scummvm/engines/zvision/rlf_animation.cpp
2013-10-04 14:13:21 -05:00

332 lines
10 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "zvision/rlf_animation.h"
#include "common/str.h"
#include "common/file.h"
#include "common/textconsole.h"
#include "common/debug.h"
#include "common/endian.h"
#include "graphics/colormasks.h"
namespace ZVision {
RlfAnimation::RlfAnimation(const Common::String &fileName, bool stream)
: _stream(stream),
_lastFrameRead(0),
_frameCount(0),
_width(0),
_height(0),
_frameTime(0),
_frames(0),
_currentFrame(-1),
_frameBufferByteSize(0) {
if (!_file.open(fileName)) {
warning("RLF animation file %s could not be opened", fileName.c_str());
return;
}
if (!readHeader()) {
warning("%s is not a RLF animation file. Wrong magic number", fileName.c_str());
return;
}
_currentFrameBuffer.create(_width, _height, Graphics::createPixelFormat<565>());
_frameBufferByteSize = _width * _height * sizeof(uint16);
if (!stream) {
_frames = new Frame[_frameCount];
// Read in each frame
for (uint i = 0; i < _frameCount; ++i) {
_frames[i] = readNextFrame();
}
}
}
RlfAnimation::~RlfAnimation() {
for (uint i = 0; i < _frameCount; ++i) {
delete[] _frames[i].encodedData;
}
delete[] _frames;
_currentFrameBuffer.free();
}
bool RlfAnimation::readHeader() {
if (_file.readUint32BE() != MKTAG('F', 'E', 'L', 'R')) {
return false;
}
// Read the header
_file.readUint32LE(); // Size1
_file.readUint32LE(); // Unknown1
_file.readUint32LE(); // Unknown2
_frameCount = _file.readUint32LE(); // Frame count
// Since we don't need any of the data, we can just seek right to the
// entries we need rather than read in all the individual entries.
_file.seek(136, SEEK_CUR);
//// Read CIN header
//_file.readUint32BE(); // Magic number FNIC
//_file.readUint32LE(); // Size2
//_file.readUint32LE(); // Unknown3
//_file.readUint32LE(); // Unknown4
//_file.readUint32LE(); // Unknown5
//_file.seek(0x18, SEEK_CUR); // VRLE
//_file.readUint32LE(); // LRVD
//_file.readUint32LE(); // Unknown6
//_file.seek(0x18, SEEK_CUR); // HRLE
//_file.readUint32LE(); // ELHD
//_file.readUint32LE(); // Unknown7
//_file.seek(0x18, SEEK_CUR); // HKEY
//_file.readUint32LE(); // ELRH
//// Read MIN info header
//_file.readUint32BE(); // Magic number FNIM
//_file.readUint32LE(); // Size3
//_file.readUint32LE(); // OEDV
//_file.readUint32LE(); // Unknown8
//_file.readUint32LE(); // Unknown9
//_file.readUint32LE(); // Unknown10
_width = _file.readUint32LE(); // Width
_height = _file.readUint32LE(); // Height
// Read time header
_file.readUint32BE(); // Magic number EMIT
_file.readUint32LE(); // Size4
_file.readUint32LE(); // Unknown11
_frameTime = _file.readUint32LE() / 10; // Frame time in microseconds
return true;
}
RlfAnimation::Frame RlfAnimation::readNextFrame() {
RlfAnimation::Frame frame;
_file.readUint32BE(); // Magic number MARF
uint32 size = _file.readUint32LE(); // Size
_file.readUint32LE(); // Unknown1
_file.readUint32LE(); // Unknown2
uint32 type = _file.readUint32BE(); // Either ELHD or ELRH
uint32 headerSize = _file.readUint32LE(); // Offset from the beginning of this frame to the frame data. Should always be 28
_file.readUint32LE(); // Unknown3
frame.encodedSize = size - headerSize;
frame.encodedData = new int8[frame.encodedSize];
_file.read(frame.encodedData, frame.encodedSize);
if (type == MKTAG('E', 'L', 'H', 'D')) {
frame.type = Masked;
} else if (type == MKTAG('E', 'L', 'R', 'H')) {
frame.type = Simple;
_completeFrames.push_back(_lastFrameRead);
} else {
warning("Frame %u doesn't have type that can be decoded", _lastFrameRead);
}
_lastFrameRead++;
return frame;
}
void RlfAnimation::seekToFrame(int frameNumber) {
assert(!_stream);
assert(frameNumber < (int)_frameCount || frameNumber >= -1);
if (frameNumber == -1) {
_currentFrame = -1;
return;
}
int closestFrame = _currentFrame;
int distance = (int)frameNumber - _currentFrame;
for (uint i = 0; i < _completeFrames.size(); ++i) {
int newDistance = (int)frameNumber - (int)(_completeFrames[i]);
if (newDistance > 0 && (closestFrame == -1 || newDistance < distance)) {
closestFrame = _completeFrames[i];
distance = newDistance;
}
}
for (int i = closestFrame; i <= frameNumber; ++i) {
applyFrameToCurrent(i);
}
_currentFrame = frameNumber;
}
const Graphics::Surface *RlfAnimation::getFrameData(uint frameNumber) {
assert(!_stream);
assert(frameNumber < _frameCount);
// Since this method is so expensive, first check to see if we can use
// getNextFrame() it's cheap.
if ((int)frameNumber == _currentFrame) {
return &_currentFrameBuffer;
} else if (_currentFrame + 1 == (int)frameNumber) {
return getNextFrame();
}
seekToFrame(frameNumber);
return &_currentFrameBuffer;
}
const Graphics::Surface *RlfAnimation::getNextFrame() {
assert(_currentFrame + 1 < (int)_frameCount);
if (_stream) {
applyFrameToCurrent(readNextFrame());
} else {
applyFrameToCurrent(_currentFrame + 1);
}
_currentFrame++;
return &_currentFrameBuffer;
}
void RlfAnimation::applyFrameToCurrent(uint frameNumber) {
if (_frames[frameNumber].type == Masked) {
decodeMaskedRunLengthEncoding(_frames[frameNumber].encodedData, (int8 *)_currentFrameBuffer.getPixels(), _frames[frameNumber].encodedSize, _frameBufferByteSize);
} else if (_frames[frameNumber].type == Simple) {
decodeSimpleRunLengthEncoding(_frames[frameNumber].encodedData, (int8 *)_currentFrameBuffer.getPixels(), _frames[frameNumber].encodedSize, _frameBufferByteSize);
}
}
void RlfAnimation::applyFrameToCurrent(const RlfAnimation::Frame &frame) {
if (frame.type == Masked) {
decodeMaskedRunLengthEncoding(frame.encodedData, (int8 *)_currentFrameBuffer.getPixels(), frame.encodedSize, _frameBufferByteSize);
} else if (frame.type == Simple) {
decodeSimpleRunLengthEncoding(frame.encodedData, (int8 *)_currentFrameBuffer.getPixels(), frame.encodedSize, _frameBufferByteSize);
}
}
void RlfAnimation::decodeMaskedRunLengthEncoding(int8 *source, int8 *dest, uint32 sourceSize, uint32 destSize) const {
uint32 sourceOffset = 0;
uint32 destOffset = 0;
while (sourceOffset < sourceSize) {
int8 numberOfSamples = source[sourceOffset];
sourceOffset++;
// If numberOfSamples is negative, the next abs(numberOfSamples) samples should
// be copied directly from source to dest
if (numberOfSamples < 0) {
numberOfSamples = ABS(numberOfSamples);
while (numberOfSamples > 0) {
if (sourceOffset + 1 >= sourceSize) {
return;
} else if (destOffset + 1 >= destSize) {
debug(2, "Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize);
return;
}
byte r, g, b;
Graphics::colorToRGB<Graphics::ColorMasks<555> >(READ_LE_UINT16(source + sourceOffset), r, g, b);
uint16 destColor = Graphics::RGBToColor<Graphics::ColorMasks<565> >(r, g, b);
WRITE_UINT16(dest + destOffset, destColor);
sourceOffset += 2;
destOffset += 2;
numberOfSamples--;
}
// If numberOfSamples is >= 0, move destOffset forward ((numberOfSamples * 2) + 2)
// This function assumes the dest buffer has been memset with 0's.
} else {
if (sourceOffset + 1 >= sourceSize) {
return;
} else if (destOffset + 1 >= destSize) {
debug(2, "Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize);
return;
}
destOffset += (numberOfSamples * 2) + 2;
}
}
}
void RlfAnimation::decodeSimpleRunLengthEncoding(int8 *source, int8 *dest, uint32 sourceSize, uint32 destSize) const {
uint32 sourceOffset = 0;
uint32 destOffset = 0;
while (sourceOffset < sourceSize) {
int8 numberOfSamples = source[sourceOffset];
sourceOffset++;
// If numberOfSamples is negative, the next abs(numberOfSamples) samples should
// be copied directly from source to dest
if (numberOfSamples < 0) {
numberOfSamples = ABS(numberOfSamples);
while (numberOfSamples > 0) {
if (sourceOffset + 1 >= sourceSize) {
return;
} else if (destOffset + 1 >= destSize) {
debug(2, "Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize);
return;
}
byte r, g, b;
Graphics::colorToRGB<Graphics::ColorMasks<555> >(READ_LE_UINT16(source + sourceOffset), r, g, b);
uint16 destColor = Graphics::RGBToColor<Graphics::ColorMasks<565> >(r, g, b);
WRITE_UINT16(dest + destOffset, destColor);
sourceOffset += 2;
destOffset += 2;
numberOfSamples--;
}
// If numberOfSamples is >= 0, copy one sample from source to the
// next (numberOfSamples + 2) dest spots
} else {
if (sourceOffset + 1 >= sourceSize) {
return;
}
byte r, g, b;
Graphics::colorToRGB<Graphics::ColorMasks<555> >(READ_LE_UINT16(source + sourceOffset), r, g, b);
uint16 sampleColor = Graphics::RGBToColor<Graphics::ColorMasks<565> >(r, g, b);
sourceOffset += 2;
numberOfSamples += 2;
while (numberOfSamples > 0) {
if (destOffset + 1 >= destSize) {
debug(2, "Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize);
return;
}
WRITE_UINT16(dest + destOffset, sampleColor);
destOffset += 2;
numberOfSamples--;
}
}
}
}
} // End of namespace ZVision