md5 72f65b3946 SCI: Renamed SCI_VERSION_1_EGA to SCI_VERSION_1_EGA_ONLY
This renaming allows us to better distinguish that this version is for games
that only had an EGA version, and avoid confusion with newer SCI1 game releases
with EGA graphics (e.g. KQ5 EGA). The only game with this SCI version is QFG2,
a SCI1 EGA game with a parser. Also, added some games for each SCI version.
2011-02-27 16:48:53 +02:00

813 lines
28 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/sci.h"
#include "sci/util.h"
#include "sci/engine/state.h"
#include "sci/graphics/screen.h"
#include "sci/graphics/palette.h"
#include "sci/graphics/coordadjuster.h"
#include "sci/graphics/view.h"
namespace Sci {
GfxView::GfxView(ResourceManager *resMan, GfxScreen *screen, GfxPalette *palette, GuiResourceId resourceId)
: _resMan(resMan), _screen(screen), _palette(palette), _resourceId(resourceId) {
assert(resourceId != -1);
_coordAdjuster = g_sci->_gfxCoordAdjuster;
initData(resourceId);
}
GfxView::~GfxView() {
// Iterate through the loops
for (uint16 loopNum = 0; loopNum < _loopCount; loopNum++) {
// and through the cells of each loop
for (uint16 celNum = 0; celNum < _loop[loopNum].celCount; celNum++) {
delete[] _loop[loopNum].cel[celNum].rawBitmap;
}
delete[] _loop[loopNum].cel;
}
delete[] _loop;
_resMan->unlockResource(_resource);
}
static const byte EGAmappingStraight[SCI_VIEW_EGAMAPPING_SIZE] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
void GfxView::initData(GuiResourceId resourceId) {
_resource = _resMan->findResource(ResourceId(kResourceTypeView, resourceId), true);
if (!_resource) {
error("view resource %d not found", resourceId);
}
_resourceData = _resource->data;
_resourceSize = _resource->size;
byte *celData, *loopData;
uint16 celOffset;
CelInfo *cel;
uint16 celCount = 0;
uint16 mirrorBits = 0;
uint32 palOffset = 0;
uint16 headerSize = 0;
uint16 loopSize = 0, celSize = 0;
int loopNo, celNo, EGAmapNr;
byte seekEntry;
bool isEGA = false;
bool isCompressed = true;
ViewType curViewType = _resMan->getViewType();
_loopCount = 0;
_embeddedPal = false;
_EGAmapping = NULL;
_isSci2Hires = false;
_isScaleable = true;
// we adjust inside getCelRect for SCI0EARLY (that version didn't have the +1 when calculating bottom)
_adjustForSci0Early = getSciVersion() == SCI_VERSION_0_EARLY ? -1 : 0;
// If we find an SCI1/SCI1.1 view (not amiga), we switch to that type for
// EGA. This could get used to make view patches for EGA games, where the
// new views include more colors. Users could manually adjust old views to
// make them look better (like removing dithered colors that aren't caught
// by our undithering or even improve the graphics overall).
if (curViewType == kViewEga) {
if (_resourceData[1] == 0x80) {
curViewType = kViewVga;
} else {
if (READ_LE_UINT16(_resourceData + 4) == 1)
curViewType = kViewVga11;
}
}
switch (curViewType) {
case kViewEga: // View-format SCI0 (and Amiga 16 colors)
isEGA = true;
case kViewAmiga: // View-format Amiga (32 colors)
case kViewVga: // View-format SCI1
// LoopCount:WORD MirrorMask:WORD Version:WORD PaletteOffset:WORD LoopOffset0:WORD LoopOffset1:WORD...
_loopCount = _resourceData[0];
// bit 0x8000 of _resourceData[1] means palette is set
if (_resourceData[1] & 0x40)
isCompressed = false;
mirrorBits = READ_LE_UINT16(_resourceData + 2);
palOffset = READ_LE_UINT16(_resourceData + 6);
if (palOffset && palOffset != 0x100) {
// Some SCI0/SCI01 games also have an offset set. It seems that it
// points to a 16-byte mapping table but on those games using that
// mapping will actually screw things up. On the other side: VGA
// SCI1 games have this pointing to a VGA palette and EGA SCI1 games
// have this pointing to a 8x16 byte mapping table that needs to get
// applied then.
if (!isEGA) {
_palette->createFromData(&_resourceData[palOffset], _resourceSize - palOffset, &_viewPalette);
_embeddedPal = true;
} else {
// Only use the EGA-mapping, when being SCI1 EGA
// SCI1 VGA conversion games (which will get detected as SCI1EARLY/MIDDLE/LATE) have some views
// with broken mapping tables. I guess those games won't use the mapping, so I rather disable it
// for them
if (getSciVersion() == SCI_VERSION_1_EGA_ONLY) {
_EGAmapping = &_resourceData[palOffset];
for (EGAmapNr = 0; EGAmapNr < SCI_VIEW_EGAMAPPING_COUNT; EGAmapNr++) {
if (memcmp(_EGAmapping, EGAmappingStraight, SCI_VIEW_EGAMAPPING_SIZE) != 0)
break;
_EGAmapping += SCI_VIEW_EGAMAPPING_SIZE;
}
// If all mappings are "straight", then we actually ignore the mapping
if (EGAmapNr == SCI_VIEW_EGAMAPPING_COUNT)
_EGAmapping = NULL;
else
_EGAmapping = &_resourceData[palOffset];
}
}
}
_loop = new LoopInfo[_loopCount];
for (loopNo = 0; loopNo < _loopCount; loopNo++) {
loopData = _resourceData + READ_LE_UINT16(_resourceData + 8 + loopNo * 2);
// CelCount:WORD Unknown:WORD CelOffset0:WORD CelOffset1:WORD...
celCount = READ_LE_UINT16(loopData);
_loop[loopNo].celCount = celCount;
_loop[loopNo].mirrorFlag = mirrorBits & 1 ? true : false;
mirrorBits >>= 1;
// read cel info
_loop[loopNo].cel = new CelInfo[celCount];
for (celNo = 0; celNo < celCount; celNo++) {
celOffset = READ_LE_UINT16(loopData + 4 + celNo * 2);
celData = _resourceData + celOffset;
// For VGA
// Width:WORD Height:WORD DisplaceX:BYTE DisplaceY:BYTE ClearKey:BYTE Unknown:BYTE RLEData starts now directly
// For EGA
// Width:WORD Height:WORD DisplaceX:BYTE DisplaceY:BYTE ClearKey:BYTE EGAData starts now directly
cel = &_loop[loopNo].cel[celNo];
cel->scriptWidth = cel->width = READ_LE_UINT16(celData);
cel->scriptHeight = cel->height = READ_LE_UINT16(celData + 2);
cel->displaceX = (signed char)celData[4];
cel->displaceY = celData[5];
cel->clearKey = celData[6];
if (isEGA) {
cel->offsetEGA = celOffset + 7;
cel->offsetRLE = 0;
cel->offsetLiteral = 0;
} else {
cel->offsetEGA = 0;
if (isCompressed) {
cel->offsetRLE = celOffset + 8;
cel->offsetLiteral = 0;
} else {
cel->offsetRLE = 0;
cel->offsetLiteral = celOffset + 8;
}
}
cel->rawBitmap = 0;
if (_loop[loopNo].mirrorFlag)
cel->displaceX = -cel->displaceX;
}
}
break;
case kViewVga11: // View-format SCI1.1+
// HeaderSize:WORD LoopCount:BYTE Flags:BYTE Version:WORD Unknown:WORD PaletteOffset:WORD
headerSize = READ_SCI11ENDIAN_UINT16(_resourceData + 0) + 2; // headerSize is not part of the header, so it's added
assert(headerSize >= 16);
_loopCount = _resourceData[2];
assert(_loopCount);
_isSci2Hires = _resourceData[5] == 1 ? true : false;
palOffset = READ_SCI11ENDIAN_UINT32(_resourceData + 8);
// flags is actually a bit-mask
// it seems it was only used for some early sci1.1 games (or even just laura bow 2)
// later interpreters dont support it at all anymore
// we assume that if flags is 0h the view does not support flags and default to scaleable
// if it's 1h then we assume that the view is not to be scaled
// if it's 40h then we assume that the view is scaleable
switch (_resourceData[3]) {
case 1:
_isScaleable = false;
break;
case 0x40:
case 0:
break; // don't do anything, we already have _isScaleable set
default:
error("unsupported flags byte (%d) inside sci1.1 view", _resourceData[3]);
break;
}
loopData = _resourceData + headerSize;
loopSize = _resourceData[12];
assert(loopSize >= 16);
celSize = _resourceData[13];
assert(celSize >= 32);
if (palOffset) {
_palette->createFromData(&_resourceData[palOffset], _resourceSize - palOffset, &_viewPalette);
_embeddedPal = true;
}
_loop = new LoopInfo[_loopCount];
for (loopNo = 0; loopNo < _loopCount; loopNo++) {
loopData = _resourceData + headerSize + (loopNo * loopSize);
seekEntry = loopData[0];
if (seekEntry != 255) {
if (seekEntry >= _loopCount)
error("Bad loop-pointer in sci 1.1 view");
_loop[loopNo].mirrorFlag = true;
loopData = _resourceData + headerSize + (seekEntry * loopSize);
} else {
_loop[loopNo].mirrorFlag = false;
}
celCount = loopData[2];
_loop[loopNo].celCount = celCount;
celData = _resourceData + READ_SCI11ENDIAN_UINT32(loopData + 12);
// read cel info
_loop[loopNo].cel = new CelInfo[celCount];
for (celNo = 0; celNo < celCount; celNo++) {
cel = &_loop[loopNo].cel[celNo];
cel->scriptWidth = cel->width = READ_SCI11ENDIAN_UINT16(celData);
cel->scriptHeight = cel->height = READ_SCI11ENDIAN_UINT16(celData + 2);
cel->displaceX = READ_SCI11ENDIAN_UINT16(celData + 4);
cel->displaceY = READ_SCI11ENDIAN_UINT16(celData + 6);
if (cel->displaceY < 0)
cel->displaceY += 255; // sierra did this adjust in their sci1.1 getCelRect() - not sure about sci32
assert(cel->width && cel->height);
cel->clearKey = celData[8];
cel->offsetEGA = 0;
cel->offsetRLE = READ_SCI11ENDIAN_UINT32(celData + 24);
cel->offsetLiteral = READ_SCI11ENDIAN_UINT32(celData + 28);
// GK1-hires content is actually uncompressed, we need to swap both so that we process it as such
if ((cel->offsetRLE) && (!cel->offsetLiteral))
SWAP(cel->offsetRLE, cel->offsetLiteral);
cel->rawBitmap = 0;
if (_loop[loopNo].mirrorFlag)
cel->displaceX = -cel->displaceX;
celData += celSize;
}
}
#ifdef ENABLE_SCI32
// adjust width/height returned to scripts
if (_isSci2Hires) {
for (loopNo = 0; loopNo < _loopCount; loopNo++)
for (celNo = 0; celNo < _loop[loopNo].celCount; celNo++)
_screen->adjustBackUpscaledCoordinates(_loop[loopNo].cel[celNo].scriptWidth, _loop[loopNo].cel[celNo].scriptHeight);
} else if (getSciVersion() == SCI_VERSION_2_1) {
for (loopNo = 0; loopNo < _loopCount; loopNo++)
for (celNo = 0; celNo < _loop[loopNo].celCount; celNo++)
_coordAdjuster->fromDisplayToScript(_loop[loopNo].cel[celNo].scriptHeight, _loop[loopNo].cel[celNo].scriptWidth);
}
#endif
break;
default:
error("ViewType was not detected, can't continue");
}
}
GuiResourceId GfxView::getResourceId() const {
return _resourceId;
}
int16 GfxView::getWidth(int16 loopNo, int16 celNo) const {
return _loopCount ? getCelInfo(loopNo, celNo)->width : 0;
}
int16 GfxView::getHeight(int16 loopNo, int16 celNo) const {
return _loopCount ? getCelInfo(loopNo, celNo)->height : 0;
}
const CelInfo *GfxView::getCelInfo(int16 loopNo, int16 celNo) const {
assert(_loopCount);
// WORKAROUND for the EGA version of SQ1: View 506 is the portrait of the
// skimmer buyer in room 41 in SQ1. Loop 0 is his face looking left (shown
// the first time Roger arrives in Ulence Flats) and loop 1 is his face
// looking right (shown the second time he appears, when he makes the
// second offer for the skimmer). In the VGA version, the first two loops
// have 2 cels, a valid one (cel 0) and an invalid one (cel 1). In the EGA
// version, the cels in these two loops have been swapped. The game scripts,
// however seem to get confused by this situation, and when they check loop
// 1, cel 0 via kCelHigh and kCelWide regard it as invalid and never show
// it. We just swap the two cels here in the EGA version, making it behave
// like the VGA version, thus the game scripts show the correct loop. Fixes
// bug #3044500. Note that the same workaround is in getBitmap().
// TODO: Check if this issue happens in the original version.
if (g_sci->getGameId() == GID_SQ1 && !_resMan->isVGA() && _resourceId == 506) {
if ((loopNo == 0 || loopNo == 1) && celNo == 0)
celNo = 1;
}
loopNo = CLIP<int16>(loopNo, 0, _loopCount - 1);
celNo = CLIP<int16>(celNo, 0, _loop[loopNo].celCount - 1);
return &_loop[loopNo].cel[celNo];
}
uint16 GfxView::getCelCount(int16 loopNo) const {
assert(_loopCount);
loopNo = CLIP<int16>(loopNo, 0, _loopCount - 1);
return _loop[loopNo].celCount;
}
Palette *GfxView::getPalette() {
return _embeddedPal ? &_viewPalette : NULL;
}
bool GfxView::isSci2Hires() {
return _isSci2Hires;
}
bool GfxView::isScaleable() {
return _isScaleable;
}
void GfxView::getCelRect(int16 loopNo, int16 celNo, int16 x, int16 y, int16 z, Common::Rect &outRect) const {
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
outRect.left = x + celInfo->displaceX - (celInfo->width >> 1);
outRect.right = outRect.left + celInfo->width;
outRect.bottom = y + celInfo->displaceY - z + 1 + _adjustForSci0Early;
outRect.top = outRect.bottom - celInfo->height;
}
void GfxView::getCelSpecialHoyle4Rect(int16 loopNo, int16 celNo, int16 x, int16 y, int16 z, Common::Rect &outRect) const {
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
int16 adjustY = y + celInfo->displaceY - celInfo->height + 1;
int16 adjustX = x + celInfo->displaceX - ((celInfo->width - 1) >> 1);
outRect.translate(adjustX, adjustY);
}
void GfxView::getCelScaledRect(int16 loopNo, int16 celNo, int16 x, int16 y, int16 z, int16 scaleX, int16 scaleY, Common::Rect &outRect) const {
int16 scaledDisplaceX, scaledDisplaceY;
int16 scaledWidth, scaledHeight;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
// Scaling displaceX/Y, Width/Height
scaledDisplaceX = (celInfo->displaceX * scaleX) >> 7;
scaledDisplaceY = (celInfo->displaceY * scaleY) >> 7;
scaledWidth = (celInfo->width * scaleX) >> 7;
scaledHeight = (celInfo->height * scaleY) >> 7;
scaledWidth = CLIP<int16>(scaledWidth, 0, _screen->getWidth());
scaledHeight = CLIP<int16>(scaledHeight, 0, _screen->getHeight());
outRect.left = x + scaledDisplaceX - (scaledWidth >> 1);
outRect.right = outRect.left + scaledWidth;
outRect.bottom = y + scaledDisplaceY - z + 1;
outRect.top = outRect.bottom - scaledHeight;
}
void GfxView::unpackCel(int16 loopNo, int16 celNo, byte *outPtr, uint32 pixelCount) {
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
byte *rlePtr;
byte *literalPtr;
uint32 pixelNo = 0, runLength;
byte pixel;
if (celInfo->offsetEGA) {
// decompression for EGA views
literalPtr = _resourceData + _loop[loopNo].cel[celNo].offsetEGA;
while (pixelNo < pixelCount) {
pixel = *literalPtr++;
runLength = pixel >> 4;
memset(outPtr + pixelNo, pixel & 0x0F, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
}
} else {
// We fill the buffer with transparent pixels, so that we can later skip
// over pixels to automatically have them transparent
// Also some RLE compressed cels are possibly ending with the last
// non-transparent pixel (is this even possible with the current code?)
byte clearColor = _loop[loopNo].cel[celNo].clearKey;
// Since Mac OS required palette index 0 to be white and 0xff to be black, the
// Mac SCI devs decided that rather than change scripts and various pieces of
// code, that they would just put a little snippet of code to swap these colors
// in various places around the SCI codebase. We figured that it would be less
// hacky to swap pixels instead and run the Mac games with a PC palette.
if (g_sci->getPlatform() == Common::kPlatformMacintosh && getSciVersion() >= SCI_VERSION_1_1) {
// clearColor is based on PC palette, but the literal data is not.
// We flip clearColor here to make it match the literal data. All
// these pixels will be flipped back again below.
if (clearColor == 0)
clearColor = 0xff;
else if (clearColor == 0xff)
clearColor = 0;
}
memset(outPtr, clearColor, pixelCount);
rlePtr = _resourceData + celInfo->offsetRLE;
if (!celInfo->offsetLiteral) { // no additional literal data
if (_resMan->isAmiga32color()) {
// decompression for amiga views
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
if (pixel & 0x07) { // fill with color
runLength = pixel & 0x07;
pixel = pixel >> 3;
while (runLength-- && pixelNo < pixelCount) {
outPtr[pixelNo++] = pixel;
}
} else { // fill with transparent
runLength = pixel >> 3;
pixelNo += runLength;
}
}
} else {
// decompression for data that has just one combined stream
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
runLength = pixel & 0x3F;
switch (pixel & 0xC0) {
case 0x40: // copy bytes as is (In copy case, runLength can go upto 127 i.e. pixel & 0x40)
runLength += 64;
case 0x00: // copy bytes as-is
while (runLength-- && pixelNo < pixelCount)
outPtr[pixelNo++] = *rlePtr++;
break;
case 0x80: // fill with color
memset(outPtr + pixelNo, *rlePtr++, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
break;
case 0xC0: // fill with transparent
pixelNo += runLength;
break;
}
}
}
} else {
literalPtr = _resourceData + celInfo->offsetLiteral;
if (celInfo->offsetRLE) {
if (g_sci->getPlatform() == Common::kPlatformMacintosh && getSciVersion() == SCI_VERSION_1_1) {
// KQ6/Freddy Pharkas use byte lengths, all others use uint16
// The SCI devs must have realized that a max of 255 pixels wide
// was not very good for 320 or 640 width games.
bool hasByteLengths = (g_sci->getGameId() == GID_KQ6 || g_sci->getGameId() == GID_FREDDYPHARKAS);
// compression for SCI1.1+ Mac
while (pixelNo < pixelCount) {
uint32 pixelLine = pixelNo;
if (hasByteLengths) {
pixelNo += *rlePtr++;
runLength = *rlePtr++;
} else {
pixelNo += READ_BE_UINT16(rlePtr);
runLength = READ_BE_UINT16(rlePtr + 2);
rlePtr += 4;
}
while (runLength-- && pixelNo < pixelCount)
outPtr[pixelNo++] = *literalPtr++;
pixelNo = pixelLine + celInfo->width;
}
} else {
// decompression for data that has separate rle and literal streams
while (pixelNo < pixelCount) {
pixel = *rlePtr++;
runLength = pixel & 0x3F;
switch (pixel & 0xC0) {
case 0: // copy bytes as-is
while (runLength-- && pixelNo < pixelCount)
outPtr[pixelNo++] = *literalPtr++;
break;
case 0x80: // fill with color
memset(outPtr + pixelNo, *literalPtr++, MIN<uint32>(runLength, pixelCount - pixelNo));
pixelNo += runLength;
break;
case 0xC0: // fill with transparent
pixelNo += runLength;
break;
}
}
}
} else {
// literal stream only, so no compression
memcpy(outPtr, literalPtr, pixelCount);
pixelNo = pixelCount;
}
}
// Swap 0 and 0xff pixels for Mac SCI1.1+ games (see above)
if (g_sci->getPlatform() == Common::kPlatformMacintosh && getSciVersion() >= SCI_VERSION_1_1) {
for (uint32 i = 0; i < pixelCount; i++) {
if (outPtr[i] == 0)
outPtr[i] = 0xff;
else if (outPtr[i] == 0xff)
outPtr[i] = 0;
}
}
}
}
const byte *GfxView::getBitmap(int16 loopNo, int16 celNo) {
// WORKAROUND for the EGA version of SQ1, same as the one in getCelInfo().
// Check getCelInfo() above for more information.
if (g_sci->getGameId() == GID_SQ1 && !_resMan->isVGA() && _resourceId == 506) {
if ((loopNo == 0 || loopNo == 1) && celNo == 0)
celNo = 1;
}
loopNo = CLIP<int16>(loopNo, 0, _loopCount -1);
celNo = CLIP<int16>(celNo, 0, _loop[loopNo].celCount - 1);
if (_loop[loopNo].cel[celNo].rawBitmap)
return _loop[loopNo].cel[celNo].rawBitmap;
uint16 width = _loop[loopNo].cel[celNo].width;
uint16 height = _loop[loopNo].cel[celNo].height;
// allocating memory to store cel's bitmap
int pixelCount = width * height;
_loop[loopNo].cel[celNo].rawBitmap = new byte[pixelCount];
byte *pBitmap = _loop[loopNo].cel[celNo].rawBitmap;
// unpack the actual cel bitmap data
unpackCel(loopNo, celNo, pBitmap, pixelCount);
if (!_resMan->isVGA()) {
unditherBitmap(pBitmap, width, height, _loop[loopNo].cel[celNo].clearKey);
}
// mirroring the cel if needed
if (_loop[loopNo].mirrorFlag) {
for (int i = 0; i < height; i++, pBitmap += width)
for (int j = 0; j < width / 2; j++)
SWAP(pBitmap[j], pBitmap[width - j - 1]);
}
return _loop[loopNo].cel[celNo].rawBitmap;
}
/**
* Called after unpacking an EGA cel, this will try to undither (parts) of the
* cel if the dithering in here matches dithering used by the current picture.
*/
void GfxView::unditherBitmap(byte *bitmapPtr, int16 width, int16 height, byte clearKey) {
int16 *unditherMemorial = _screen->unditherGetMemorial();
// It makes no sense to go further, if no memorial data from current picture
// is available
if (!unditherMemorial)
return;
// Makes no sense to process bitmaps that are 3 pixels wide or less
if (width <= 3)
return;
// We need at least 2 pixel lines
if (height < 2)
return;
// If EGA mapping is used for this view, dont do undithering as well
if (_EGAmapping)
return;
// Walk through the bitmap and remember all combinations of colors
int16 bitmapMemorial[SCI_SCREEN_UNDITHERMEMORIAL_SIZE];
byte *curPtr;
byte color1, color2;
byte nextColor1, nextColor2;
int16 y, x;
memset(&bitmapMemorial, 0, sizeof(bitmapMemorial));
// Count all seemingly dithered pixel-combinations as soon as at least 4
// pixels are adjacent and check pixels in the following line as well to
// be the reverse pixel combination
int16 checkHeight = height - 1;
curPtr = bitmapPtr;
byte *nextPtr = curPtr + width;
for (y = 0; y < checkHeight; y++) {
color1 = curPtr[0]; color2 = (curPtr[1] << 4) | curPtr[2];
nextColor1 = nextPtr[0] << 4; nextColor2 = (nextPtr[2] << 4) | nextPtr[1];
curPtr += 3;
nextPtr += 3;
for (x = 3; x < width; x++) {
color1 = (color1 << 4) | (color2 >> 4);
color2 = (color2 << 4) | *curPtr++;
nextColor1 = (nextColor1 >> 4) | (nextColor2 << 4);
nextColor2 = (nextColor2 >> 4) | *nextPtr++ << 4;
if ((color1 == color2) && (color1 == nextColor1) && (color1 == nextColor2))
bitmapMemorial[color1]++;
}
}
// Now compare both memorial tables to find out matching
// dithering-combinations
bool unditherTable[SCI_SCREEN_UNDITHERMEMORIAL_SIZE];
byte color, unditherCount = 0;
memset(&unditherTable, false, sizeof(unditherTable));
for (color = 0; color < 255; color++) {
if ((bitmapMemorial[color] > 5) && (unditherMemorial[color] > 200)) {
// match found, check if colorKey is contained -> if so, we ignore
// of course
color1 = color & 0x0F; color2 = color >> 4;
if ((color1 != clearKey) && (color2 != clearKey) && (color1 != color2)) {
// so set this and the reversed color-combination for undithering
unditherTable[color] = true;
unditherTable[(color1 << 4) | color2] = true;
unditherCount++;
}
}
}
// Nothing found to undither -> exit straight away
if (!unditherCount)
return;
// We now need to replace color-combinations
curPtr = bitmapPtr;
for (y = 0; y < height; y++) {
color = *curPtr;
for (x = 1; x < width; x++) {
color = (color << 4) | curPtr[1];
if (unditherTable[color]) {
// Some color with black? Turn colors around, otherwise it won't
// be the right color at all.
byte unditheredColor = color;
if ((color & 0xF0) == 0)
unditheredColor = (color << 4) | (color >> 4);
curPtr[0] = unditheredColor; curPtr[1] = unditheredColor;
}
curPtr++;
}
curPtr++;
}
}
void GfxView::draw(const Common::Rect &rect, const Common::Rect &clipRect, const Common::Rect &clipRectTranslated,
int16 loopNo, int16 celNo, byte priority, uint16 EGAmappingNr, bool upscaledHires) {
const Palette *palette = _embeddedPal ? &_viewPalette : &_palette->_sysPalette;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
const byte *bitmap = getBitmap(loopNo, celNo);
const int16 celHeight = celInfo->height;
const int16 celWidth = celInfo->width;
const byte clearKey = celInfo->clearKey;
const byte drawMask = (priority == 255) ? GFX_SCREEN_MASK_VISUAL : GFX_SCREEN_MASK_VISUAL|GFX_SCREEN_MASK_PRIORITY;
int x, y;
if (_embeddedPal)
// Merge view palette in...
_palette->set(&_viewPalette, false);
const int16 width = MIN(clipRect.width(), celWidth);
const int16 height = MIN(clipRect.height(), celHeight);
bitmap += (clipRect.top - rect.top) * celWidth + (clipRect.left - rect.left);
if (!_EGAmapping) {
for (y = 0; y < height; y++, bitmap += celWidth) {
for (x = 0; x < width; x++) {
const byte color = bitmap[x];
if (color != clearKey) {
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (!upscaledHires) {
if (priority >= _screen->getPriority(x2, y2))
_screen->putPixel(x2, y2, drawMask, palette->mapping[color], priority, 0);
} else {
// UpscaledHires means view is hires and is supposed to
// get drawn onto lowres screen.
// FIXME(?): we can't read priority directly with the
// hires coordinates. May not be needed at all in kq6
_screen->putPixelOnDisplay(x2, y2, palette->mapping[color]);
}
}
}
}
} else {
byte *EGAmapping = _EGAmapping + (EGAmappingNr * SCI_VIEW_EGAMAPPING_SIZE);
for (y = 0; y < height; y++, bitmap += celWidth) {
for (x = 0; x < width; x++) {
const byte color = EGAmapping[bitmap[x]];
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (color != clearKey && priority >= _screen->getPriority(x2, y2))
_screen->putPixel(x2, y2, drawMask, color, priority, 0);
}
}
}
}
/**
* We don't fully follow sierra sci here, I did the scaling algo myself and it
* is definitely not pixel-perfect with the one sierra is using. It shouldn't
* matter because the scaled cel rect is definitely the same as in sierra sci.
*/
void GfxView::drawScaled(const Common::Rect &rect, const Common::Rect &clipRect, const Common::Rect &clipRectTranslated,
int16 loopNo, int16 celNo, byte priority, int16 scaleX, int16 scaleY) {
const Palette *palette = _embeddedPal ? &_viewPalette : &_palette->_sysPalette;
const CelInfo *celInfo = getCelInfo(loopNo, celNo);
const byte *bitmap = getBitmap(loopNo, celNo);
const int16 celHeight = celInfo->height;
const int16 celWidth = celInfo->width;
const byte clearKey = celInfo->clearKey;
const byte drawMask = (priority == 255) ? GFX_SCREEN_MASK_VISUAL : GFX_SCREEN_MASK_VISUAL|GFX_SCREEN_MASK_PRIORITY;
uint16 scalingX[640];
uint16 scalingY[480];
int16 scaledWidth, scaledHeight;
int pixelNo, scaledPixel, scaledPixelNo, prevScaledPixelNo;
if (_embeddedPal)
// Merge view palette in...
_palette->set(&_viewPalette, false);
scaledWidth = (celInfo->width * scaleX) >> 7;
scaledHeight = (celInfo->height * scaleY) >> 7;
scaledWidth = CLIP<int16>(scaledWidth, 0, _screen->getWidth());
scaledHeight = CLIP<int16>(scaledHeight, 0, _screen->getHeight());
// Do we really need to do this?!
//memset(scalingX, 0, sizeof(scalingX));
//memset(scalingY, 0, sizeof(scalingY));
// Create height scaling table
pixelNo = 0;
scaledPixel = scaledPixelNo = prevScaledPixelNo = 0;
while (pixelNo < celHeight) {
scaledPixelNo = scaledPixel >> 7;
assert(scaledPixelNo < ARRAYSIZE(scalingY));
for (; prevScaledPixelNo <= scaledPixelNo; prevScaledPixelNo++)
scalingY[prevScaledPixelNo] = pixelNo;
pixelNo++;
scaledPixel += scaleY;
}
pixelNo--;
scaledPixelNo++;
for (; scaledPixelNo < scaledHeight; scaledPixelNo++)
scalingY[scaledPixelNo] = pixelNo;
// Create width scaling table
pixelNo = 0;
scaledPixel = scaledPixelNo = prevScaledPixelNo = 0;
while (pixelNo < celWidth) {
scaledPixelNo = scaledPixel >> 7;
assert(scaledPixelNo < ARRAYSIZE(scalingX));
for (; prevScaledPixelNo <= scaledPixelNo; prevScaledPixelNo++)
scalingX[prevScaledPixelNo] = pixelNo;
pixelNo++;
scaledPixel += scaleX;
}
pixelNo--;
scaledPixelNo++;
for (; scaledPixelNo < scaledWidth; scaledPixelNo++)
scalingX[scaledPixelNo] = pixelNo;
scaledWidth = MIN(clipRect.width(), scaledWidth);
scaledHeight = MIN(clipRect.height(), scaledHeight);
const int16 offsetY = clipRect.top - rect.top;
const int16 offsetX = clipRect.left - rect.left;
// Happens in SQ6, first room
if (offsetX < 0 || offsetY < 0)
return;
assert(scaledHeight + offsetY <= ARRAYSIZE(scalingY));
assert(scaledWidth + offsetX <= ARRAYSIZE(scalingX));
for (int y = 0; y < scaledHeight; y++) {
for (int x = 0; x < scaledWidth; x++) {
const byte color = bitmap[scalingY[y + offsetY] * celWidth + scalingX[x + offsetX]];
const int x2 = clipRectTranslated.left + x;
const int y2 = clipRectTranslated.top + y;
if (color != clearKey && priority >= _screen->getPriority(x2, y2)) {
_screen->putPixel(x2, y2, drawMask, palette->mapping[color], priority, 0);
}
}
}
}
} // End of namespace Sci