scummvm/graphics/dxa_player.cpp
2007-11-01 06:00:16 +00:00

594 lines
12 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/endian.h"
#include "graphics/dxa_player.h"
#include "common/util.h"
#ifdef USE_ZLIB
#include <zlib.h>
#endif
namespace Graphics {
DXAPlayer::DXAPlayer() {
_fd = 0;
_frameBuffer1 = 0;
_frameBuffer2 = 0;
_scaledBuffer = 0;
_drawBuffer = 0;
_inBuffer = 0;
_inBufferSize = 0;
_decompBuffer = 0;
_decompBufferSize = 0;
_width = 0;
_height = 0;
_frameSize = 0;
_framesCount = 0;
_frameNum = 0;
_framesPerSec = 0;
_frameSkipped = 0;
_frameTicks = 0;
_scaleMode = S_NONE;
}
DXAPlayer::~DXAPlayer() {
}
int DXAPlayer::getWidth() {
if (!_fd)
return 0;
return _width;
}
int DXAPlayer::getHeight() {
if (!_fd)
return 0;
return _height;
}
int DXAPlayer::getCurFrame() {
if (!_fd)
return -1;
return _frameNum;
}
int DXAPlayer::getFrameCount() {
if (!_fd)
return 0;
return _framesCount;
}
bool DXAPlayer::loadFile(const char *filename) {
uint32 tag;
int32 frameRate;
Common::File *file = new Common::File();
if (!file->open(filename)) {
return 0;
}
_fd = file;
tag = _fd->readUint32BE();
assert(tag == MKID_BE('DEXA'));
uint8 flags = _fd->readByte();
_framesCount = _fd->readUint16BE();
frameRate = _fd->readUint32BE();
if (frameRate > 0)
_framesPerSec = 1000 / frameRate;
else if (frameRate < 0)
_framesPerSec = 100000 / (-frameRate);
else
_framesPerSec = 10;
if (frameRate < 0)
_frameTicks = -frameRate / 100;
else
_frameTicks = frameRate;
_width = _fd->readUint16BE();
_height = _fd->readUint16BE();
if (flags & 0x80) {
_scaleMode = S_INTERLACED;
_curHeight = _height / 2;
} else if (flags & 0x40) {
_scaleMode = S_DOUBLE;
_curHeight = _height / 2;
} else {
_scaleMode = S_NONE;
_curHeight = _height;
}
debug(2, "flags 0x0%x framesCount %d width %d height %d rate %d ticks %d", flags, _framesCount, _width, _height, _framesPerSec, _frameTicks);
_frameSize = _width * _height;
_decompBufferSize = _frameSize;
_frameBuffer1 = (uint8 *)malloc(_frameSize);
_frameBuffer2 = (uint8 *)malloc(_frameSize);
if (!_frameBuffer1 || !_frameBuffer2)
error("DXAPlayer: Error allocating frame buffers (size %d)", _frameSize);
_scaledBuffer = 0;
if (_scaleMode != S_NONE) {
_scaledBuffer = (uint8 *)malloc(_frameSize);
if (!_scaledBuffer)
error("Error allocating scale buffer (size %d)", _frameSize);
}
#ifdef DXA_EXPERIMENT_MAXD
// Check for an extended header
if (flags & 1) {
uint32 size;
do {
tag = _fd->readUint32BE();
if (tag != 0) {
size = _fd->readUint32BE();
}
switch (tag) {
case 0: // No more tags
break;
case MKID_BE('MAXD'):
assert(size == 4);
_decompBufferSize = _fd->readUint32BE();
break;
default: // Unknown tag - skip it.
while (size > 0) {
byte dummy = _fd->readByte();
size--;
}
break;
}
} while (tag != 0);
}
#endif
_frameNum = 0;
_frameSkipped = 0;
return true;
}
void DXAPlayer::closeFile() {
if (!_fd)
return;
delete _fd;
free(_frameBuffer1);
free(_frameBuffer2);
free(_scaledBuffer);
free(_inBuffer);
free(_decompBuffer);
_fd = 0;
_inBuffer = 0;
_decompBuffer = 0;
}
void DXAPlayer::copyFrameToBuffer(byte *dst, uint x, uint y, uint pitch) {
uint h = _height;
uint w = _width;
byte *src = _drawBuffer;
dst += y * pitch + x;
do {
memcpy(dst, src, w);
dst += pitch;
src += _width;
} while (--h);
}
void DXAPlayer::decodeZlib(byte *data, int size, int totalSize) {
#ifdef USE_ZLIB
z_stream _d_stream;
_d_stream.zalloc = (alloc_func)0;
_d_stream.zfree = (free_func)0;
_d_stream.opaque = (voidpf)0;
_d_stream.next_in = _inBuffer;
_d_stream.avail_in = size;
_d_stream.total_in = size;
_d_stream.next_out = data;
_d_stream.avail_out = totalSize;
inflateInit(&_d_stream);
inflate(&_d_stream, Z_FINISH);
inflateEnd(&_d_stream);
#endif
}
#define BLOCKW 4
#define BLOCKH 4
void DXAPlayer::decode12(int size) {
#ifdef USE_ZLIB
if (_decompBuffer == NULL) {
_decompBuffer = (byte *)malloc(_decompBufferSize);
if (_decompBuffer == NULL)
error("Error allocating decomp buffer (size %d)", _decompBufferSize);
}
/* decompress the input data */
decodeZlib(_decompBuffer, size, _decompBufferSize);
byte *dat = _decompBuffer;
memcpy(_frameBuffer2, _frameBuffer1, _frameSize);
for (int by = 0; by < _height; by += BLOCKH) {
for (int bx = 0; bx < _width; bx += BLOCKW) {
byte type = *dat++;
byte *b2 = _frameBuffer1 + bx + by * _width;
switch (type) {
case 0:
break;
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
case 1: {
unsigned short diffMap;
if (type >= 10 && type <= 15) {
static const struct { uint8 sh1, sh2; } shiftTbl[6] = {
{0, 0}, {8, 0}, {8, 8}, {8, 4}, {4, 0}, {4, 4}
};
diffMap = ((*dat & 0xF0) << shiftTbl[type-10].sh1) |
((*dat & 0x0F) << shiftTbl[type-10].sh2);
dat++;
} else {
diffMap = *(unsigned short*)dat;
dat += 2;
}
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
if (diffMap & 0x8000) {
b2[xc] = *dat++;
}
diffMap <<= 1;
}
b2 += _width;
}
break;
}
case 2: {
byte color = *dat++;
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = color;
}
b2 += _width;
}
break;
}
case 3: {
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = *dat++;
}
b2 += _width;
}
break;
}
case 4: {
byte mbyte = *dat++;
int mx = (mbyte >> 4) & 0x07;
if (mbyte & 0x80)
mx = -mx;
int my = mbyte & 0x07;
if (mbyte & 0x08)
my = -my;
byte *b1 = _frameBuffer2 + (bx+mx) + (by+my) * _width;
for (int yc = 0; yc < BLOCKH; yc++) {
memcpy(b2, b1, BLOCKW);
b1 += _width;
b2 += _width;
}
break;
}
case 5:
break;
default:
error("decode12: Unknown type %d", type);
}
}
}
#endif
}
void DXAPlayer::decode13(int size) {
#ifdef USE_ZLIB
uint8 *codeBuf, *dataBuf, *motBuf, *maskBuf;
if (_decompBuffer == NULL) {
_decompBuffer = (byte *)malloc(_decompBufferSize);
if (_decompBuffer == NULL)
error("Error allocating decomp buffer (size %d)", _decompBufferSize);
}
/* decompress the input data */
decodeZlib(_decompBuffer, size, _decompBufferSize);
memcpy(_frameBuffer2, _frameBuffer1, _frameSize);
int codeSize = _width * _curHeight / 16;
int dataSize, motSize, maskSize;
dataSize = READ_BE_UINT32(&_decompBuffer[0]);
motSize = READ_BE_UINT32(&_decompBuffer[4]);
maskSize = READ_BE_UINT32(&_decompBuffer[8]);
codeBuf = &_decompBuffer[12];
dataBuf = &codeBuf[codeSize];
motBuf = &dataBuf[dataSize];
maskBuf = &motBuf[motSize];
for (int by = 0; by < _curHeight; by += BLOCKH) {
for (int bx = 0; bx < _width; bx += BLOCKW) {
uint8 type = *codeBuf++;
uint8 *b2 = (uint8*)_frameBuffer1 + bx + by * _width;
switch (type) {
case 0:
break;
case 1: {
uint16 diffMap = READ_BE_UINT16(maskBuf);
maskBuf += 2;
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
if (diffMap & 0x8000) {
b2[xc] = *dataBuf++;
}
diffMap <<= 1;
}
b2 += _width;
}
break;
}
case 2: {
uint8 color = *dataBuf++;
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = color;
}
b2 += _width;
}
break;
}
case 3: {
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = *dataBuf++;
}
b2 += _width;
}
break;
}
case 4: {
uint8 mbyte = *motBuf++;
int mx = (mbyte >> 4) & 0x07;
if (mbyte & 0x80)
mx = -mx;
int my = mbyte & 0x07;
if (mbyte & 0x08)
my = -my;
uint8 *b1 = (uint8*)_frameBuffer2 + (bx+mx) + (by+my) * _width;
for (int yc = 0; yc < BLOCKH; yc++) {
memcpy(b2, b1, BLOCKW);
b1 += _width;
b2 += _width;
}
break;
}
case 8: {
static const int subX[4] = {0, 2, 0, 2};
static const int subY[4] = {0, 0, 2, 2};
uint8 subMask = *maskBuf++;
for (int subBlock = 0; subBlock < 4; subBlock++) {
int sx = bx + subX[subBlock], sy = by + subY[subBlock];
b2 = (uint8*)_frameBuffer1 + sx + sy * _width;
switch (subMask & 0xC0) {
// 00: skip
case 0x00:
break;
// 01: solid color
case 0x40: {
uint8 subColor = *dataBuf++;
for (int yc = 0; yc < BLOCKH / 2; yc++) {
for (int xc = 0; xc < BLOCKW / 2; xc++) {
b2[xc] = subColor;
}
b2 += _width;
}
break;
}
// 02: motion vector
case 0x80: {
uint8 mbyte = *motBuf++;
int mx = (mbyte >> 4) & 0x07;
if (mbyte & 0x80)
mx = -mx;
int my = mbyte & 0x07;
if (mbyte & 0x08)
my = -my;
uint8 *b1 = (uint8*)_frameBuffer2 + (sx+mx) + (sy+my) * _width;
for (int yc = 0; yc < BLOCKH / 2; yc++) {
memcpy(b2, b1, BLOCKW / 2);
b1 += _width;
b2 += _width;
}
break;
}
// 03: raw
case 0xC0:
for (int yc = 0; yc < BLOCKH / 2; yc++) {
for (int xc = 0; xc < BLOCKW / 2; xc++) {
b2[xc] = *dataBuf++;
}
b2 += _width;
}
break;
}
subMask <<= 2;
}
break;
}
case 32:
case 33:
case 34: {
int count = type - 30;
uint8 pixels[4];
memcpy(pixels, dataBuf, count);
dataBuf += count;
if (count == 2) {
uint16 code = READ_BE_UINT16(maskBuf);
maskBuf += 2;
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = pixels[code & 1];
code >>= 1;
}
b2 += _width;
}
} else {
uint32 code = READ_BE_UINT32(maskBuf);
maskBuf += 4;
for (int yc = 0; yc < BLOCKH; yc++) {
for (int xc = 0; xc < BLOCKW; xc++) {
b2[xc] = pixels[code & 3];
code >>= 2;
}
b2 += _width;
}
}
break;
}
default:
error("decode13: Unknown type %d", type);
}
}
}
#endif
}
void DXAPlayer::decodeNextFrame() {
uint32 tag;
tag = _fd->readUint32BE();
if (tag == MKID_BE('CMAP')) {
byte rgb[768];
_fd->read(rgb, ARRAYSIZE(rgb));
setPalette(rgb);
}
tag = _fd->readUint32BE();
if (tag == MKID_BE('FRAM')) {
byte type = _fd->readByte();
uint32 size = _fd->readUint32BE();
if ((_inBuffer == NULL) || (_inBufferSize < size)) {
free(_inBuffer);
_inBuffer = (byte *)malloc(size);
if (_inBuffer == NULL)
error("Error allocating input buffer (size %d)", size);
_inBufferSize = size;
}
_fd->read(_inBuffer, size);
switch (type) {
case 2:
decodeZlib(_frameBuffer1, size, _frameSize);
break;
case 3:
decodeZlib(_frameBuffer2, size, _frameSize);
break;
case 12:
decode12(size);
break;
case 13:
decode13(size);
break;
default:
error("decodeFrame: Unknown compression type %d", type);
}
if (type == 3) {
for (int j = 0; j < _curHeight; ++j) {
for (int i = 0; i < _width; ++i) {
const int offs = j * _width + i;
_frameBuffer1[offs] ^= _frameBuffer2[offs];
}
}
}
}
switch (_scaleMode) {
case S_INTERLACED:
for (int cy = 0; cy < _curHeight; cy++) {
memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width);
memset(&_scaledBuffer[((2 * cy) + 1) * _width], 0, _width);
}
_drawBuffer = _scaledBuffer;
break;
case S_DOUBLE:
for (int cy = 0; cy < _curHeight; cy++) {
memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width);
memcpy(&_scaledBuffer[((2 * cy) + 1) * _width], &_frameBuffer1[cy * _width], _width);
}
_drawBuffer = _scaledBuffer;
break;
case S_NONE:
_drawBuffer = _frameBuffer1;
break;
}
}
} // End of namespace Graphics