mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-25 19:25:20 +00:00
1013 lines
29 KiB
C++
1013 lines
29 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*
|
|
* The bottom part of this is file is adapted from SDL_rotozoom.c. The
|
|
* relevant copyright notice for those specific functions can be found at the
|
|
* top of that section.
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
#include "common/algorithm.h"
|
|
#include "common/endian.h"
|
|
#include "common/util.h"
|
|
#include "common/rect.h"
|
|
#include "common/math.h"
|
|
#include "common/textconsole.h"
|
|
#include "graphics/conversion.h"
|
|
#include "graphics/primitives.h"
|
|
#include "graphics/transparent_surface.h"
|
|
#include "graphics/transform_tools.h"
|
|
|
|
namespace Graphics {
|
|
|
|
static const int kBModShift = 0;//img->format.bShift;
|
|
static const int kGModShift = 8;//img->format.gShift;
|
|
static const int kRModShift = 16;//img->format.rShift;
|
|
static const int kAModShift = 24;//img->format.aShift;
|
|
|
|
#ifdef SCUMM_LITTLE_ENDIAN
|
|
static const int kAIndex = 0;
|
|
static const int kBIndex = 1;
|
|
static const int kGIndex = 2;
|
|
static const int kRIndex = 3;
|
|
|
|
#else
|
|
static const int kAIndex = 3;
|
|
static const int kBIndex = 2;
|
|
static const int kGIndex = 1;
|
|
static const int kRIndex = 0;
|
|
#endif
|
|
|
|
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
|
|
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
|
|
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
|
|
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
|
|
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
|
|
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
|
|
|
|
TransparentSurface::TransparentSurface() : Surface(), _alphaMode(ALPHA_FULL) {}
|
|
|
|
TransparentSurface::TransparentSurface(const Surface &surf, bool copyData) : Surface(), _alphaMode(ALPHA_FULL) {
|
|
if (copyData) {
|
|
copyFrom(surf);
|
|
} else {
|
|
w = surf.w;
|
|
h = surf.h;
|
|
pitch = surf.pitch;
|
|
format = surf.format;
|
|
// We need to cast the const qualifier away here because 'pixels'
|
|
// always needs to be writable. 'surf' however is a constant Surface,
|
|
// thus getPixels will always return const pixel data.
|
|
pixels = const_cast<void *>(surf.getPixels());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used w/opaque blitting (no alpha).
|
|
*/
|
|
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
|
|
|
|
byte *in;
|
|
byte *out;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
memcpy(out, in, width * 4);
|
|
for (uint32 j = 0; j < width; j++) {
|
|
out[kAIndex] = 0xFF;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used w/binary blitting (blit or no-blit, no blending).
|
|
*/
|
|
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
|
|
|
|
byte *in;
|
|
byte *out;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
uint32 pix = *(uint32 *)in;
|
|
int a = in[kAIndex];
|
|
|
|
if (a != 0) { // Full opacity (Any value not exactly 0 is Opaque here)
|
|
*(uint32 *)out = pix;
|
|
out[kAIndex] = 0xFF;
|
|
}
|
|
out += 4;
|
|
in += inStep;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used with alpha blended blitting
|
|
* @param ino a pointer to the input surface
|
|
* @param outo a pointer to the output surface
|
|
* @param width width of the input surface
|
|
* @param height height of the input surface
|
|
* @param pitch pitch of the output surface - that is, width in bytes of every row, usually bpp * width of the TARGET surface (the area we are blitting to might be smaller, do the math)
|
|
* @inStep size in bytes to skip to address each pixel, usually bpp of the source surface
|
|
* @inoStep width in bytes of every row on the *input* surface / kind of like pitch
|
|
* @color colormod in 0xAARRGGBB format - 0xFFFFFFFF for no colormod
|
|
*/
|
|
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
|
|
byte *in;
|
|
byte *out;
|
|
|
|
if (color == 0xffffffff) {
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
if (in[kAIndex] != 0) {
|
|
out[kAIndex] = 255;
|
|
out[kRIndex] = ((in[kRIndex] * in[kAIndex]) + out[kRIndex] * (255 - in[kAIndex])) >> 8;
|
|
out[kGIndex] = ((in[kGIndex] * in[kAIndex]) + out[kGIndex] * (255 - in[kAIndex])) >> 8;
|
|
out[kBIndex] = ((in[kBIndex] * in[kAIndex]) + out[kBIndex] * (255 - in[kAIndex])) >> 8;
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
} else {
|
|
|
|
byte ca = (color >> kAModShift) & 0xFF;
|
|
byte cr = (color >> kRModShift) & 0xFF;
|
|
byte cg = (color >> kGModShift) & 0xFF;
|
|
byte cb = (color >> kBModShift) & 0xFF;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
uint32 ina = in[kAIndex] * ca >> 8;
|
|
|
|
if (ina != 0) {
|
|
out[kAIndex] = 255;
|
|
out[kBIndex] = (out[kBIndex] * (255 - ina) >> 8);
|
|
out[kGIndex] = (out[kGIndex] * (255 - ina) >> 8);
|
|
out[kRIndex] = (out[kRIndex] * (255 - ina) >> 8);
|
|
|
|
out[kBIndex] = out[kBIndex] + (in[kBIndex] * ina * cb >> 16);
|
|
out[kGIndex] = out[kGIndex] + (in[kGIndex] * ina * cg >> 16);
|
|
out[kRIndex] = out[kRIndex] + (in[kRIndex] * ina * cr >> 16);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used with additive blended blitting
|
|
*/
|
|
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
|
|
byte *in;
|
|
byte *out;
|
|
|
|
if (color == 0xffffffff) {
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
if (in[kAIndex] != 0) {
|
|
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) + out[kRIndex], 255);
|
|
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) + out[kGIndex], 255);
|
|
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) + out[kBIndex], 255);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
} else {
|
|
|
|
byte ca = (color >> kAModShift) & 0xFF;
|
|
byte cr = (color >> kRModShift) & 0xFF;
|
|
byte cg = (color >> kGModShift) & 0xFF;
|
|
byte cb = (color >> kBModShift) & 0xFF;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
uint32 ina = in[kAIndex] * ca >> 8;
|
|
|
|
if (cb != 255) {
|
|
out[kBIndex] = MIN<uint>(out[kBIndex] + ((in[kBIndex] * cb * ina) >> 16), 255u);
|
|
} else {
|
|
out[kBIndex] = MIN<uint>(out[kBIndex] + (in[kBIndex] * ina >> 8), 255u);
|
|
}
|
|
|
|
if (cg != 255) {
|
|
out[kGIndex] = MIN<uint>(out[kGIndex] + ((in[kGIndex] * cg * ina) >> 16), 255u);
|
|
} else {
|
|
out[kGIndex] = MIN<uint>(out[kGIndex] + (in[kGIndex] * ina >> 8), 255u);
|
|
}
|
|
|
|
if (cr != 255) {
|
|
out[kRIndex] = MIN<uint>(out[kRIndex] + ((in[kRIndex] * cr * ina) >> 16), 255u);
|
|
} else {
|
|
out[kRIndex] = MIN<uint>(out[kRIndex] + (in[kRIndex] * ina >> 8), 255u);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used with subtractive blended blitting
|
|
*/
|
|
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
|
|
byte *in;
|
|
byte *out;
|
|
|
|
if (color == 0xffffffff) {
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
if (in[kAIndex] != 0) {
|
|
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * out[kRIndex]) * in[kAIndex] >> 16), 0);
|
|
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * out[kGIndex]) * in[kAIndex] >> 16), 0);
|
|
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * out[kBIndex]) * in[kAIndex] >> 16), 0);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
} else {
|
|
|
|
byte cr = (color >> kRModShift) & 0xFF;
|
|
byte cg = (color >> kGModShift) & 0xFF;
|
|
byte cb = (color >> kBModShift) & 0xFF;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
out[kAIndex] = 255;
|
|
if (cb != 255) {
|
|
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * cb * (out[kBIndex]) * in[kAIndex]) >> 24), 0);
|
|
} else {
|
|
out[kBIndex] = MAX(out[kBIndex] - (in[kBIndex] * (out[kBIndex]) * in[kAIndex] >> 16), 0);
|
|
}
|
|
|
|
if (cg != 255) {
|
|
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * cg * (out[kGIndex]) * in[kAIndex]) >> 24), 0);
|
|
} else {
|
|
out[kGIndex] = MAX(out[kGIndex] - (in[kGIndex] * (out[kGIndex]) * in[kAIndex] >> 16), 0);
|
|
}
|
|
|
|
if (cr != 255) {
|
|
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * cr * (out[kRIndex]) * in[kAIndex]) >> 24), 0);
|
|
} else {
|
|
out[kRIndex] = MAX(out[kRIndex] - (in[kRIndex] * (out[kRIndex]) * in[kAIndex] >> 16), 0);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Optimized version of doBlit to be used with multiply blended blitting
|
|
*/
|
|
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
|
|
byte *in;
|
|
byte *out;
|
|
|
|
if (color == 0xffffffff) {
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
if (in[kAIndex] != 0) {
|
|
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) * out[kRIndex] >> 8, 255);
|
|
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) * out[kGIndex] >> 8, 255);
|
|
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) * out[kBIndex] >> 8, 255);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
} else {
|
|
byte ca = (color >> kAModShift) & 0xFF;
|
|
byte cr = (color >> kRModShift) & 0xFF;
|
|
byte cg = (color >> kGModShift) & 0xFF;
|
|
byte cb = (color >> kBModShift) & 0xFF;
|
|
|
|
for (uint32 i = 0; i < height; i++) {
|
|
out = outo;
|
|
in = ino;
|
|
for (uint32 j = 0; j < width; j++) {
|
|
|
|
uint32 ina = in[kAIndex] * ca >> 8;
|
|
|
|
if (cb != 255) {
|
|
out[kBIndex] = MIN<uint>(out[kBIndex] * ((in[kBIndex] * cb * ina) >> 16) >> 8, 255u);
|
|
} else {
|
|
out[kBIndex] = MIN<uint>(out[kBIndex] * (in[kBIndex] * ina >> 8) >> 8, 255u);
|
|
}
|
|
|
|
if (cg != 255) {
|
|
out[kGIndex] = MIN<uint>(out[kGIndex] * ((in[kGIndex] * cg * ina) >> 16) >> 8, 255u);
|
|
} else {
|
|
out[kGIndex] = MIN<uint>(out[kGIndex] * (in[kGIndex] * ina >> 8) >> 8, 255u);
|
|
}
|
|
|
|
if (cr != 255) {
|
|
out[kRIndex] = MIN<uint>(out[kRIndex] * ((in[kRIndex] * cr * ina) >> 16) >> 8, 255u);
|
|
} else {
|
|
out[kRIndex] = MIN<uint>(out[kRIndex] * (in[kRIndex] * ina >> 8) >> 8, 255u);
|
|
}
|
|
|
|
in += inStep;
|
|
out += 4;
|
|
}
|
|
outo += pitch;
|
|
ino += inoStep;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Common::Rect TransparentSurface::blit(Graphics::Surface &target, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
|
|
|
|
Common::Rect retSize;
|
|
retSize.top = 0;
|
|
retSize.left = 0;
|
|
retSize.setWidth(0);
|
|
retSize.setHeight(0);
|
|
// Check if we need to draw anything at all
|
|
int ca = (color >> kAModShift) & 0xff;
|
|
|
|
if (ca == 0) {
|
|
return retSize;
|
|
}
|
|
|
|
// Create an encapsulating surface for the data
|
|
TransparentSurface srcImage(*this, false);
|
|
// TODO: Is the data really in the screen format?
|
|
if (format.bytesPerPixel != 4) {
|
|
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
|
|
return retSize;
|
|
}
|
|
|
|
if (pPartRect) {
|
|
|
|
int xOffset = pPartRect->left;
|
|
int yOffset = pPartRect->top;
|
|
|
|
if (flipping & FLIP_V) {
|
|
yOffset = srcImage.h - pPartRect->bottom;
|
|
}
|
|
|
|
if (flipping & FLIP_H) {
|
|
xOffset = srcImage.w - pPartRect->right;
|
|
}
|
|
|
|
srcImage.pixels = getBasePtr(xOffset, yOffset);
|
|
srcImage.w = pPartRect->width();
|
|
srcImage.h = pPartRect->height();
|
|
|
|
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
|
|
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
|
|
} else {
|
|
|
|
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
|
|
srcImage.w, srcImage.h, color, width, height);
|
|
}
|
|
|
|
if (width == -1) {
|
|
width = srcImage.w;
|
|
}
|
|
if (height == -1) {
|
|
height = srcImage.h;
|
|
}
|
|
|
|
#ifdef SCALING_TESTING
|
|
// Hardcode scaling to 66% to test scaling
|
|
width = width * 2 / 3;
|
|
height = height * 2 / 3;
|
|
#endif
|
|
|
|
Graphics::Surface *img = nullptr;
|
|
Graphics::Surface *imgScaled = nullptr;
|
|
byte *savedPixels = nullptr;
|
|
if ((width != srcImage.w) || (height != srcImage.h)) {
|
|
// Scale the image
|
|
img = imgScaled = srcImage.scale(width, height);
|
|
savedPixels = (byte *)img->getPixels();
|
|
} else {
|
|
img = &srcImage;
|
|
}
|
|
|
|
// Handle off-screen clipping
|
|
if (posY < 0) {
|
|
img->h = MAX(0, (int)img->h - -posY);
|
|
if (!(flipping & FLIP_V))
|
|
img->setPixels((byte *)img->getBasePtr(0, -posY));
|
|
posY = 0;
|
|
}
|
|
|
|
if (posX < 0) {
|
|
img->w = MAX(0, (int)img->w - -posX);
|
|
if (!(flipping & FLIP_H))
|
|
img->setPixels((byte *)img->getBasePtr(-posX, 0));
|
|
posX = 0;
|
|
}
|
|
|
|
if (img->w > target.w - posX) {
|
|
if (flipping & FLIP_H)
|
|
img->setPixels((byte *)img->getBasePtr(img->w - target.w + posX, 0));
|
|
img->w = CLIP((int)img->w, 0, (int)MAX((int)target.w - posX, 0));
|
|
}
|
|
|
|
if (img->h > target.h - posY) {
|
|
if (flipping & FLIP_V)
|
|
img->setPixels((byte *)img->getBasePtr(0, img->h - target.h + posY));
|
|
img->h = CLIP((int)img->h, 0, (int)MAX((int)target.h - posY, 0));
|
|
}
|
|
|
|
// Flip surface
|
|
if ((img->w > 0) && (img->h > 0)) {
|
|
int xp = 0, yp = 0;
|
|
|
|
int inStep = 4;
|
|
int inoStep = img->pitch;
|
|
if (flipping & FLIP_H) {
|
|
inStep = -inStep;
|
|
xp = img->w - 1;
|
|
}
|
|
|
|
if (flipping & FLIP_V) {
|
|
inoStep = -inoStep;
|
|
yp = img->h - 1;
|
|
}
|
|
|
|
byte *ino = (byte *)img->getBasePtr(xp, yp);
|
|
byte *outo = (byte *)target.getBasePtr(posX, posY);
|
|
|
|
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
|
|
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
|
|
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
|
|
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
|
|
} else {
|
|
if (blendMode == BLEND_ADDITIVE) {
|
|
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else if (blendMode == BLEND_SUBTRACTIVE) {
|
|
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else if (blendMode == BLEND_MULTIPLY) {
|
|
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else {
|
|
assert(blendMode == BLEND_NORMAL);
|
|
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
retSize.setWidth(img->w);
|
|
retSize.setHeight(img->h);
|
|
|
|
if (imgScaled) {
|
|
imgScaled->setPixels(savedPixels);
|
|
imgScaled->free();
|
|
delete imgScaled;
|
|
}
|
|
|
|
return retSize;
|
|
}
|
|
|
|
Common::Rect TransparentSurface::blitClip(Graphics::Surface &target, Common::Rect clippingArea, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
|
|
Common::Rect retSize;
|
|
retSize.top = 0;
|
|
retSize.left = 0;
|
|
retSize.setWidth(0);
|
|
retSize.setHeight(0);
|
|
// Check if we need to draw anything at all
|
|
int ca = (color >> kAModShift) & 0xff;
|
|
|
|
if (ca == 0) {
|
|
return retSize;
|
|
}
|
|
|
|
// Create an encapsulating surface for the data
|
|
TransparentSurface srcImage(*this, false);
|
|
// TODO: Is the data really in the screen format?
|
|
if (format.bytesPerPixel != 4) {
|
|
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
|
|
return retSize;
|
|
}
|
|
|
|
if (pPartRect) {
|
|
|
|
int xOffset = pPartRect->left;
|
|
int yOffset = pPartRect->top;
|
|
|
|
if (flipping & FLIP_V) {
|
|
yOffset = srcImage.h - pPartRect->bottom;
|
|
}
|
|
|
|
if (flipping & FLIP_H) {
|
|
xOffset = srcImage.w - pPartRect->right;
|
|
}
|
|
|
|
srcImage.pixels = getBasePtr(xOffset, yOffset);
|
|
srcImage.w = pPartRect->width();
|
|
srcImage.h = pPartRect->height();
|
|
|
|
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
|
|
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
|
|
} else {
|
|
|
|
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
|
|
srcImage.w, srcImage.h, color, width, height);
|
|
}
|
|
|
|
if (width == -1) {
|
|
width = srcImage.w;
|
|
}
|
|
if (height == -1) {
|
|
height = srcImage.h;
|
|
}
|
|
|
|
#ifdef SCALING_TESTING
|
|
// Hardcode scaling to 66% to test scaling
|
|
width = width * 2 / 3;
|
|
height = height * 2 / 3;
|
|
#endif
|
|
|
|
Graphics::Surface *img = nullptr;
|
|
Graphics::Surface *imgScaled = nullptr;
|
|
byte *savedPixels = nullptr;
|
|
if ((width != srcImage.w) || (height != srcImage.h)) {
|
|
// Scale the image
|
|
img = imgScaled = srcImage.scale(width, height);
|
|
savedPixels = (byte *)img->getPixels();
|
|
} else {
|
|
img = &srcImage;
|
|
}
|
|
|
|
// Handle off-screen clipping
|
|
if (posY < clippingArea.top) {
|
|
img->h = MAX(0, (int)img->h - (clippingArea.top - posY));
|
|
if (!(flipping & FLIP_V))
|
|
img->setPixels((byte *)img->getBasePtr(0, clippingArea.top - posY));
|
|
posY = clippingArea.top;
|
|
}
|
|
|
|
if (posX < clippingArea.left) {
|
|
img->w = MAX(0, (int)img->w - (clippingArea.left - posX));
|
|
if (!(flipping & FLIP_H))
|
|
img->setPixels((byte *)img->getBasePtr(clippingArea.left - posX, 0));
|
|
posX = clippingArea.left;
|
|
}
|
|
|
|
if (img->w > clippingArea.right - posX) {
|
|
if (flipping & FLIP_H)
|
|
img->setPixels((byte *)img->getBasePtr(img->w - clippingArea.right + posX, 0));
|
|
img->w = CLIP((int)img->w, 0, (int)MAX((int)clippingArea.right - posX, 0));
|
|
}
|
|
|
|
if (img->h > clippingArea.bottom - posY) {
|
|
if (flipping & FLIP_V)
|
|
img->setPixels((byte *)img->getBasePtr(0, img->h - clippingArea.bottom + posY));
|
|
img->h = CLIP((int)img->h, 0, (int)MAX((int)clippingArea.bottom - posY, 0));
|
|
}
|
|
|
|
// Flip surface
|
|
if ((img->w > 0) && (img->h > 0)) {
|
|
int xp = 0, yp = 0;
|
|
|
|
int inStep = 4;
|
|
int inoStep = img->pitch;
|
|
if (flipping & FLIP_H) {
|
|
inStep = -inStep;
|
|
xp = img->w - 1;
|
|
}
|
|
|
|
if (flipping & FLIP_V) {
|
|
inoStep = -inoStep;
|
|
yp = img->h - 1;
|
|
}
|
|
|
|
byte *ino = (byte *)img->getBasePtr(xp, yp);
|
|
byte *outo = (byte *)target.getBasePtr(posX, posY);
|
|
|
|
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
|
|
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
|
|
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
|
|
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
|
|
} else {
|
|
if (blendMode == BLEND_ADDITIVE) {
|
|
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else if (blendMode == BLEND_SUBTRACTIVE) {
|
|
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else if (blendMode == BLEND_MULTIPLY) {
|
|
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
} else {
|
|
assert(blendMode == BLEND_NORMAL);
|
|
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
retSize.setWidth(img->w);
|
|
retSize.setHeight(img->h);
|
|
|
|
if (imgScaled) {
|
|
imgScaled->setPixels(savedPixels);
|
|
imgScaled->free();
|
|
delete imgScaled;
|
|
}
|
|
|
|
return retSize;
|
|
}
|
|
|
|
/**
|
|
* Writes a color key to the alpha channel of the surface
|
|
* @param rKey the red component of the color key
|
|
* @param gKey the green component of the color key
|
|
* @param bKey the blue component of the color key
|
|
* @param overwriteAlpha if true, all other alpha will be set fully opaque
|
|
*/
|
|
void TransparentSurface::applyColorKey(uint8 rKey, uint8 gKey, uint8 bKey, bool overwriteAlpha) {
|
|
assert(format.bytesPerPixel == 4);
|
|
for (int i = 0; i < h; i++) {
|
|
for (int j = 0; j < w; j++) {
|
|
uint32 pix = ((uint32 *)pixels)[i * w + j];
|
|
uint8 r, g, b, a;
|
|
format.colorToARGB(pix, a, r, g, b);
|
|
if (r == rKey && g == gKey && b == bKey) {
|
|
a = 0;
|
|
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
|
|
} else if (overwriteAlpha) {
|
|
a = 255;
|
|
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets alpha channel for all pixels to specified value
|
|
* @param alpha value of the alpha channel to set
|
|
* @param skipTransparent if set to true, then do not touch pixels with alpha=0
|
|
*/
|
|
void TransparentSurface::setAlpha(uint8 alpha, bool skipTransparent) {
|
|
assert(format.bytesPerPixel == 4);
|
|
for (int i = 0; i < h; i++) {
|
|
for (int j = 0; j < w; j++) {
|
|
uint32 pix = ((uint32 *)pixels)[i * w + j];
|
|
uint8 r, g, b, a;
|
|
format.colorToARGB(pix, a, r, g, b);
|
|
if (!skipTransparent || a)
|
|
a = alpha;
|
|
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
AlphaType TransparentSurface::getAlphaMode() const {
|
|
return _alphaMode;
|
|
}
|
|
|
|
void TransparentSurface::setAlphaMode(AlphaType mode) {
|
|
_alphaMode = mode;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
The function below is adapted from SDL_rotozoom.c,
|
|
taken from SDL_gfx-2.0.18.
|
|
|
|
Its copyright notice:
|
|
|
|
=============================================================================
|
|
SDL_rotozoom.c: rotozoomer, zoomer and shrinker for 32bit or 8bit surfaces
|
|
|
|
Copyright (C) 2001-2012 Andreas Schiffler
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
|
|
Andreas Schiffler -- aschiffler at ferzkopp dot net
|
|
=============================================================================
|
|
|
|
|
|
The functions have been adapted for different structures and coordinate
|
|
systems.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
struct tColorRGBA { byte r; byte g; byte b; byte a; };
|
|
|
|
template <TFilteringMode filteringMode>
|
|
TransparentSurface *TransparentSurface::rotoscaleT(const TransformStruct &transform) const {
|
|
|
|
assert(transform._angle != 0); // This would not be ideal; rotoscale() should never be called in conditional branches where angle = 0 anyway.
|
|
|
|
Common::Point newHotspot;
|
|
Common::Rect srcRect(0, 0, (int16)w, (int16)h);
|
|
Common::Rect rect = TransformTools::newRect(Common::Rect(srcRect), transform, &newHotspot);
|
|
Common::Rect dstRect(0, 0, (int16)(rect.right - rect.left), (int16)(rect.bottom - rect.top));
|
|
|
|
TransparentSurface *target = new TransparentSurface();
|
|
assert(format.bytesPerPixel == 4);
|
|
|
|
int srcW = w;
|
|
int srcH = h;
|
|
int dstW = dstRect.width();
|
|
int dstH = dstRect.height();
|
|
|
|
target->create((uint16)dstW, (uint16)dstH, this->format);
|
|
|
|
if (transform._zoom.x == 0 || transform._zoom.y == 0) {
|
|
return target;
|
|
}
|
|
|
|
uint32 invAngle = 360 - (transform._angle % 360);
|
|
float invAngleRad = Common::deg2rad<uint32,float>(invAngle);
|
|
float invCos = cos(invAngleRad);
|
|
float invSin = sin(invAngleRad);
|
|
|
|
int icosx = (int)(invCos * (65536.0f * kDefaultZoomX / transform._zoom.x));
|
|
int isinx = (int)(invSin * (65536.0f * kDefaultZoomX / transform._zoom.x));
|
|
int icosy = (int)(invCos * (65536.0f * kDefaultZoomY / transform._zoom.y));
|
|
int isiny = (int)(invSin * (65536.0f * kDefaultZoomY / transform._zoom.y));
|
|
|
|
|
|
bool flipx = false, flipy = false; // TODO: See mirroring comment in RenderTicket ctor
|
|
|
|
int xd = (srcRect.left + transform._hotspot.x) << 16;
|
|
int yd = (srcRect.top + transform._hotspot.y) << 16;
|
|
int cx = newHotspot.x;
|
|
int cy = newHotspot.y;
|
|
|
|
int ax = -icosx * cx;
|
|
int ay = -isiny * cx;
|
|
int sw = srcW - 1;
|
|
int sh = srcH - 1;
|
|
|
|
tColorRGBA *pc = (tColorRGBA*)target->getBasePtr(0, 0);
|
|
|
|
for (int y = 0; y < dstH; y++) {
|
|
int t = cy - y;
|
|
int sdx = ax + (isinx * t) + xd;
|
|
int sdy = ay - (icosy * t) + yd;
|
|
for (int x = 0; x < dstW; x++) {
|
|
int dx = (sdx >> 16);
|
|
int dy = (sdy >> 16);
|
|
if (flipx) {
|
|
dx = sw - dx;
|
|
}
|
|
if (flipy) {
|
|
dy = sh - dy;
|
|
}
|
|
|
|
if (filteringMode == FILTER_BILINEAR) {
|
|
if ((dx > -1) && (dy > -1) && (dx < sw) && (dy < sh)) {
|
|
const tColorRGBA *sp = (const tColorRGBA *)getBasePtr(dx, dy);
|
|
tColorRGBA c00, c01, c10, c11, cswap;
|
|
c00 = *sp;
|
|
sp += 1;
|
|
c01 = *sp;
|
|
sp += (this->pitch / 4);
|
|
c11 = *sp;
|
|
sp -= 1;
|
|
c10 = *sp;
|
|
if (flipx) {
|
|
cswap = c00; c00=c01; c01=cswap;
|
|
cswap = c10; c10=c11; c11=cswap;
|
|
}
|
|
if (flipy) {
|
|
cswap = c00; c00=c10; c10=cswap;
|
|
cswap = c01; c01=c11; c11=cswap;
|
|
}
|
|
/*
|
|
* Interpolate colors
|
|
*/
|
|
int ex = (sdx & 0xffff);
|
|
int ey = (sdy & 0xffff);
|
|
int t1, t2;
|
|
t1 = ((((c01.r - c00.r) * ex) >> 16) + c00.r) & 0xff;
|
|
t2 = ((((c11.r - c10.r) * ex) >> 16) + c10.r) & 0xff;
|
|
pc->r = (((t2 - t1) * ey) >> 16) + t1;
|
|
t1 = ((((c01.g - c00.g) * ex) >> 16) + c00.g) & 0xff;
|
|
t2 = ((((c11.g - c10.g) * ex) >> 16) + c10.g) & 0xff;
|
|
pc->g = (((t2 - t1) * ey) >> 16) + t1;
|
|
t1 = ((((c01.b - c00.b) * ex) >> 16) + c00.b) & 0xff;
|
|
t2 = ((((c11.b - c10.b) * ex) >> 16) + c10.b) & 0xff;
|
|
pc->b = (((t2 - t1) * ey) >> 16) + t1;
|
|
t1 = ((((c01.a - c00.a) * ex) >> 16) + c00.a) & 0xff;
|
|
t2 = ((((c11.a - c10.a) * ex) >> 16) + c10.a) & 0xff;
|
|
pc->a = (((t2 - t1) * ey) >> 16) + t1;
|
|
}
|
|
} else {
|
|
if ((dx >= 0) && (dy >= 0) && (dx < srcW) && (dy < srcH)) {
|
|
const tColorRGBA *sp = (const tColorRGBA *)getBasePtr(dx, dy);
|
|
*pc = *sp;
|
|
}
|
|
}
|
|
sdx += icosx;
|
|
sdy += isiny;
|
|
pc++;
|
|
}
|
|
}
|
|
return target;
|
|
}
|
|
|
|
TransparentSurface *TransparentSurface::scale(uint16 newWidth, uint16 newHeight, bool filtering) const {
|
|
|
|
TransparentSurface *target = new TransparentSurface();
|
|
|
|
target->create(newWidth, newHeight, format);
|
|
|
|
if (filtering) {
|
|
scaleBlitBilinear((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format);
|
|
} else {
|
|
scaleBlit((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format);
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
TransparentSurface *TransparentSurface::convertTo(const PixelFormat &dstFormat, const byte *palette) const {
|
|
assert(pixels);
|
|
|
|
TransparentSurface *surface = new TransparentSurface();
|
|
|
|
// If the target format is the same, just copy
|
|
if (format == dstFormat) {
|
|
surface->copyFrom(*this);
|
|
return surface;
|
|
}
|
|
|
|
if (format.bytesPerPixel == 0 || format.bytesPerPixel > 4)
|
|
error("Surface::convertTo(): Can only convert from 1Bpp, 2Bpp, 3Bpp, and 4Bpp");
|
|
|
|
if (dstFormat.bytesPerPixel != 2 && dstFormat.bytesPerPixel != 4)
|
|
error("Surface::convertTo(): Can only convert to 2Bpp and 4Bpp");
|
|
|
|
surface->create(w, h, dstFormat);
|
|
|
|
if (format.bytesPerPixel == 1) {
|
|
// Converting from paletted to high color
|
|
assert(palette);
|
|
|
|
for (int y = 0; y < h; y++) {
|
|
const byte *srcRow = (const byte *)getBasePtr(0, y);
|
|
byte *dstRow = (byte *)surface->getBasePtr(0, y);
|
|
|
|
for (int x = 0; x < w; x++) {
|
|
byte index = *srcRow++;
|
|
byte r = palette[index * 3];
|
|
byte g = palette[index * 3 + 1];
|
|
byte b = palette[index * 3 + 2];
|
|
|
|
uint32 color = dstFormat.RGBToColor(r, g, b);
|
|
|
|
if (dstFormat.bytesPerPixel == 2)
|
|
*((uint16 *)dstRow) = color;
|
|
else
|
|
*((uint32 *)dstRow) = color;
|
|
|
|
dstRow += dstFormat.bytesPerPixel;
|
|
}
|
|
}
|
|
} else {
|
|
// Converting from high color to high color
|
|
for (int y = 0; y < h; y++) {
|
|
const byte *srcRow = (const byte *)getBasePtr(0, y);
|
|
byte *dstRow = (byte *)surface->getBasePtr(0, y);
|
|
|
|
for (int x = 0; x < w; x++) {
|
|
uint32 srcColor;
|
|
if (format.bytesPerPixel == 2)
|
|
srcColor = READ_UINT16(srcRow);
|
|
else if (format.bytesPerPixel == 3)
|
|
srcColor = READ_UINT24(srcRow);
|
|
else
|
|
srcColor = READ_UINT32(srcRow);
|
|
|
|
srcRow += format.bytesPerPixel;
|
|
|
|
// Convert that color to the new format
|
|
byte r, g, b, a;
|
|
format.colorToARGB(srcColor, a, r, g, b);
|
|
uint32 color = dstFormat.ARGBToColor(a, r, g, b);
|
|
|
|
if (dstFormat.bytesPerPixel == 2)
|
|
*((uint16 *)dstRow) = color;
|
|
else
|
|
*((uint32 *)dstRow) = color;
|
|
|
|
dstRow += dstFormat.bytesPerPixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
return surface;
|
|
}
|
|
|
|
template TransparentSurface *TransparentSurface::rotoscaleT<FILTER_NEAREST>(const TransformStruct &transform) const;
|
|
template TransparentSurface *TransparentSurface::rotoscaleT<FILTER_BILINEAR>(const TransformStruct &transform) const;
|
|
|
|
TransparentSurface *TransparentSurface::rotoscale(const TransformStruct &transform) const {
|
|
return rotoscaleT<FILTER_BILINEAR>(transform);
|
|
}
|
|
|
|
} // End of namespace Graphics
|