scummvm/engines/agi/sound_2gs.cpp
2013-04-18 23:50:19 +02:00

802 lines
25 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/config-manager.h"
#include "common/fs.h"
#include "common/archive.h"
#include "common/md5.h"
#include "common/memstream.h"
#include "common/str-array.h"
#include "common/textconsole.h"
#include "agi/agi.h"
#include "agi/sound_2gs.h"
namespace Agi {
SoundGen2GS::SoundGen2GS(AgiBase *vm, Audio::Mixer *pMixer) : SoundGen(vm, pMixer) {
// Allocate memory for the wavetable
_wavetable = new int8[SIERRASTANDARD_SIZE];
// Apple IIGS AGI MIDI player advances 60 ticks per second. Strategy
// here is to first generate audio for a 1/60th of a second and then
// advance the MIDI player by one tick. Thus, make the output buffer
// to be a 1/60th of a second in length.
_outSize = _sampleRate / 60;
_out = new int16[2 * _outSize]; // stereo
// Initialize player variables
_nextGen = 0;
_ticks = 0;
// Not playing anything yet
_playingSound = -1;
_playing = false;
// Load instruments
_disableMidi = !loadInstruments();
_mixer->playStream(Audio::Mixer::kMusicSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true);
}
SoundGen2GS::~SoundGen2GS() {
_mixer->stopHandle(_soundHandle);
delete[] _wavetable;
delete[] _out;
}
int SoundGen2GS::readBuffer(int16 *buffer, const int numSamples) {
static uint data_available = 0;
static uint data_offset = 0;
uint n = numSamples << 1;
uint8 *p = (uint8 *)buffer;
while (n > data_available) {
memcpy(p, (uint8 *)_out + data_offset, data_available);
p += data_available;
n -= data_available;
advancePlayer();
data_available = generateOutput() << 1;
data_offset = 0;
}
memcpy(p, (uint8 *)_out + data_offset, n);
data_offset += n;
data_available -= n;
return numSamples;
}
/**
* Initiate the playing of a sound resource.
* @param resnum Resource number
*/
void SoundGen2GS::play(int resnum) {
AgiSoundEmuType type;
_playingSound = resnum;
type = (AgiSoundEmuType)_vm->_game.sounds[resnum]->type();
assert (type == AGI_SOUND_SAMPLE || type == AGI_SOUND_MIDI);
if (_vm->_soundemu != SOUND_EMU_APPLE2GS) {
warning("Trying to play sample or MIDI resource but not using Apple IIGS sound emulation mode");
return;
}
haltGenerators();
switch (type) {
case AGI_SOUND_SAMPLE: {
IIgsSample *sampleRes = (IIgsSample *) _vm->_game.sounds[_playingSound];
const IIgsSampleHeader &header = sampleRes->getHeader();
_channels[kSfxMidiChannel].setInstrument(&header.instrument);
_channels[kSfxMidiChannel].setVolume(header.volume);
midiNoteOn(kSfxMidiChannel, header.pitch, 127);
break;
}
case AGI_SOUND_MIDI:
((IIgsMidi *) _vm->_game.sounds[_playingSound])->rewind();
_ticks = 0;
break;
default:
break;
}
}
void SoundGen2GS::stop() {
haltGenerators();
_playingSound = -1;
_playing = 0;
}
/**
* Fill output buffer by advancing the generators for a 1/60th of a second.
* @return Number of generated samples
*/
uint SoundGen2GS::generateOutput() {
memset(_out, 0, _outSize * 2 * 2);
if (!_playing || _playingSound == -1)
return _outSize * 2;
int16 *p = _out;
int n = _outSize;
while (n--) {
int outl = 0;
int outr = 0;
for (int k = 0; k < MAX_GENERATORS; k++) {
IIgsGenerator *g = &_generators[k];
if (!g->ins)
continue;
const IIgsInstrumentHeader *i = g->ins;
// Advance envelope
int vol = fracToInt(g->a);
if (g->a <= i->env[g->seg].bp) {
g->a += i->env[g->seg].inc * ENVELOPE_COEF;
if (g->a > i->env[g->seg].bp) {
g->a = i->env[g->seg].bp;
g->seg++;
}
} else {
g->a -= i->env[g->seg].inc * ENVELOPE_COEF;
if (g->a < i->env[g->seg].bp) {
g->a = i->env[g->seg].bp;
g->seg++;
}
}
// TODO: Advance vibrato here. The Apple IIGS uses a LFO with
// triangle wave to modulate the frequency of both oscillators.
// In Apple IIGS the vibrato and the envelope are updated at the
// same time, so the vibrato speed depends on ENVELOPE_COEF.
// Advance oscillators
int s0 = 0;
int s1 = 0;
if (!g->osc[0].halt) {
s0 = g->osc[0].base[fracToInt(g->osc[0].p)];
g->osc[0].p += g->osc[0].pd;
if ((uint)fracToInt(g->osc[0].p) >= g->osc[0].size) {
g->osc[0].p -= intToFrac(g->osc[0].size);
if (!g->osc[0].loop)
g->osc[0].halt = 1;
if (g->osc[0].swap) {
g->osc[0].halt = 1;
g->osc[1].halt = 0;
}
}
}
if (!g->osc[1].halt) {
s1 = g->osc[1].base[fracToInt(g->osc[1].p)];
g->osc[1].p += g->osc[1].pd;
if ((uint)fracToInt(g->osc[1].p) >= g->osc[1].size) {
g->osc[1].p -= intToFrac(g->osc[1].size);
if (!g->osc[1].loop)
g->osc[1].halt = 1;
if (g->osc[1].swap) {
g->osc[0].halt = 0;
g->osc[1].halt = 1;
}
}
}
// Take envelope and MIDI volume information into account.
// Also amplify.
s0 *= vol * g->vel / 127 * 80 / 256;
s1 *= vol * g->vel / 127 * 80 / 256;
// Select output channel.
if (g->osc[0].chn)
outl += s0;
else
outr += s0;
if (g->osc[1].chn)
outl += s1;
else
outr += s1;
}
if (outl > 32768)
outl = 32768;
if (outl < -32767)
outl = -32767;
if (outr > 32768)
outr = 32768;
if (outr < -32767)
outr = -32767;
*p++ = outl;
*p++ = outr;
}
return _outSize * 2;
}
void SoundGen2GS::advancePlayer() {
if (_playingSound == -1)
return;
if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_MIDI) {
advanceMidiPlayer();
} else if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_SAMPLE) {
_playing = activeGenerators() > 0;
}
if (!_playing) {
_vm->_sound->soundIsFinished();
_playingSound = -1;
}
}
void SoundGen2GS::advanceMidiPlayer() {
if (_disableMidi)
return;
const uint8 *p;
uint8 parm1, parm2;
static uint8 cmd, chn;
if (_playingSound == -1 || _vm->_game.sounds[_playingSound] == NULL) {
warning("Error playing Apple IIGS MIDI sound resource");
_playing = false;
return;
}
IIgsMidi *midiObj = (IIgsMidi *) _vm->_game.sounds[_playingSound];
_ticks++;
_playing = true;
p = midiObj->getPtr();
while (true) {
// Check for end of MIDI sequence marker (Can also be here before delta-time)
if (*p == MIDI_STOP_SEQUENCE) {
debugC(3, kDebugLevelSound, "End of MIDI sequence (Before reading delta-time)");
_playing = false;
midiObj->rewind();
return;
}
if (*p == MIDI_TIMER_SYNC) {
debugC(3, kDebugLevelSound, "Timer sync");
p++; // Jump over the timer sync byte as it's not needed
continue;
}
// Check for delta time
uint8 delta = *p;
if (midiObj->_ticks + delta > _ticks)
break;
midiObj->_ticks += delta;
p++;
// Check for end of MIDI sequence marker (This time it after reading delta-time)
if (*p == MIDI_STOP_SEQUENCE) {
debugC(3, kDebugLevelSound, "End of MIDI sequence (After reading delta-time)");
_playing = false;
midiObj->rewind();
return;
}
// Separate byte into command and channel if it's a command byte.
// Otherwise use running status (i.e. previously set command and channel).
if (*p & 0x80) {
cmd = *p++;
chn = cmd & 0x0f;
cmd >>= 4;
}
switch (cmd) {
case MIDI_NOTE_OFF:
parm1 = *p++;
parm2 = *p++;
debugC(3, kDebugLevelSound, "channel %X: note off (key = %d, velocity = %d)", chn, parm1, parm2);
midiNoteOff(chn, parm1, parm2);
break;
case MIDI_NOTE_ON:
parm1 = *p++;
parm2 = *p++;
debugC(3, kDebugLevelSound, "channel %X: note on (key = %d, velocity = %d)", chn, parm1, parm2);
midiNoteOn(chn, parm1, parm2);
break;
case MIDI_CONTROLLER:
parm1 = *p++;
parm2 = *p++;
debugC(3, kDebugLevelSound, "channel %X: controller %02X = %02X", chn, parm1, parm2);
// The tested Apple IIGS AGI MIDI resources only used
// controllers 0 (Bank select?), 7 (Volume) and 64 (Sustain On/Off).
// Controller 0's parameter was in range 94-127,
// controller 7's parameter was in range 0-127 and
// controller 64's parameter was always 0 (i.e. sustain off).
switch (parm1) {
case 7:
_channels[chn].setVolume(parm2);
break;
}
break;
case MIDI_PROGRAM_CHANGE:
parm1 = *p++;
debugC(3, kDebugLevelSound, "channel %X: program change %02X", chn, parm1);
_channels[chn].setInstrument(getInstrument(parm1));
break;
case MIDI_PITCH_WHEEL:
parm1 = *p++;
parm2 = *p++;
debugC(3, kDebugLevelSound, "channel %X: pitch wheel (unimplemented)", chn);
break;
default:
debugC(3, kDebugLevelSound, "channel %X: unimplemented command %02X", chn, cmd);
break;
}
}
midiObj->setPtr(p);
}
void SoundGen2GS::midiNoteOff(int channel, int note, int velocity) {
// Release keys within the given MIDI channel
for (int i = 0; i < MAX_GENERATORS; i++) {
if (_generators[i].chn == channel && _generators[i].key == note)
_generators[i].seg = _generators[i].ins->seg;
}
}
void SoundGen2GS::midiNoteOn(int channel, int note, int velocity) {
if (!_channels[channel].getInstrument()) {
debugC(3, kDebugLevelSound, "midiNoteOn(): no instrument specified for channel %d", channel);
return;
}
// Allocate a generator for the note.
IIgsGenerator* g = allocateGenerator();
g->ins = _channels[channel].getInstrument();
const IIgsInstrumentHeader* i = g->ins;
// Pass information from the MIDI channel to the generator. Take
// velocity into account, although simplistically.
velocity *= 5 / 3;
if (velocity > 127)
velocity = 127;
g->key = note;
g->vel = velocity * _channels[channel].getVolume() / 127;
g->chn = channel;
// Instruments can define different samples to be used based on
// what the key is. Find the correct samples for our key.
int wa = 0;
int wb = 0;
while (wa < i->waveCount[0] - 1 && note > i->wave[0][wa].key)
wa++;
while (wb < i->waveCount[1] - 1 && note > i->wave[1][wb].key)
wb++;
// Prepare the generator.
g->osc[0].base = i->base + i->wave[0][wa].offset;
g->osc[0].size = i->wave[0][wa].size;
g->osc[0].pd = doubleToFrac(midiKeyToFreq(note, (double)i->wave[0][wa].tune / 256.0) / (double)_sampleRate);
g->osc[0].p = 0;
g->osc[0].halt = i->wave[0][wa].halt;
g->osc[0].loop = i->wave[0][wa].loop;
g->osc[0].swap = i->wave[0][wa].swap;
g->osc[0].chn = i->wave[0][wa].chn;
g->osc[1].base = i->base + i->wave[1][wb].offset;
g->osc[1].size = i->wave[1][wb].size;
g->osc[1].pd = doubleToFrac(midiKeyToFreq(note, (double)i->wave[1][wb].tune / 256.0) / (double)_sampleRate);
g->osc[1].p = 0;
g->osc[1].halt = i->wave[1][wb].halt;
g->osc[1].loop = i->wave[1][wb].loop;
g->osc[1].swap = i->wave[1][wb].swap;
g->osc[1].chn = i->wave[1][wb].chn;
g->seg = 0;
g->a = 0;
// Print debug messages for instruments with swap mode or vibrato enabled
if (g->osc[0].swap || g->osc[1].swap)
debugC(2, kDebugLevelSound, "Detected swap mode in a playing instrument. This is rare and is not tested well...");
if (i->vibDepth > 0)
debugC(2, kDebugLevelSound, "Detected vibrato in a playing instrument. Vibrato is not implemented, playing without...");
}
double SoundGen2GS::midiKeyToFreq(int key, double finetune) {
return 440.0 * pow(2.0, (15.0 + (double)key + finetune) / 12.0);
}
void SoundGen2GS::haltGenerators() {
for (int i = 0; i < MAX_GENERATORS; i++) {
_generators[i].osc[0].halt = true;
_generators[i].osc[1].halt = true;
}
}
uint SoundGen2GS::activeGenerators() {
int n = 0;
for (int i = 0; i < MAX_GENERATORS; i++)
if (!_generators[i].osc[0].halt || !_generators[i].osc[1].halt)
n++;
return n;
}
void SoundGen2GS::setProgramChangeMapping(const IIgsMidiProgramMapping *mapping) {
_progToInst = mapping;
}
IIgsMidi::IIgsMidi(uint8 *data, uint32 len, int resnum) : AgiSound() {
_data = data; // Save the resource pointer
_ptr = _data + 2; // Set current position to just after the header
_len = len; // Save the resource's length
_type = READ_LE_UINT16(data); // Read sound resource's type
_ticks = 0;
_isValid = (_type == AGI_SOUND_MIDI) && (_data != NULL) && (_len >= 2);
if (!_isValid) // Check for errors
warning("Error creating Apple IIGS midi sound from resource %d (Type %d, length %d)", resnum, _type, len);
}
/**
* Convert sample from 8-bit unsigned to 8-bit signed format.
* @param source Source stream containing the 8-bit unsigned sample data.
* @param dest Destination buffer for the 8-bit signed sample data.
* @param length Length of the sample data to be converted.
*/
static bool convertWave(Common::SeekableReadStream &source, int8 *dest, uint length) {
// Convert the wave from 8-bit unsigned to 8-bit signed format
for (uint i = 0; i < length; i++)
dest[i] = (int8) ((int) source.readByte() - ZERO_OFFSET);
return !(source.eos() || source.err());
}
IIgsSample::IIgsSample(uint8 *data, uint32 len, int resnum) : AgiSound() {
Common::MemoryReadStream stream(data, len, DisposeAfterUse::YES);
// Check that the header was read ok and that it's of the correct type
if (_header.read(stream) && _header.type == AGI_SOUND_SAMPLE) { // An Apple IIGS AGI sample resource
uint32 sampleStartPos = stream.pos();
uint32 tailLen = stream.size() - sampleStartPos;
if (tailLen < _header.sampleSize) { // Check if there's no room for the sample data in the stream
// Apple IIGS Manhunter I: Sound resource 16 has only 16074 bytes
// of sample data although header says it should have 16384 bytes.
warning("Apple IIGS sample (%d) too short (%d bytes. Should be %d bytes). Using the part that's left",
resnum, tailLen, _header.sampleSize);
_header.sampleSize = (uint16) tailLen; // Use the part that's left
}
if (_header.pitch > 0x7F) { // Check if the pitch is invalid
warning("Apple IIGS sample (%d) has too high pitch (0x%02x)", resnum, _header.pitch);
_header.pitch &= 0x7F; // Apple IIGS AGI probably did it this way too
}
// Convert sample data from 8-bit unsigned to 8-bit signed format
stream.seek(sampleStartPos);
_sample = new int8[_header.sampleSize];
if (_sample != NULL) {
_isValid = convertWave(stream, _sample, _header.sampleSize);
// Finalize header info using sample data
_header.finalize(_sample);
}
}
if (!_isValid) // Check for errors
warning("Error creating Apple IIGS sample from resource %d (Type %d, length %d)", resnum, _header.type, len);
}
bool IIgsInstrumentHeader::read(Common::SeekableReadStream &stream, bool ignoreAddr) {
for (int i = 0; i < ENVELOPE_SEGMENT_COUNT; i++) {
env[i].bp = intToFrac(stream.readByte());
env[i].inc = intToFrac(stream.readUint16LE()) >> 8;
}
seg = stream.readByte();
/*priority =*/ stream.readByte(); // Not needed. 32 in all tested data.
bend = stream.readByte();
vibDepth = stream.readByte();
vibSpeed = stream.readByte();
stream.readByte(); // Not needed? 0 in all tested data.
waveCount[0] = stream.readByte();
waveCount[1] = stream.readByte();
for (int i = 0; i < 2; i++)
for (int k = 0; k < waveCount[i]; k++) {
wave[i][k].key = stream.readByte();
wave[i][k].offset = stream.readByte() << 8;
wave[i][k].size = 0x100 << (stream.readByte() & 7);
uint8 b = stream.readByte();
wave[i][k].tune = stream.readUint16LE();
// For sample resources we ignore the address.
if (ignoreAddr)
wave[i][k].offset = 0;
// Check for samples that extend out of the wavetable.
if (wave[i][k].offset + wave[i][k].size >= SIERRASTANDARD_SIZE) {
warning("Invalid data detected in the instrument set of Apple IIGS AGI. Continuing anyway...");
wave[i][k].size = SIERRASTANDARD_SIZE - wave[i][k].offset;
}
// Parse the generator mode byte to separate fields.
wave[i][k].halt = b & 0x1; // Bit 0 = HALT
wave[i][k].loop = !(b & 0x2); // Bit 1 =!LOOP
wave[i][k].swap = (b & 0x6) == 0x6; // Bit 1&2 = SWAP
wave[k][k].chn = (b >> 4) > 0; // Output channel (left or right)
}
return !(stream.eos() || stream.err());
}
bool IIgsInstrumentHeader::finalize(int8 *wavetable) {
// Calculate final pointers to sample data and detect true sample size
// in case the sample ends prematurely.
for (int i = 0; i < 2; i++)
for (int k = 0; k < waveCount[i]; k++) {
base = wavetable;
int8 *p = base + wave[i][k].offset;
uint trueSize;
for (trueSize = 0; trueSize < wave[i][k].size; trueSize++)
if (p[trueSize] == -ZERO_OFFSET)
break;
wave[i][k].size = trueSize;
}
return true;
}
bool IIgsSampleHeader::read(Common::SeekableReadStream &stream) {
type = stream.readUint16LE();
pitch = stream.readByte();
unknownByte_Ofs3 = stream.readByte();
volume = stream.readByte();
unknownByte_Ofs5 = stream.readByte();
instrumentSize = stream.readUint16LE();
sampleSize = stream.readUint16LE();
// Read the instrument header *ignoring* its wave address info
return instrument.read(stream, true);
}
bool IIgsSampleHeader::finalize(int8 *sample) {
return instrument.finalize(sample);
}
//###
//### LOADER METHODS
//###
bool SoundGen2GS::loadInstruments() {
// Get info on the particular Apple IIGS AGI game's executable
const IIgsExeInfo *exeInfo = getIIgsExeInfo((enum AgiGameID)_vm->getGameID());
if (exeInfo == NULL) {
warning("Unsupported Apple IIGS game, not loading instruments");
return false;
}
// Find the executable file and the wavetable file
Common::ArchiveMemberList exeNames, waveNames;
SearchMan.listMatchingMembers(exeNames, "*.SYS16");
SearchMan.listMatchingMembers(exeNames, "*.SYS");
SearchMan.listMatchingMembers(waveNames, "SIERRASTANDARD");
SearchMan.listMatchingMembers(waveNames, "SIERRAST");
if (exeNames.empty()) {
warning("Couldn't find Apple IIGS game executable (*.SYS16 or *.SYS), not loading instruments");
return false;
}
if (waveNames.empty()) {
warning("Couldn't find Apple IIGS wave file (SIERRASTANDARD or SIERRAST), not loading instruments");
return false;
}
Common::String exeName = exeNames.front()->getName();
Common::String waveName = waveNames.front()->getName();
// Set the MIDI program change to instrument number mapping and
// load the instrument headers and their sample data.
setProgramChangeMapping(exeInfo->instSet->progToInst);
return loadWaveFile(waveName, *exeInfo) && loadInstrumentHeaders(exeName, *exeInfo);
}
/** Older Apple IIGS AGI MIDI program change to instrument number mapping. */
static const IIgsMidiProgramMapping progToInstMappingV1 = {
{19, 20, 22, 23, 21, 24, 5, 5, 5, 5,
6, 7, 10, 9, 11, 9, 15, 8, 5, 5,
17, 16, 18, 12, 14, 5, 5, 5, 5, 5,
0, 1, 2, 9, 3, 4, 15, 2, 2, 2,
25, 13, 13, 25},
5
};
/** Newer Apple IIGS AGI MIDI program change to instrument number mapping.
FIXME: Some instrument choices sound wrong. */
static const IIgsMidiProgramMapping progToInstMappingV2 = {
{21, 22, 24, 25, 23, 26, 6, 6, 6, 6,
7, 9, 12, 8, 13, 11, 17, 10, 6, 6,
19, 18, 20, 14, 16, 6, 6, 6, 6, 6,
0, 1, 2, 4, 3, 5, 17, 2, 2, 2,
27, 15, 15, 27},
6
};
// Older Apple IIGS AGI instrument set. Used only by Space Quest I (AGI v1.002).
//
// Instrument 0 uses vibrato.
// Instrument 1 uses vibrato.
// Instrument 3 uses vibrato.
// Instrument 5 has swap mode enabled for the first oscillator.
// Instruemnt 9 uses vibrato.
// Instrument 10 uses vibrato.
// Instrument 12 uses vibrato.
// Instrument 15 uses vibrato.
// Instrument 16 uses vibrato.
// Instrument 18 uses vibrato.
static const IIgsInstrumentSetInfo instSetV1 = {
1192, 26, "7ee16bbc135171ffd6b9120cc7ff1af2", "edd3bf8905d9c238e02832b732fb2e18", &progToInstMappingV1
};
// Newer Apple IIGS AGI instrument set (AGI v1.003+). Used by all others than Space Quest I.
//
// Instrument 0 uses vibrato.
// Instrument 1 uses vibrato.
// Instrument 3 uses vibrato.
// Instrument 6 has swap mode enabled for the first oscillator.
// Instrument 11 uses vibrato.
// Instrument 12 uses vibrato.
// Instrument 14 uses vibrato.
// Instrument 17 uses vibrato.
// Instrument 18 uses vibrato.
// Instrument 20 uses vibrato.
//
// In KQ1 intro and in LSL intro one (and the same, or at least similar)
// instrument is using vibrato. In PQ intro there is also one instrument
// using vibrato.
static const IIgsInstrumentSetInfo instSetV2 = {
1292, 28, "b7d428955bb90721996de1cbca25e768", "c05fb0b0e11deefab58bc68fbd2a3d07", &progToInstMappingV2
};
/** Information about different Apple IIGS AGI executables. */
static const IIgsExeInfo IIgsExeInfos[] = {
{GID_SQ1, "SQ", 0x1002, 138496, 0x80AD, &instSetV1},
{GID_LSL1, "LL", 0x1003, 141003, 0x844E, &instSetV2},
{GID_AGIDEMO, "DEMO", 0x1005, 141884, 0x8469, &instSetV2},
{GID_KQ1, "KQ", 0x1006, 141894, 0x8469, &instSetV2},
{GID_PQ1, "PQ", 0x1007, 141882, 0x8469, &instSetV2},
{GID_MIXEDUP, "MG", 0x1013, 142552, 0x84B7, &instSetV2},
{GID_KQ2, "KQ2", 0x1013, 143775, 0x84B7, &instSetV2},
{GID_KQ3, "KQ3", 0x1014, 144312, 0x84B7, &instSetV2},
{GID_SQ2, "SQ2", 0x1014, 107882, 0x6563, &instSetV2},
{GID_MH1, "MH", 0x2004, 147678, 0x8979, &instSetV2},
{GID_KQ4, "KQ4", 0x2006, 147652, 0x8979, &instSetV2},
{GID_BC, "BC", 0x3001, 148192, 0x8979, &instSetV2},
{GID_GOLDRUSH, "GR", 0x3003, 148268, 0x8979, &instSetV2}
};
/**
* Finds information about an Apple IIGS AGI executable based on the game ID.
* @return A non-null IIgsExeInfo pointer if successful, otherwise NULL.
*/
const IIgsExeInfo *SoundGen2GS::getIIgsExeInfo(enum AgiGameID gameid) const {
for (int i = 0; i < ARRAYSIZE(IIgsExeInfos); i++)
if (IIgsExeInfos[i].gameid == gameid)
return &IIgsExeInfos[i];
return NULL;
}
bool SoundGen2GS::loadInstrumentHeaders(Common::String &exePath, const IIgsExeInfo &exeInfo) {
Common::File file;
// Open the executable file and check that it has correct size
file.open(exePath);
if (file.size() != (int32)exeInfo.exeSize) {
debugC(3, kDebugLevelSound, "Apple IIGS executable (%s) has wrong size (Is %d, should be %d)",
exePath.c_str(), file.size(), exeInfo.exeSize);
}
// Read the whole executable file into memory
// CHECKME: Why do we read the file into memory first? It does not seem to be
// kept outside of this function. Is the processing of the data too slow
// otherwise?
Common::ScopedPtr<Common::SeekableReadStream> data(file.readStream(file.size()));
file.close();
// Check that we got enough data to be able to parse the instruments
if (!data || data->size() < (int32)(exeInfo.instSetStart + exeInfo.instSet->byteCount)) {
warning("Error loading instruments from Apple IIGS executable (%s)", exePath.c_str());
return false;
}
// Check instrument set's length (The info's saved in the executable)
data->seek(exeInfo.instSetStart - 4);
uint16 instSetByteCount = data->readUint16LE();
if (instSetByteCount != exeInfo.instSet->byteCount) {
debugC(3, kDebugLevelSound, "Wrong instrument set size (Is %d, should be %d) in Apple IIGS executable (%s)",
instSetByteCount, exeInfo.instSet->byteCount, exePath.c_str());
}
// Check instrument set's md5sum
data->seek(exeInfo.instSetStart);
Common::String md5str = Common::computeStreamMD5AsString(*data, exeInfo.instSet->byteCount);
if (md5str != exeInfo.instSet->md5) {
warning("Unknown Apple IIGS instrument set (md5: %s) in %s, trying to use it nonetheless",
md5str.c_str(), exePath.c_str());
}
// Read in the instrument set one instrument at a time
data->seek(exeInfo.instSetStart);
_instruments.clear();
_instruments.reserve(exeInfo.instSet->instCount);
IIgsInstrumentHeader instrument;
for (uint i = 0; i < exeInfo.instSet->instCount; i++) {
if (!instrument.read(*data)) {
warning("Error loading Apple IIGS instrument (%d. of %d) from %s, not loading more instruments",
i + 1, exeInfo.instSet->instCount, exePath.c_str());
break;
}
instrument.finalize(_wavetable);
_instruments.push_back(instrument);
}
// Loading was successful only if all instruments were loaded successfully
return (_instruments.size() == exeInfo.instSet->instCount);
}
bool SoundGen2GS::loadWaveFile(Common::String &wavePath, const IIgsExeInfo &exeInfo) {
Common::File file;
// Open the wave file and read it into memory
// CHECKME: Why do we read the file into memory first? It does not seem to be
// kept outside of this function. Is the processing of the data too slow
// otherwise?
file.open(wavePath);
Common::ScopedPtr<Common::SeekableReadStream> uint8Wave(file.readStream(file.size()));
file.close();
// Check that we got the whole wave file
if (!uint8Wave || (uint8Wave->size() != SIERRASTANDARD_SIZE)) {
warning("Error loading Apple IIGS wave file (%s), not loading instruments", wavePath.c_str());
return false;
}
// Check wave file's md5sum
Common::String md5str = Common::computeStreamMD5AsString(*uint8Wave, SIERRASTANDARD_SIZE);
if (md5str != exeInfo.instSet->waveFileMd5) {
warning("Unknown Apple IIGS wave file (md5: %s, game: %s).\n" \
"Please report the information on the previous line to the ScummVM team.\n" \
"Using the wave file as it is - music may sound weird", md5str.c_str(), exeInfo.exePrefix);
}
// Convert the wave file to 8-bit signed and save the result
uint8Wave->seek(0);
return convertWave(*uint8Wave, _wavetable, SIERRASTANDARD_SIZE);
}
} // End of namespace Agi