scummvm/math/matrix4.h
2021-04-15 21:20:36 +02:00

251 lines
6.8 KiB
C++

/* ResidualVM - A 3D game interpreter
*
* ResidualVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef MATH_MATRIX4_H
#define MATH_MATRIX4_H
#include "math/rotation3d.h"
#include "math/squarematrix.h"
#include "math/vector3d.h"
#include "math/vector4d.h"
#include "math/matrix3.h"
namespace Math {
// matrix 4 is a rotation matrix + position
template<>
class Matrix<4, 4> : public MatrixType<4, 4>, public Rotation3D<Matrix<4, 4> > {
public:
Matrix();
Matrix(const MatrixBase<4, 4> &m);
Matrix(const Angle &first, const Angle &second, const Angle &third, EulerOrder order) { buildFromEuler(first, second, third, order); }
void transform(Vector3d *v, bool translate) const;
void inverseTranslate(Vector3d *v) const;
void inverseRotate(Vector3d *v) const;
Vector3d getPosition() const;
void setPosition(const Vector3d &v);
Matrix3 getRotation() const;
void setRotation(const Matrix3 &m);
void translate(const Vector3d &v);
/**
* Builds a matrix that maps the given local space forward direction vector to point towards the given
* target direction, and the given local up direction towards the given target world up direction.
*
* @param modelForward The forward direction in the local space of the object.
* @param targetDirection The desired world space direction the object should look at.
* @param modelUp The up direction in the local space of the object. This vector must be
* perpendicular to the vector localForward.
* @param worldUp The global up direction of the scene in world space. The worldUp and targetDirection
* vectors cannot be collinear, but they do not need to be perpendicular either.
* All the parameters MUST be normalized.
*/
void buildFromTargetDir(const Math::Vector3d &modelForward, const Math::Vector3d &targetDirection,
const Math::Vector3d &modelUp, const Math::Vector3d &worldUp);
/**
* Inverts a matrix in place.
* This function avoid having to do generic Gaussian elimination on the matrix
* by assuming that the top-left 3x3 part of the matrix is orthonormal
* (columns and rows 0, 1 and 2 orthogonal and unit length).
* See e.g. Eric Lengyel's Mathematics for 3D Game Programming and Computer Graphics, p. 82.
*/
void invertAffineOrthonormal();
void transpose();
inline Matrix<4, 4> operator*(const Matrix<4, 4> &m2) const {
Matrix<4, 4> result;
const float *d1 = getData();
const float *d2 = m2.getData();
float *r = result.getData();
for (int i = 0; i < 16; i += 4) {
for (int j = 0; j < 4; ++j) {
r[i + j] = (d1[i + 0] * d2[j + 0])
+ (d1[i + 1] * d2[j + 4])
+ (d1[i + 2] * d2[j + 8])
+ (d1[i + 3] * d2[j + 12]);
}
}
return result;
}
inline Vector4d transform(const Vector4d &v) const {
Vector4d result;
const float *d1 = getData();
const float *d2 = v.getData();
float *r = result.getData();
for (int i = 0; i < 4; i++) {
r[i] = d2[0] * d1[0 * 4 + i] +
d2[1] * d1[1 * 4 + i] +
d2[2] * d1[2 * 4 + i] +
d2[3] * d1[3 * 4 + i];
}
return result;
}
inline bool inverse() {
Matrix<4, 4> invMatrix;
float *inv = invMatrix.getData();
float *m = getData();
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
float det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0)
return false;
det = 1.0 / det;
for (int i = 0; i < 16; i++) {
m[i] = inv[i] * det;
}
return true;
}
};
typedef Matrix<4, 4> Matrix4;
} // end of namespace Math
#endif