;
}
bool SoundDriverAdlib::musStartNote(const byte *&srcP, byte param) {
if (param < 7) {
byte note = *srcP++;
++srcP; // Second byte is fade, which is unused by Adlib
uint freq = calcFrequency(note);
debugC(3, kDebugSound, "musStartNote %x -> %x", note, freq);
setFrequency(param, freq);
freq |= 0x2000;
_channels[param]._frequency = freq;
setFrequency(param, freq);
} else {
srcP += 2;
debugC(3, kDebugSound, "musStartNote skipped");
}
return false;
}
bool SoundDriverAdlib::musSetVolume(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musSetVolume %d", (int)*srcP);
if (*srcP++ == 5 && !_field180) {
_channels[param]._volume = *srcP;
setOutputLevel(param, *srcP);
}
++srcP;
return false;
}
bool SoundDriverAdlib::musInjectMidi(const byte *&srcP, byte param) {
// Adlib does not support MIDI. So simply keep skipping over bytes
// until an 'F7' byte is found that flags the end of the MIDI data
debugC(3, kDebugSound, "musInjectMidi");
while (*srcP++ != 0xF7)
;
return false;
}
bool SoundDriverAdlib::musPlayInstrument(const byte *&srcP, byte param) {
byte instrument = *srcP++;
debugC(3, kDebugSound, "musPlayInstrument %d, %d", param, instrument);
if (param < 7)
playInstrument(param, _musInstrumentPtrs[instrument], false);
return false;
}
bool SoundDriverAdlib::fxSetInstrument(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxSetInstrument %d", param);
_fxInstrumentPtrs[param] = srcP;
srcP += 11;
return false;
}
bool SoundDriverAdlib::fxSetVolume(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxSetVolume %d", (int)*srcP);
if (!_field180) {
_channels[param]._volume = *srcP;
setOutputLevel(param, *srcP);
}
++srcP;
return false;
}
bool SoundDriverAdlib::fxMidiReset(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxMidiReset");
return false;
}
bool SoundDriverAdlib::fxMidiDword(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxMidiDword");
return false;
}
bool SoundDriverAdlib::fxSetPanning(const byte *&srcP, byte param) {
byte note = *srcP++;
debugC(3, kDebugSound, "fxSetPanning - %x", note);
uint freq = calcFrequency(note);
setFrequency(param, freq);
_channels[param]._frequency = freq;
return false;
}
bool SoundDriverAdlib::fxChannelOff(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxChannelOff %d", param);
_channels[param]._frequency &= ~0x2000;
write(0xB0 + param, _channels[param]._frequency);
return false;
}
bool SoundDriverAdlib::fxFade(const byte *&srcP, byte param) {
uint freq = calcFrequency(*srcP++);
debugC(3, kDebugSound, "fxFade %d %x", param, freq);
_channels[param]._frequency = freq;
setFrequency(param, freq);
return false;
}
bool SoundDriverAdlib::fxStartNote(const byte *&srcP, byte param) {
byte note = *srcP++;
uint freq = calcFrequency(note);
debugC(3, kDebugSound, "fxStartNote %x -> %x", note, freq);
setFrequency(param, freq);
freq |= 0x2000;
_channels[param]._frequency = freq;
setFrequency(param, freq);
return false;
}
bool SoundDriverAdlib::fxInjectMidi(const byte *&srcP, byte param) {
// Surpringly, unlike the musInjectMidi, this version doesn't have
// any logic to skip over following MIDI data. Which must mean the opcode
// and/or it's data aren't present in the admus driver file
debugC(3, kDebugSound, "fxInjectMidi");
return false;
}
bool SoundDriverAdlib::fxPlayInstrument(const byte *&srcP, byte param) {
byte instrument = *srcP++;
debugC(3, kDebugSound, "fxPlayInstrument %d, %d", param, instrument);
playInstrument(param, _fxInstrumentPtrs[instrument], true);
return false;
}
byte SoundDriverAdlib::calculateLevel(byte level, bool isFx) {
uint volume = isFx ? _sfxVolume : _musicVolume;
uint scaling = level & 0xc0;
uint totalLevel = 0x3f - (level & 0x3f);
totalLevel = totalLevel * volume / 255;
return scaling | (0x3f - totalLevel);
}
} // End of namespace Xeen