scummvm/video/bink_decoder.cpp
2012-05-28 14:00:16 -04:00

1661 lines
40 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Based on eos' Bink decoder which is in turn
// based quite heavily on the Bink decoder found in FFmpeg.
// Many thanks to Kostya Shishkov for doing the hard work.
#include "audio/decoders/raw.h"
#include "common/util.h"
#include "common/textconsole.h"
#include "common/math.h"
#include "common/stream.h"
#include "common/substream.h"
#include "common/file.h"
#include "common/str.h"
#include "common/bitstream.h"
#include "common/huffman.h"
#include "common/rdft.h"
#include "common/dct.h"
#include "common/system.h"
#include "graphics/yuv_to_rgb.h"
#include "graphics/surface.h"
#include "video/binkdata.h"
#include "video/bink_decoder.h"
static const uint32 kBIKfID = MKTAG('B', 'I', 'K', 'f');
static const uint32 kBIKgID = MKTAG('B', 'I', 'K', 'g');
static const uint32 kBIKhID = MKTAG('B', 'I', 'K', 'h');
static const uint32 kBIKiID = MKTAG('B', 'I', 'K', 'i');
static const uint32 kVideoFlagAlpha = 0x00100000;
static const uint16 kAudioFlagDCT = 0x1000;
static const uint16 kAudioFlagStereo = 0x2000;
// Number of bits used to store first DC value in bundle
static const uint32 kDCStartBits = 11;
namespace Video {
BinkDecoder::VideoFrame::VideoFrame() : bits(0) {
}
BinkDecoder::VideoFrame::~VideoFrame() {
delete bits;
}
BinkDecoder::AudioTrack::AudioTrack() : bits(0), bands(0), rdft(0), dct(0) {
}
BinkDecoder::AudioTrack::~AudioTrack() {
delete bits;
delete[] bands;
delete rdft;
delete dct;
}
BinkDecoder::BinkDecoder() {
_bink = 0;
_audioTrack = 0;
for (int i = 0; i < 16; i++)
_huffman[i] = 0;
for (int i = 0; i < kSourceMAX; i++) {
_bundles[i].countLength = 0;
_bundles[i].huffman.index = 0;
for (int j = 0; j < 16; j++)
_bundles[i].huffman.symbols[j] = j;
_bundles[i].data = 0;
_bundles[i].dataEnd = 0;
_bundles[i].curDec = 0;
_bundles[i].curPtr = 0;
}
for (int i = 0; i < 16; i++) {
_colHighHuffman[i].index = 0;
for (int j = 0; j < 16; j++)
_colHighHuffman[i].symbols[j] = j;
}
for (int i = 0; i < 4; i++) {
_curPlanes[i] = 0;
_oldPlanes[i] = 0;
}
_audioStream = 0;
}
void BinkDecoder::startAudio() {
if (_audioTrack < _audioTracks.size()) {
const AudioTrack &audio = _audioTracks[_audioTrack];
_audioStream = Audio::makeQueuingAudioStream(audio.outSampleRate, audio.outChannels == 2);
g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audioHandle, _audioStream, -1, getVolume(), getBalance());
} // else no audio
}
void BinkDecoder::stopAudio() {
if (_audioStream) {
g_system->getMixer()->stopHandle(_audioHandle);
_audioStream = 0;
}
}
BinkDecoder::~BinkDecoder() {
close();
}
void BinkDecoder::close() {
reset();
// Stop audio
stopAudio();
for (int i = 0; i < 4; i++) {
delete[] _curPlanes[i]; _curPlanes[i] = 0;
delete[] _oldPlanes[i]; _oldPlanes[i] = 0;
}
deinitBundles();
for (int i = 0; i < 16; i++) {
delete _huffman[i];
_huffman[i] = 0;
}
delete _bink; _bink = 0;
_surface.free();
_audioTrack = 0;
for (int i = 0; i < kSourceMAX; i++) {
_bundles[i].countLength = 0;
_bundles[i].huffman.index = 0;
for (int j = 0; j < 16; j++)
_bundles[i].huffman.symbols[j] = j;
_bundles[i].data = 0;
_bundles[i].dataEnd = 0;
_bundles[i].curDec = 0;
_bundles[i].curPtr = 0;
}
for (int i = 0; i < 16; i++) {
_colHighHuffman[i].index = 0;
for (int j = 0; j < 16; j++)
_colHighHuffman[i].symbols[j] = j;
}
_audioTracks.clear();
_frames.clear();
}
uint32 BinkDecoder::getTime() const {
if (_audioStream && g_system->getMixer()->isSoundHandleActive(_audioHandle))
return g_system->getMixer()->getSoundElapsedTime(_audioHandle) + _audioStartOffset;
return g_system->getMillis() - _startTime;
}
const Graphics::Surface *BinkDecoder::decodeNextFrame() {
if (endOfVideo())
return 0;
VideoFrame &frame = _frames[_curFrame + 1];
if (!_bink->seek(frame.offset))
error("Bad bink seek");
uint32 frameSize = frame.size;
for (uint32 i = 0; i < _audioTracks.size(); i++) {
AudioTrack &audio = _audioTracks[i];
uint32 audioPacketLength = _bink->readUint32LE();
frameSize -= 4;
if (frameSize < audioPacketLength)
error("Audio packet too big for the frame");
if (audioPacketLength >= 4) {
uint32 audioPacketStart = _bink->pos();
uint32 audioPacketEnd = _bink->pos() + audioPacketLength;
if (i == _audioTrack) {
// Only play one audio track
// Number of samples in bytes
audio.sampleCount = _bink->readUint32LE() / (2 * audio.channels);
audio.bits =
new Common::BitStream32LELSB(new Common::SeekableSubReadStream(_bink,
audioPacketStart + 4, audioPacketEnd), true);
audioPacket(audio);
delete audio.bits;
audio.bits = 0;
}
_bink->seek(audioPacketEnd);
frameSize -= audioPacketLength;
}
}
uint32 videoPacketStart = _bink->pos();
uint32 videoPacketEnd = _bink->pos() + frameSize;
frame.bits =
new Common::BitStream32LELSB(new Common::SeekableSubReadStream(_bink,
videoPacketStart, videoPacketEnd), true);
videoPacket(frame);
delete frame.bits;
frame.bits = 0;
_curFrame++;
if (_curFrame == 0)
_startTime = g_system->getMillis();
return &_surface;
}
void BinkDecoder::audioPacket(AudioTrack &audio) {
if (!_audioStream)
return;
int outSize = audio.frameLen * audio.channels;
while (audio.bits->pos() < audio.bits->size()) {
int16 *out = (int16 *)malloc(outSize * 2);
memset(out, 0, outSize * 2);
audioBlock(audio, out);
byte flags = Audio::FLAG_16BITS;
if (audio.outChannels == 2)
flags |= Audio::FLAG_STEREO;
#ifdef SCUMM_LITTLE_ENDIAN
flags |= Audio::FLAG_LITTLE_ENDIAN;
#endif
_audioStream->queueBuffer((byte *)out, audio.blockSize * 2, DisposeAfterUse::YES, flags);
if (audio.bits->pos() & 0x1F) // next data block starts at a 32-byte boundary
audio.bits->skip(32 - (audio.bits->pos() & 0x1F));
}
}
void BinkDecoder::videoPacket(VideoFrame &video) {
assert(video.bits);
if (_hasAlpha) {
if (_id == kBIKiID)
video.bits->skip(32);
decodePlane(video, 3, false);
}
if (_id == kBIKiID)
video.bits->skip(32);
for (int i = 0; i < 3; i++) {
int planeIdx = ((i == 0) || !_swapPlanes) ? i : (i ^ 3);
decodePlane(video, planeIdx, i != 0);
if (video.bits->pos() >= video.bits->size())
break;
}
// Convert the YUV data we have to our format
// We're ignoring alpha for now
assert(_curPlanes[0] && _curPlanes[1] && _curPlanes[2]);
Graphics::convertYUV420ToRGB(&_surface, _curPlanes[0], _curPlanes[1], _curPlanes[2],
_surface.w, _surface.h, _surface.w, _surface.w >> 1);
// And swap the planes with the reference planes
for (int i = 0; i < 4; i++)
SWAP(_curPlanes[i], _oldPlanes[i]);
}
void BinkDecoder::decodePlane(VideoFrame &video, int planeIdx, bool isChroma) {
uint32 blockWidth = isChroma ? ((_surface.w + 15) >> 4) : ((_surface.w + 7) >> 3);
uint32 blockHeight = isChroma ? ((_surface.h + 15) >> 4) : ((_surface.h + 7) >> 3);
uint32 width = isChroma ? (_surface.w >> 1) : _surface.w;
uint32 height = isChroma ? (_surface.h >> 1) : _surface.h;
DecodeContext ctx;
ctx.video = &video;
ctx.planeIdx = planeIdx;
ctx.destStart = _curPlanes[planeIdx];
ctx.destEnd = _curPlanes[planeIdx] + width * height;
ctx.prevStart = _oldPlanes[planeIdx];
ctx.prevEnd = _oldPlanes[planeIdx] + width * height;
ctx.pitch = width;
for (int i = 0; i < 64; i++) {
ctx.coordMap[i] = (i & 7) + (i >> 3) * ctx.pitch;
ctx.coordScaledMap1[i] = ((i & 7) * 2 + 0) + (((i >> 3) * 2 + 0) * ctx.pitch);
ctx.coordScaledMap2[i] = ((i & 7) * 2 + 1) + (((i >> 3) * 2 + 0) * ctx.pitch);
ctx.coordScaledMap3[i] = ((i & 7) * 2 + 0) + (((i >> 3) * 2 + 1) * ctx.pitch);
ctx.coordScaledMap4[i] = ((i & 7) * 2 + 1) + (((i >> 3) * 2 + 1) * ctx.pitch);
}
for (int i = 0; i < kSourceMAX; i++) {
_bundles[i].countLength = _bundles[i].countLengths[isChroma ? 1 : 0];
readBundle(video, (Source) i);
}
for (ctx.blockY = 0; ctx.blockY < blockHeight; ctx.blockY++) {
readBlockTypes (video, _bundles[kSourceBlockTypes]);
readBlockTypes (video, _bundles[kSourceSubBlockTypes]);
readColors (video, _bundles[kSourceColors]);
readPatterns (video, _bundles[kSourcePattern]);
readMotionValues(video, _bundles[kSourceXOff]);
readMotionValues(video, _bundles[kSourceYOff]);
readDCS (video, _bundles[kSourceIntraDC], kDCStartBits, false);
readDCS (video, _bundles[kSourceInterDC], kDCStartBits, true);
readRuns (video, _bundles[kSourceRun]);
ctx.dest = ctx.destStart + 8 * ctx.blockY * ctx.pitch;
ctx.prev = ctx.prevStart + 8 * ctx.blockY * ctx.pitch;
for (ctx.blockX = 0; ctx.blockX < blockWidth; ctx.blockX++, ctx.dest += 8, ctx.prev += 8) {
BlockType blockType = (BlockType) getBundleValue(kSourceBlockTypes);
// 16x16 block type on odd line means part of the already decoded block, so skip it
if ((ctx.blockY & 1) && (blockType == kBlockScaled)) {
ctx.blockX += 1;
ctx.dest += 8;
ctx.prev += 8;
continue;
}
switch (blockType) {
case kBlockSkip:
blockSkip(ctx);
break;
case kBlockScaled:
blockScaled(ctx);
break;
case kBlockMotion:
blockMotion(ctx);
break;
case kBlockRun:
blockRun(ctx);
break;
case kBlockResidue:
blockResidue(ctx);
break;
case kBlockIntra:
blockIntra(ctx);
break;
case kBlockFill:
blockFill(ctx);
break;
case kBlockInter:
blockInter(ctx);
break;
case kBlockPattern:
blockPattern(ctx);
break;
case kBlockRaw:
blockRaw(ctx);
break;
default:
error("Unknown block type: %d", blockType);
}
}
}
if (video.bits->pos() & 0x1F) // next plane data starts at 32-bit boundary
video.bits->skip(32 - (video.bits->pos() & 0x1F));
}
void BinkDecoder::readBundle(VideoFrame &video, Source source) {
if (source == kSourceColors) {
for (int i = 0; i < 16; i++)
readHuffman(video, _colHighHuffman[i]);
_colLastVal = 0;
}
if ((source != kSourceIntraDC) && (source != kSourceInterDC))
readHuffman(video, _bundles[source].huffman);
_bundles[source].curDec = _bundles[source].data;
_bundles[source].curPtr = _bundles[source].data;
}
void BinkDecoder::readHuffman(VideoFrame &video, Huffman &huffman) {
huffman.index = video.bits->getBits(4);
if (huffman.index == 0) {
// The first tree always gives raw nibbles
for (int i = 0; i < 16; i++)
huffman.symbols[i] = i;
return;
}
byte hasSymbol[16];
if (video.bits->getBit()) {
// Symbol selection
memset(hasSymbol, 0, 16);
uint8 length = video.bits->getBits(3);
for (int i = 0; i <= length; i++) {
huffman.symbols[i] = video.bits->getBits(4);
hasSymbol[huffman.symbols[i]] = 1;
}
for (int i = 0; i < 16; i++)
if (hasSymbol[i] == 0)
huffman.symbols[++length] = i;
return;
}
// Symbol shuffling
byte tmp1[16], tmp2[16];
byte *in = tmp1, *out = tmp2;
uint8 depth = video.bits->getBits(2);
for (int i = 0; i < 16; i++)
in[i] = i;
for (int i = 0; i <= depth; i++) {
int size = 1 << i;
for (int j = 0; j < 16; j += (size << 1))
mergeHuffmanSymbols(video, out + j, in + j, size);
SWAP(in, out);
}
memcpy(huffman.symbols, in, 16);
}
void BinkDecoder::mergeHuffmanSymbols(VideoFrame &video, byte *dst, const byte *src, int size) {
const byte *src2 = src + size;
int size2 = size;
do {
if (!video.bits->getBit()) {
*dst++ = *src++;
size--;
} else {
*dst++ = *src2++;
size2--;
}
} while (size && size2);
while (size--)
*dst++ = *src++;
while (size2--)
*dst++ = *src2++;
}
bool BinkDecoder::loadStream(Common::SeekableReadStream *stream) {
Graphics::PixelFormat format = g_system->getScreenFormat();
return loadStream(stream, format);
}
bool BinkDecoder::loadStream(Common::SeekableReadStream *stream, const Graphics::PixelFormat &format) {
close();
_id = stream->readUint32BE();
if ((_id != kBIKfID) && (_id != kBIKgID) && (_id != kBIKhID) && (_id != kBIKiID))
return false;
uint32 fileSize = stream->readUint32LE() + 8;
uint32 frameCount = stream->readUint32LE();
uint32 largestFrameSize = stream->readUint32LE();
if (largestFrameSize > fileSize) {
warning("Largest frame size greater than file size");
return false;
}
stream->skip(4);
uint32 width = stream->readUint32LE();
uint32 height = stream->readUint32LE();
uint32 frameRateNum = stream->readUint32LE();
uint32 frameRateDen = stream->readUint32LE();
if (frameRateNum == 0 || frameRateDen == 0) {
warning("Invalid frame rate (%d/%d)", frameRateNum, frameRateDen);
return false;
}
_frameRate = Common::Rational(frameRateNum, frameRateDen);
_bink = stream;
_videoFlags = _bink->readUint32LE();
uint32 audioTrackCount = _bink->readUint32LE();
if (audioTrackCount > 1) {
warning("More than one audio track found. Using the first one");
_audioTrack = 0;
}
if (audioTrackCount > 0) {
_audioTracks.reserve(audioTrackCount);
_bink->skip(4 * audioTrackCount);
// Reading audio track properties
for (uint32 i = 0; i < audioTrackCount; i++) {
AudioTrack track;
track.sampleRate = _bink->readUint16LE();
track.flags = _bink->readUint16LE();
_audioTracks.push_back(track);
initAudioTrack(_audioTracks[i]);
}
_bink->skip(4 * audioTrackCount);
}
// Reading video frame properties
_frames.resize(frameCount);
for (uint32 i = 0; i < frameCount; i++) {
_frames[i].offset = _bink->readUint32LE();
_frames[i].keyFrame = _frames[i].offset & 1;
_frames[i].offset &= ~1;
if (i != 0)
_frames[i - 1].size = _frames[i].offset - _frames[i - 1].offset;
_frames[i].bits = 0;
}
_frames[frameCount - 1].size = _bink->size() - _frames[frameCount - 1].offset;
_hasAlpha = _videoFlags & kVideoFlagAlpha;
_swapPlanes = (_id == kBIKhID) || (_id == kBIKiID); // BIKh and BIKi swap the chroma planes
_surface.create(width, height, format);
// Give the planes a bit extra space
width = _surface.w + 32;
height = _surface.h + 32;
_curPlanes[0] = new byte[ width * height ]; // Y
_curPlanes[1] = new byte[(width >> 1) * (height >> 1)]; // U, 1/4 resolution
_curPlanes[2] = new byte[(width >> 1) * (height >> 1)]; // V, 1/4 resolution
_curPlanes[3] = new byte[ width * height ]; // A
_oldPlanes[0] = new byte[ width * height ]; // Y
_oldPlanes[1] = new byte[(width >> 1) * (height >> 1)]; // U, 1/4 resolution
_oldPlanes[2] = new byte[(width >> 1) * (height >> 1)]; // V, 1/4 resolution
_oldPlanes[3] = new byte[ width * height ]; // A
// Initialize the video with solid black
memset(_curPlanes[0], 0, width * height );
memset(_curPlanes[1], 0, (width >> 1) * (height >> 1));
memset(_curPlanes[2], 0, (width >> 1) * (height >> 1));
memset(_curPlanes[3], 255, width * height );
memset(_oldPlanes[0], 0, width * height );
memset(_oldPlanes[1], 0, (width >> 1) * (height >> 1));
memset(_oldPlanes[2], 0, (width >> 1) * (height >> 1));
memset(_oldPlanes[3], 255, width * height );
initBundles();
initHuffman();
startAudio();
_audioStartOffset = 0;
return true;
}
void BinkDecoder::initAudioTrack(AudioTrack &audio) {
audio.sampleCount = 0;
audio.bits = 0;
audio.channels = ((audio.flags & kAudioFlagStereo) != 0) ? 2 : 1;
audio.codec = ((audio.flags & kAudioFlagDCT ) != 0) ? kAudioCodecDCT : kAudioCodecRDFT;
if (audio.channels > kAudioChannelsMax)
error("Too many audio channels: %d", audio.channels);
uint32 frameLenBits;
// Calculate frame length
if (audio.sampleRate < 22050)
frameLenBits = 9;
else if(audio.sampleRate < 44100)
frameLenBits = 10;
else
frameLenBits = 11;
audio.frameLen = 1 << frameLenBits;
audio.outSampleRate = audio.sampleRate;
audio.outChannels = audio.channels;
if (audio.codec == kAudioCodecRDFT) {
// RDFT audio already interleaves the samples correctly
if (audio.channels == 2)
frameLenBits++;
audio.sampleRate *= audio.channels;
audio.frameLen *= audio.channels;
audio.channels = 1;
}
audio.overlapLen = audio.frameLen / 16;
audio.blockSize = (audio.frameLen - audio.overlapLen) * audio.channels;
audio.root = 2.0 / sqrt((double)audio.frameLen);
uint32 sampleRateHalf = (audio.sampleRate + 1) / 2;
// Calculate number of bands
for (audio.bandCount = 1; audio.bandCount < 25; audio.bandCount++)
if (sampleRateHalf <= binkCriticalFreqs[audio.bandCount - 1])
break;
audio.bands = new uint32[audio.bandCount + 1];
// Populate bands
audio.bands[0] = 1;
for (uint32 i = 1; i < audio.bandCount; i++)
audio.bands[i] = binkCriticalFreqs[i - 1] * (audio.frameLen / 2) / sampleRateHalf;
audio.bands[audio.bandCount] = audio.frameLen / 2;
audio.first = true;
for (uint8 i = 0; i < audio.channels; i++)
audio.coeffsPtr[i] = audio.coeffs + i * audio.frameLen;
audio.codec = ((audio.flags & kAudioFlagDCT) != 0) ? kAudioCodecDCT : kAudioCodecRDFT;
if (audio.codec == kAudioCodecRDFT)
audio.rdft = new Common::RDFT(frameLenBits, Common::RDFT::DFT_C2R);
else if (audio.codec == kAudioCodecDCT)
audio.dct = new Common::DCT(frameLenBits, Common::DCT::DCT_III);
}
void BinkDecoder::initBundles() {
uint32 bw = (_surface.w + 7) >> 3;
uint32 bh = (_surface.h + 7) >> 3;
uint32 blocks = bw * bh;
for (int i = 0; i < kSourceMAX; i++) {
_bundles[i].data = new byte[blocks * 64];
_bundles[i].dataEnd = _bundles[i].data + blocks * 64;
}
uint32 cbw[2] = { (_surface.w + 7) >> 3, (_surface.w + 15) >> 4 };
uint32 cw [2] = { _surface.w , _surface.w >> 1 };
// Calculate the lengths of an element count in bits
for (int i = 0; i < 2; i++) {
int width = MAX<uint32>(cw[i], 8);
_bundles[kSourceBlockTypes ].countLengths[i] = Common::intLog2((width >> 3) + 511) + 1;
_bundles[kSourceSubBlockTypes].countLengths[i] = Common::intLog2(((width + 7) >> 4) + 511) + 1;
_bundles[kSourceColors ].countLengths[i] = Common::intLog2((cbw[i]) * 64 + 511) + 1;
_bundles[kSourceIntraDC ].countLengths[i] = Common::intLog2((width >> 3) + 511) + 1;
_bundles[kSourceInterDC ].countLengths[i] = Common::intLog2((width >> 3) + 511) + 1;
_bundles[kSourceXOff ].countLengths[i] = Common::intLog2((width >> 3) + 511) + 1;
_bundles[kSourceYOff ].countLengths[i] = Common::intLog2((width >> 3) + 511) + 1;
_bundles[kSourcePattern ].countLengths[i] = Common::intLog2((cbw[i] << 3) + 511) + 1;
_bundles[kSourceRun ].countLengths[i] = Common::intLog2((cbw[i]) * 48 + 511) + 1;
}
}
void BinkDecoder::deinitBundles() {
for (int i = 0; i < kSourceMAX; i++)
delete[] _bundles[i].data;
}
void BinkDecoder::initHuffman() {
for (int i = 0; i < 16; i++)
_huffman[i] = new Common::Huffman(binkHuffmanLengths[i][15], 16, binkHuffmanCodes[i], binkHuffmanLengths[i]);
}
byte BinkDecoder::getHuffmanSymbol(VideoFrame &video, Huffman &huffman) {
return huffman.symbols[_huffman[huffman.index]->getSymbol(*video.bits)];
}
int32 BinkDecoder::getBundleValue(Source source) {
if ((source < kSourceXOff) || (source == kSourceRun))
return *_bundles[source].curPtr++;
if ((source == kSourceXOff) || (source == kSourceYOff))
return (int8) *_bundles[source].curPtr++;
int16 ret = *((int16 *) _bundles[source].curPtr);
_bundles[source].curPtr += 2;
return ret;
}
uint32 BinkDecoder::readBundleCount(VideoFrame &video, Bundle &bundle) {
if (!bundle.curDec || (bundle.curDec > bundle.curPtr))
return 0;
uint32 n = video.bits->getBits(bundle.countLength);
if (n == 0)
bundle.curDec = 0;
return n;
}
void BinkDecoder::blockSkip(DecodeContext &ctx) {
byte *dest = ctx.dest;
byte *prev = ctx.prev;
for (int j = 0; j < 8; j++, dest += ctx.pitch, prev += ctx.pitch)
memcpy(dest, prev, 8);
}
void BinkDecoder::blockScaledSkip(DecodeContext &ctx) {
byte *dest = ctx.dest;
byte *prev = ctx.prev;
for (int j = 0; j < 16; j++, dest += ctx.pitch, prev += ctx.pitch)
memcpy(dest, prev, 16);
}
void BinkDecoder::blockScaledRun(DecodeContext &ctx) {
const uint8 *scan = binkPatterns[ctx.video->bits->getBits(4)];
int i = 0;
do {
int run = getBundleValue(kSourceRun) + 1;
i += run;
if (i > 64)
error("Run went out of bounds");
if (ctx.video->bits->getBit()) {
byte v = getBundleValue(kSourceColors);
for (int j = 0; j < run; j++, scan++)
ctx.dest[ctx.coordScaledMap1[*scan]] =
ctx.dest[ctx.coordScaledMap2[*scan]] =
ctx.dest[ctx.coordScaledMap3[*scan]] =
ctx.dest[ctx.coordScaledMap4[*scan]] = v;
} else
for (int j = 0; j < run; j++, scan++)
ctx.dest[ctx.coordScaledMap1[*scan]] =
ctx.dest[ctx.coordScaledMap2[*scan]] =
ctx.dest[ctx.coordScaledMap3[*scan]] =
ctx.dest[ctx.coordScaledMap4[*scan]] = getBundleValue(kSourceColors);
} while (i < 63);
if (i == 63)
ctx.dest[ctx.coordScaledMap1[*scan]] =
ctx.dest[ctx.coordScaledMap2[*scan]] =
ctx.dest[ctx.coordScaledMap3[*scan]] =
ctx.dest[ctx.coordScaledMap4[*scan]] = getBundleValue(kSourceColors);
}
void BinkDecoder::blockScaledIntra(DecodeContext &ctx) {
int16 block[64];
memset(block, 0, 64 * sizeof(int16));
block[0] = getBundleValue(kSourceIntraDC);
readDCTCoeffs(*ctx.video, block, true);
IDCT(block);
int16 *src = block;
byte *dest1 = ctx.dest;
byte *dest2 = ctx.dest + ctx.pitch;
for (int j = 0; j < 8; j++, dest1 += (ctx.pitch << 1) - 16, dest2 += (ctx.pitch << 1) - 16, src += 8) {
for (int i = 0; i < 8; i++, dest1 += 2, dest2 += 2)
dest1[0] = dest1[1] = dest2[0] = dest2[1] = src[i];
}
}
void BinkDecoder::blockScaledFill(DecodeContext &ctx) {
byte v = getBundleValue(kSourceColors);
byte *dest = ctx.dest;
for (int i = 0; i < 16; i++, dest += ctx.pitch)
memset(dest, v, 16);
}
void BinkDecoder::blockScaledPattern(DecodeContext &ctx) {
byte col[2];
for (int i = 0; i < 2; i++)
col[i] = getBundleValue(kSourceColors);
byte *dest1 = ctx.dest;
byte *dest2 = ctx.dest + ctx.pitch;
for (int j = 0; j < 8; j++, dest1 += (ctx.pitch << 1) - 16, dest2 += (ctx.pitch << 1) - 16) {
byte v = getBundleValue(kSourcePattern);
for (int i = 0; i < 8; i++, dest1 += 2, dest2 += 2, v >>= 1)
dest1[0] = dest1[1] = dest2[0] = dest2[1] = col[v & 1];
}
}
void BinkDecoder::blockScaledRaw(DecodeContext &ctx) {
byte row[8];
byte *dest1 = ctx.dest;
byte *dest2 = ctx.dest + ctx.pitch;
for (int j = 0; j < 8; j++, dest1 += (ctx.pitch << 1) - 16, dest2 += (ctx.pitch << 1) - 16) {
memcpy(row, _bundles[kSourceColors].curPtr, 8);
for (int i = 0; i < 8; i++, dest1 += 2, dest2 += 2)
dest1[0] = dest1[1] = dest2[0] = dest2[1] = row[i];
_bundles[kSourceColors].curPtr += 8;
}
}
void BinkDecoder::blockScaled(DecodeContext &ctx) {
BlockType blockType = (BlockType) getBundleValue(kSourceSubBlockTypes);
switch (blockType) {
case kBlockRun:
blockScaledRun(ctx);
break;
case kBlockIntra:
blockScaledIntra(ctx);
break;
case kBlockFill:
blockScaledFill(ctx);
break;
case kBlockPattern:
blockScaledPattern(ctx);
break;
case kBlockRaw:
blockScaledRaw(ctx);
break;
default:
error("Invalid 16x16 block type: %d", blockType);
}
ctx.blockX += 1;
ctx.dest += 8;
ctx.prev += 8;
}
void BinkDecoder::blockMotion(DecodeContext &ctx) {
int8 xOff = getBundleValue(kSourceXOff);
int8 yOff = getBundleValue(kSourceYOff);
byte *dest = ctx.dest;
byte *prev = ctx.prev + yOff * ((int32) ctx.pitch) + xOff;
if ((prev < ctx.prevStart) || (prev > ctx.prevEnd))
error("Copy out of bounds (%d | %d)", ctx.blockX * 8 + xOff, ctx.blockY * 8 + yOff);
for (int j = 0; j < 8; j++, dest += ctx.pitch, prev += ctx.pitch)
memcpy(dest, prev, 8);
}
void BinkDecoder::blockRun(DecodeContext &ctx) {
const uint8 *scan = binkPatterns[ctx.video->bits->getBits(4)];
int i = 0;
do {
int run = getBundleValue(kSourceRun) + 1;
i += run;
if (i > 64)
error("Run went out of bounds");
if (ctx.video->bits->getBit()) {
byte v = getBundleValue(kSourceColors);
for (int j = 0; j < run; j++)
ctx.dest[ctx.coordMap[*scan++]] = v;
} else
for (int j = 0; j < run; j++)
ctx.dest[ctx.coordMap[*scan++]] = getBundleValue(kSourceColors);
} while (i < 63);
if (i == 63)
ctx.dest[ctx.coordMap[*scan++]] = getBundleValue(kSourceColors);
}
void BinkDecoder::blockResidue(DecodeContext &ctx) {
blockMotion(ctx);
byte v = ctx.video->bits->getBits(7);
int16 block[64];
memset(block, 0, 64 * sizeof(int16));
readResidue(*ctx.video, block, v);
byte *dst = ctx.dest;
int16 *src = block;
for (int i = 0; i < 8; i++, dst += ctx.pitch, src += 8)
for (int j = 0; j < 8; j++)
dst[j] += src[j];
}
void BinkDecoder::blockIntra(DecodeContext &ctx) {
int16 block[64];
memset(block, 0, 64 * sizeof(int16));
block[0] = getBundleValue(kSourceIntraDC);
readDCTCoeffs(*ctx.video, block, true);
IDCTPut(ctx, block);
}
void BinkDecoder::blockFill(DecodeContext &ctx) {
byte v = getBundleValue(kSourceColors);
byte *dest = ctx.dest;
for (int i = 0; i < 8; i++, dest += ctx.pitch)
memset(dest, v, 8);
}
void BinkDecoder::blockInter(DecodeContext &ctx) {
blockMotion(ctx);
int16 block[64];
memset(block, 0, 64 * sizeof(int16));
block[0] = getBundleValue(kSourceInterDC);
readDCTCoeffs(*ctx.video, block, false);
IDCTAdd(ctx, block);
}
void BinkDecoder::blockPattern(DecodeContext &ctx) {
byte col[2];
for (int i = 0; i < 2; i++)
col[i] = getBundleValue(kSourceColors);
byte *dest = ctx.dest;
for (int i = 0; i < 8; i++, dest += ctx.pitch - 8) {
byte v = getBundleValue(kSourcePattern);
for (int j = 0; j < 8; j++, v >>= 1)
*dest++ = col[v & 1];
}
}
void BinkDecoder::blockRaw(DecodeContext &ctx) {
byte *dest = ctx.dest;
byte *data = _bundles[kSourceColors].curPtr;
for (int i = 0; i < 8; i++, dest += ctx.pitch, data += 8)
memcpy(dest, data, 8);
_bundles[kSourceColors].curPtr += 64;
}
void BinkDecoder::readRuns(VideoFrame &video, Bundle &bundle) {
uint32 n = readBundleCount(video, bundle);
if (n == 0)
return;
byte *decEnd = bundle.curDec + n;
if (decEnd > bundle.dataEnd)
error("Run value went out of bounds");
if (video.bits->getBit()) {
byte v = video.bits->getBits(4);
memset(bundle.curDec, v, n);
bundle.curDec += n;
} else
while (bundle.curDec < decEnd)
*bundle.curDec++ = getHuffmanSymbol(video, bundle.huffman);
}
void BinkDecoder::readMotionValues(VideoFrame &video, Bundle &bundle) {
uint32 n = readBundleCount(video, bundle);
if (n == 0)
return;
byte *decEnd = bundle.curDec + n;
if (decEnd > bundle.dataEnd)
error("Too many motion values");
if (video.bits->getBit()) {
byte v = video.bits->getBits(4);
if (v) {
int sign = -(int)video.bits->getBit();
v = (v ^ sign) - sign;
}
memset(bundle.curDec, v, n);
bundle.curDec += n;
return;
}
do {
byte v = getHuffmanSymbol(video, bundle.huffman);
if (v) {
int sign = -(int)video.bits->getBit();
v = (v ^ sign) - sign;
}
*bundle.curDec++ = v;
} while (bundle.curDec < decEnd);
}
const uint8 rleLens[4] = { 4, 8, 12, 32 };
void BinkDecoder::readBlockTypes(VideoFrame &video, Bundle &bundle) {
uint32 n = readBundleCount(video, bundle);
if (n == 0)
return;
byte *decEnd = bundle.curDec + n;
if (decEnd > bundle.dataEnd)
error("Too many block type values");
if (video.bits->getBit()) {
byte v = video.bits->getBits(4);
memset(bundle.curDec, v, n);
bundle.curDec += n;
return;
}
byte last = 0;
do {
byte v = getHuffmanSymbol(video, bundle.huffman);
if (v < 12) {
last = v;
*bundle.curDec++ = v;
} else {
int run = rleLens[v - 12];
memset(bundle.curDec, last, run);
bundle.curDec += run;
}
} while (bundle.curDec < decEnd);
}
void BinkDecoder::readPatterns(VideoFrame &video, Bundle &bundle) {
uint32 n = readBundleCount(video, bundle);
if (n == 0)
return;
byte *decEnd = bundle.curDec + n;
if (decEnd > bundle.dataEnd)
error("Too many pattern values");
byte v;
while (bundle.curDec < decEnd) {
v = getHuffmanSymbol(video, bundle.huffman);
v |= getHuffmanSymbol(video, bundle.huffman) << 4;
*bundle.curDec++ = v;
}
}
void BinkDecoder::readColors(VideoFrame &video, Bundle &bundle) {
uint32 n = readBundleCount(video, bundle);
if (n == 0)
return;
byte *decEnd = bundle.curDec + n;
if (decEnd > bundle.dataEnd)
error("Too many color values");
if (video.bits->getBit()) {
_colLastVal = getHuffmanSymbol(video, _colHighHuffman[_colLastVal]);
byte v;
v = getHuffmanSymbol(video, bundle.huffman);
v = (_colLastVal << 4) | v;
if (_id != kBIKiID) {
int sign = ((int8) v) >> 7;
v = ((v & 0x7F) ^ sign) - sign;
v += 0x80;
}
memset(bundle.curDec, v, n);
bundle.curDec += n;
return;
}
while (bundle.curDec < decEnd) {
_colLastVal = getHuffmanSymbol(video, _colHighHuffman[_colLastVal]);
byte v;
v = getHuffmanSymbol(video, bundle.huffman);
v = (_colLastVal << 4) | v;
if (_id != kBIKiID) {
int sign = ((int8) v) >> 7;
v = ((v & 0x7F) ^ sign) - sign;
v += 0x80;
}
*bundle.curDec++ = v;
}
}
void BinkDecoder::readDCS(VideoFrame &video, Bundle &bundle, int startBits, bool hasSign) {
uint32 length = readBundleCount(video, bundle);
if (length == 0)
return;
int16 *dest = (int16 *) bundle.curDec;
int32 v = video.bits->getBits(startBits - (hasSign ? 1 : 0));
if (v && hasSign) {
int sign = -(int)video.bits->getBit();
v = (v ^ sign) - sign;
}
*dest++ = v;
length--;
for (uint32 i = 0; i < length; i += 8) {
uint32 length2 = MIN<uint32>(length - i, 8);
byte bSize = video.bits->getBits(4);
if (bSize) {
for (uint32 j = 0; j < length2; j++) {
int16 v2 = video.bits->getBits(bSize);
if (v2) {
int sign = -(int)video.bits->getBit();
v2 = (v2 ^ sign) - sign;
}
v += v2;
*dest++ = v;
if ((v < -32768) || (v > 32767))
error("DC value went out of bounds: %d", v);
}
} else
for (uint32 j = 0; j < length2; j++)
*dest++ = v;
}
bundle.curDec = (byte *) dest;
}
/** Reads 8x8 block of DCT coefficients. */
void BinkDecoder::readDCTCoeffs(VideoFrame &video, int16 *block, bool isIntra) {
int coefCount = 0;
int coefIdx[64];
int listStart = 64;
int listEnd = 64;
int coefList[128]; int modeList[128];
coefList[listEnd] = 4; modeList[listEnd++] = 0;
coefList[listEnd] = 24; modeList[listEnd++] = 0;
coefList[listEnd] = 44; modeList[listEnd++] = 0;
coefList[listEnd] = 1; modeList[listEnd++] = 3;
coefList[listEnd] = 2; modeList[listEnd++] = 3;
coefList[listEnd] = 3; modeList[listEnd++] = 3;
int bits = video.bits->getBits(4) - 1;
for (int mask = 1 << bits; bits >= 0; mask >>= 1, bits--) {
int listPos = listStart;
while (listPos < listEnd) {
if (!(modeList[listPos] | coefList[listPos]) || !video.bits->getBit()) {
listPos++;
continue;
}
int ccoef = coefList[listPos];
int mode = modeList[listPos];
switch (mode) {
case 0:
coefList[listPos] = ccoef + 4;
modeList[listPos] = 1;
case 2:
if (mode == 2) {
coefList[listPos] = 0;
modeList[listPos++] = 0;
}
for (int i = 0; i < 4; i++, ccoef++) {
if (video.bits->getBit()) {
coefList[--listStart] = ccoef;
modeList[ listStart] = 3;
} else {
int t;
if (!bits) {
t = 1 - (video.bits->getBit() << 1);
} else {
t = video.bits->getBits(bits) | mask;
int sign = -(int)video.bits->getBit();
t = (t ^ sign) - sign;
}
block[binkScan[ccoef]] = t;
coefIdx[coefCount++] = ccoef;
}
}
break;
case 1:
modeList[listPos] = 2;
for (int i = 0; i < 3; i++) {
ccoef += 4;
coefList[listEnd] = ccoef;
modeList[listEnd++] = 2;
}
break;
case 3:
int t;
if (!bits) {
t = 1 - (video.bits->getBit() << 1);
} else {
t = video.bits->getBits(bits) | mask;
int sign = -(int)video.bits->getBit();
t = (t ^ sign) - sign;
}
block[binkScan[ccoef]] = t;
coefIdx[coefCount++] = ccoef;
coefList[listPos] = 0;
modeList[listPos++] = 0;
break;
}
}
}
uint8 quantIdx = video.bits->getBits(4);
const uint32 *quant = isIntra ? binkIntraQuant[quantIdx] : binkInterQuant[quantIdx];
block[0] = (block[0] * quant[0]) >> 11;
for (int i = 0; i < coefCount; i++) {
int idx = coefIdx[i];
block[binkScan[idx]] = (block[binkScan[idx]] * quant[idx]) >> 11;
}
}
/** Reads 8x8 block with residue after motion compensation. */
void BinkDecoder::readResidue(VideoFrame &video, int16 *block, int masksCount) {
int nzCoeff[64];
int nzCoeffCount = 0;
int listStart = 64;
int listEnd = 64;
int coefList[128]; int modeList[128];
coefList[listEnd] = 4; modeList[listEnd++] = 0;
coefList[listEnd] = 24; modeList[listEnd++] = 0;
coefList[listEnd] = 44; modeList[listEnd++] = 0;
coefList[listEnd] = 0; modeList[listEnd++] = 2;
for (int mask = 1 << video.bits->getBits(3); mask; mask >>= 1) {
for (int i = 0; i < nzCoeffCount; i++) {
if (!video.bits->getBit())
continue;
if (block[nzCoeff[i]] < 0)
block[nzCoeff[i]] -= mask;
else
block[nzCoeff[i]] += mask;
masksCount--;
if (masksCount < 0)
return;
}
int listPos = listStart;
while (listPos < listEnd) {
if (!(coefList[listPos] | modeList[listPos]) || !video.bits->getBit()) {
listPos++;
continue;
}
int ccoef = coefList[listPos];
int mode = modeList[listPos];
switch (mode) {
case 0:
coefList[listPos] = ccoef + 4;
modeList[listPos] = 1;
case 2:
if (mode == 2) {
coefList[listPos] = 0;
modeList[listPos++] = 0;
}
for (int i = 0; i < 4; i++, ccoef++) {
if (video.bits->getBit()) {
coefList[--listStart] = ccoef;
modeList[ listStart] = 3;
} else {
nzCoeff[nzCoeffCount++] = binkScan[ccoef];
int sign = -(int)video.bits->getBit();
block[binkScan[ccoef]] = (mask ^ sign) - sign;
masksCount--;
if (masksCount < 0)
return;
}
}
break;
case 1:
modeList[listPos] = 2;
for (int i = 0; i < 3; i++) {
ccoef += 4;
coefList[listEnd] = ccoef;
modeList[listEnd++] = 2;
}
break;
case 3:
nzCoeff[nzCoeffCount++] = binkScan[ccoef];
int sign = -(int)video.bits->getBit();
block[binkScan[ccoef]] = (mask ^ sign) - sign;
coefList[listPos] = 0;
modeList[listPos++] = 0;
masksCount--;
if (masksCount < 0)
return;
break;
}
}
}
}
float BinkDecoder::getFloat(AudioTrack &audio) {
int power = audio.bits->getBits(5);
float f = ldexp((float)audio.bits->getBits(23), power - 23);
if (audio.bits->getBit())
f = -f;
return f;
}
void BinkDecoder::audioBlock(AudioTrack &audio, int16 *out) {
if (audio.codec == kAudioCodecDCT)
audioBlockDCT (audio);
else if (audio.codec == kAudioCodecRDFT)
audioBlockRDFT(audio);
floatToInt16Interleave(out, const_cast<const float **>(audio.coeffsPtr), audio.frameLen, audio.channels);
if (!audio.first) {
int count = audio.overlapLen * audio.channels;
int shift = Common::intLog2(count);
for (int i = 0; i < count; i++) {
out[i] = (audio.prevCoeffs[i] * (count - i) + out[i] * i) >> shift;
}
}
memcpy(audio.prevCoeffs, out + audio.blockSize, audio.overlapLen * audio.channels * sizeof(*out));
audio.first = false;
}
void BinkDecoder::audioBlockDCT(AudioTrack &audio) {
audio.bits->skip(2);
for (uint8 i = 0; i < audio.channels; i++) {
float *coeffs = audio.coeffsPtr[i];
readAudioCoeffs(audio, coeffs);
coeffs[0] /= 0.5;
audio.dct->calc(coeffs);
for (uint32 j = 0; j < audio.frameLen; j++)
coeffs[j] *= (audio.frameLen / 2.0);
}
}
void BinkDecoder::audioBlockRDFT(AudioTrack &audio) {
for (uint8 i = 0; i < audio.channels; i++) {
float *coeffs = audio.coeffsPtr[i];
readAudioCoeffs(audio, coeffs);
audio.rdft->calc(coeffs);
}
}
static const uint8 rleLengthTab[16] = {
2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 64
};
void BinkDecoder::readAudioCoeffs(AudioTrack &audio, float *coeffs) {
coeffs[0] = getFloat(audio) * audio.root;
coeffs[1] = getFloat(audio) * audio.root;
float quant[25];
for (uint32 i = 0; i < audio.bandCount; i++) {
int value = audio.bits->getBits(8);
// 0.066399999 / log10(M_E)
quant[i] = exp(MIN(value, 95) * 0.15289164787221953823f) * audio.root;
}
float q = 0.0;
// Find band (k)
int k;
for (k = 0; audio.bands[k] < 1; k++)
q = quant[k];
// Parse coefficients
uint32 i = 2;
while (i < audio.frameLen) {
uint32 j = 0;
if (audio.bits->getBit())
j = i + rleLengthTab[audio.bits->getBits(4)] * 8;
else
j = i + 8;
j = MIN(j, audio.frameLen);
int width = audio.bits->getBits(4);
if (width == 0) {
memset(coeffs + i, 0, (j - i) * sizeof(*coeffs));
i = j;
while (audio.bands[k] * 2 < i)
q = quant[k++];
} else {
while (i < j) {
if (audio.bands[k] * 2 == i)
q = quant[k++];
int coeff = audio.bits->getBits(width);
if (coeff) {
if (audio.bits->getBit())
coeffs[i] = -q * coeff;
else
coeffs[i] = q * coeff;
} else {
coeffs[i] = 0.0;
}
i++;
}
}
}
}
static inline int floatToInt16One(float src) {
return (int16) CLIP<int>((int) floor(src + 0.5), -32768, 32767);
}
void BinkDecoder::floatToInt16Interleave(int16 *dst, const float **src, uint32 length, uint8 channels) {
if (channels == 2) {
for (uint32 i = 0; i < length; i++) {
dst[2 * i ] = floatToInt16One(src[0][i]);
dst[2 * i + 1] = floatToInt16One(src[1][i]);
}
} else {
for(uint8 c = 0; c < channels; c++)
for(uint32 i = 0, j = c; i < length; i++, j += channels)
dst[j] = floatToInt16One(src[c][i]);
}
}
#define A1 2896 /* (1/sqrt(2))<<12 */
#define A2 2217
#define A3 3784
#define A4 -5352
#define IDCT_TRANSFORM(dest,s0,s1,s2,s3,s4,s5,s6,s7,d0,d1,d2,d3,d4,d5,d6,d7,munge,src) {\
const int a0 = (src)[s0] + (src)[s4]; \
const int a1 = (src)[s0] - (src)[s4]; \
const int a2 = (src)[s2] + (src)[s6]; \
const int a3 = (A1*((src)[s2] - (src)[s6])) >> 11; \
const int a4 = (src)[s5] + (src)[s3]; \
const int a5 = (src)[s5] - (src)[s3]; \
const int a6 = (src)[s1] + (src)[s7]; \
const int a7 = (src)[s1] - (src)[s7]; \
const int b0 = a4 + a6; \
const int b1 = (A3*(a5 + a7)) >> 11; \
const int b2 = ((A4*a5) >> 11) - b0 + b1; \
const int b3 = (A1*(a6 - a4) >> 11) - b2; \
const int b4 = ((A2*a7) >> 11) + b3 - b1; \
(dest)[d0] = munge(a0+a2 +b0); \
(dest)[d1] = munge(a1+a3-a2+b2); \
(dest)[d2] = munge(a1-a3+a2+b3); \
(dest)[d3] = munge(a0-a2 -b4); \
(dest)[d4] = munge(a0-a2 +b4); \
(dest)[d5] = munge(a1-a3+a2-b3); \
(dest)[d6] = munge(a1+a3-a2-b2); \
(dest)[d7] = munge(a0+a2 -b0); \
}
/* end IDCT_TRANSFORM macro */
#define MUNGE_NONE(x) (x)
#define IDCT_COL(dest,src) IDCT_TRANSFORM(dest,0,8,16,24,32,40,48,56,0,8,16,24,32,40,48,56,MUNGE_NONE,src)
#define MUNGE_ROW(x) (((x) + 0x7F)>>8)
#define IDCT_ROW(dest,src) IDCT_TRANSFORM(dest,0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7,MUNGE_ROW,src)
static inline void IDCTCol(int16 *dest, const int16 *src)
{
if ((src[8] | src[16] | src[24] | src[32] | src[40] | src[48] | src[56]) == 0) {
dest[ 0] =
dest[ 8] =
dest[16] =
dest[24] =
dest[32] =
dest[40] =
dest[48] =
dest[56] = src[0];
} else {
IDCT_COL(dest, src);
}
}
void BinkDecoder::IDCT(int16 *block) {
int i;
int16 temp[64];
for (i = 0; i < 8; i++)
IDCTCol(&temp[i], &block[i]);
for (i = 0; i < 8; i++) {
IDCT_ROW( (&block[8*i]), (&temp[8*i]) );
}
}
void BinkDecoder::IDCTAdd(DecodeContext &ctx, int16 *block) {
int i, j;
IDCT(block);
byte *dest = ctx.dest;
for (i = 0; i < 8; i++, dest += ctx.pitch, block += 8)
for (j = 0; j < 8; j++)
dest[j] += block[j];
}
void BinkDecoder::IDCTPut(DecodeContext &ctx, int16 *block) {
int i;
int16 temp[64];
for (i = 0; i < 8; i++)
IDCTCol(&temp[i], &block[i]);
for (i = 0; i < 8; i++) {
IDCT_ROW( (&ctx.dest[i*ctx.pitch]), (&temp[8*i]) );
}
}
void BinkDecoder::updateVolume() {
if (g_system->getMixer()->isSoundHandleActive(_audioHandle))
g_system->getMixer()->setChannelVolume(_audioHandle, getVolume());
}
void BinkDecoder::updateBalance() {
if (g_system->getMixer()->isSoundHandleActive(_audioHandle))
g_system->getMixer()->setChannelBalance(_audioHandle, getBalance());
}
} // End of namespace Video