scummvm/engines/gob/indeo3.cpp

1353 lines
37 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
/* Intel Indeo 3 decompressor, derived from ffmpeg.
*
* Original copyright note: * Intel Indeo 3 (IV31, IV32, etc.) video decoder for ffmpeg
* written, produced, and directed by Alan Smithee
*/
#include "common/system.h"
#include "common/endian.h"
#include "common/stream.h"
#include "common/frac.h"
#include "common/file.h"
#include "gob/indeo3.h"
#include "gob/indeo3data.h"
namespace Gob {
#define SQR(x) ((x) * (x))
PaletteLUT::PaletteLUT(byte depth, PaletteFormat format) {
assert((depth > 1) && (depth < 9));
_depth1 = depth;
_depth2 = 2 * _depth1;
_shift = 8 - _depth1;
_dim1 = (1 << _depth1);
_dim2 = _dim1 * _dim1;
_dim3 = _dim1 * _dim1 * _dim1;
_format = format;
_got = _dim1;
_lut = new byte[_dim3];
_gots = new byte[_dim1];
memset(_lutPal, 0, 768);
memset(_realPal, 0, 768);
memset(_gots, 1, _dim1);
}
void PaletteLUT::setPalette(const byte *palette, PaletteFormat format, byte depth) {
assert((depth > 1) && (depth < 9));
warning("Building new palette LUT");
int shift = 8 - depth;
if ((_format == kPaletteRGB) && (format == kPaletteYUV)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
YUV2RGB(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else if ((_format == kPaletteYUV) && (format == kPaletteRGB)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
RGB2YUV(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else
memcpy(_realPal, palette, 768);
byte *newPal = _lutPal, *oldPal = _realPal;
for (int i = 0; i < 768; i++)
*newPal++ = (*oldPal++) >> _shift;
_got = 0;
memset(_gots, 0, _dim1);
}
PaletteLUT::~PaletteLUT() {
delete[] _lut;
delete[] _gots;
}
void PaletteLUT::buildNext() {
if (_got >= _dim1)
return;
build(_got++);
}
void PaletteLUT::build(int d1) {
byte *lut = _lut + d1 * _dim2;
// warning("LUT %d/%d", d1, _dim1 - 1);
for (int j = 0; j < _dim1; j++) {
for (int k = 0; k < _dim1; k++) {
const byte *p = _lutPal;
uint32 d = 0xFFFFFFFF;
byte n = 0;
for (int c = 0; c < 256; c++, p += 3) {
uint32 di = SQR(d1 - p[0]) + SQR(j - p[1]) + SQR(k - p[2]);
if (di < d) {
d = di;
n = c;
if (d == 0)
break;
}
}
*lut++ = n;
}
}
_gots[d1] = 1;
}
inline int PaletteLUT::getIndex(byte c1, byte c2, byte c3) const {
return ((c1 >> _shift) << _depth2) | ((c2 >> _shift) << _depth1) | (c3 >> _shift);
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3) {
return _lut[getIndex(c1, c2, c3)];
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3, byte &nC1, byte &nC2, byte &nC3) {
if (!_gots[c1 >> _shift])
build(c1 >> _shift);
int palIndex = _lut[getIndex(c1, c2, c3)];
int i = palIndex * 3;
nC1 = _realPal[i + 0];
nC2 = _realPal[i + 1];
nC3 = _realPal[i + 2];
return palIndex;
}
SierraLight::SierraLight(int16 width, int16 height, PaletteLUT *palLUT) {
assert((width > 0) && (height > 0));
_width = width;
_height = height;
_palLUT = palLUT;
_errorBuf = new int32[3 * (2 * (_width + 2*1))];
memset(_errorBuf, 0, (3 * (2 * (_width + 2*1))) * sizeof(int32));
_curLine = 0;
_errors[0] = _errorBuf + 3;
_errors[1] = _errors[0] + 3 * (_width + 2*1);
}
SierraLight::~SierraLight() {
delete[] _errorBuf;
}
void SierraLight::newFrame() {
_curLine = 0;
memset(_errors[0], 0, 3 * _width * sizeof(int32));
memset(_errors[1], 0, 3 * _width * sizeof(int32));
}
void SierraLight::nextLine() {
// Clear the finished line, it will become the last line in the buffer
memset(_errors[_curLine], 0, 3 * _width * sizeof(int32));
_curLine = (_curLine + 1) % 2;
}
byte SierraLight::dither(byte c1, byte c2, byte c3, uint32 x) {
assert(_palLUT);
int32 eC1, eC2, eC3;
getErrors(x, eC1, eC2, eC3);
// Apply error on values
c1 = CLIP<int>(c1 + eC1, 0, 255);
c2 = CLIP<int>(c2 + eC2, 0, 255);
c3 = CLIP<int>(c3 + eC3, 0, 255);
// Find color
byte newC1, newC2, newC3;
byte newPixel = _palLUT->findNearest(c1, c2, c3, newC1, newC2, newC3);
// Calculate new error
eC1 = c1 - newC1;
eC2 = c2 - newC2;
eC3 = c3 - newC3;
// Add them
addErrors(x, eC1, eC2, eC3);
return newPixel;
}
inline void SierraLight::getErrors(uint32 x, int32 &eC1, int32 &eC2, int32 &eC3) {
int32 *errCur = _errors[_curLine];
x *= 3;
eC1 = errCur[x + 0] >> 2;
eC2 = errCur[x + 1] >> 2;
eC3 = errCur[x + 2] >> 2;
}
inline void SierraLight::addErrors(uint32 x, int32 eC1, int32 eC2, int32 eC3) {
int32 *errCur = _errors[_curLine];
int32 *errNext = _errors[(_curLine + 1) % 2];
// Indices for current error
int x0 = 3 * (x + 1);
int x1 = 3 * (x + 0);
int x2 = 3 * (x - 1);
errCur [x0 + 0] += eC1 << 1;
errCur [x0 + 1] += eC2 << 1;
errCur [x0 + 2] += eC3 << 1;
errNext[x1 + 0] += eC1;
errNext[x1 + 1] += eC2;
errNext[x1 + 2] += eC3;
errNext[x2 + 0] += eC1;
errNext[x2 + 1] += eC2;
errNext[x2 + 2] += eC3;
}
Indeo3::Indeo3(int16 width, int16 height, PaletteLUT *palLUT) {
assert((width > 0) && (height > 0));
_width = width;
_height = height;
_palLUT = palLUT;
_ditherSL = 0;
setDither(kDitherSierraLight);
buildModPred();
allocFrames();
}
Indeo3::~Indeo3() {
delete[] _iv_frame[0].the_buf;
delete[] _ModPred;
delete[] _corrector_type;
delete _ditherSL;
}
bool Indeo3::isIndeo3(byte *data, uint32 dataLen) {
// No data, no Indeo 3
if (!data)
return false;
// Less than 16 bytes? This can't be right
if (dataLen < 16)
return false;
// Unknown, but according to the docs, always 0
if (READ_LE_UINT32(data + 4) != 0)
return false;
uint32 id;
id = READ_LE_UINT32(data ); // frame number
id ^= READ_LE_UINT32(data + 4); // unknown
id ^= READ_LE_UINT32(data + 8); // checksum
id ^= READ_LE_UINT32(data + 12); // frame data length
// These 4 uint32s XOR'd need to spell "FRMH"
if (id != MKID_BE('FRMH'))
return false;
return true;
}
void Indeo3::setDither(DitherAlgorithm dither) {
delete _ditherSL;
_ditherSL = 0;
_dither = dither;
switch(dither) {
case kDitherSierraLight:
_ditherSL = new SierraLight(_width, _height, _palLUT);
break;
default:
return;
}
}
void Indeo3::buildModPred() {
_ModPred = new byte[8 * 128];
for (int i = 0; i < 128; i++) {
_ModPred[i+0*128] = (i > 126) ? 254 : 2*((i + 1) - ((i + 1) % 2));
_ModPred[i+1*128] = (i == 7) ? 20 : ((i == 119 || i == 120)
? 236 : 2*((i + 2) - ((i + 1) % 3)));
_ModPred[i+2*128] = (i > 125) ? 248 : 2*((i + 2) - ((i + 2) % 4));
_ModPred[i+3*128] = 2*((i + 1) - ((i - 3) % 5));
_ModPred[i+4*128] = (i == 8) ? 20 : 2*((i + 1) - ((i - 3) % 6));
_ModPred[i+5*128] = 2*((i + 4) - ((i + 3) % 7));
_ModPred[i+6*128] = (i > 123) ? 240 : 2*((i + 4) - ((i + 4) % 8));
_ModPred[i+7*128] = 2*((i + 5) - ((i + 4) % 9));
}
_corrector_type = new uint16[24 * 256];
for (int i = 0; i < 24; i++) {
for (int j = 0; j < 256; j++) {
_corrector_type[i*256+j] =
(j < _corrector_type_0[i]) ? 1 :
((j < 248 || (i == 16 && j == 248)) ? 0 :
_corrector_type_2[j - 248]);
}
}
}
void Indeo3::allocFrames() {
int32 luma_width = (_width + 3) & (~3);
int32 luma_height = (_height + 3) & (~3);
int32 chroma_width = ((luma_width >> 2) + 3) & (~3);
int32 chroma_height = ((luma_height>> 2) + 3) & (~3);
int32 luma_pixels = luma_width * luma_height;
int32 chroma_pixels = chroma_width * chroma_height;
uint32 bufsize = luma_pixels * 2 + luma_width * 3 +
(chroma_pixels + chroma_width) * 4;
_iv_frame[0].y_w = _iv_frame[1].y_w = luma_width;
_iv_frame[0].y_h = _iv_frame[1].y_h = luma_height;
_iv_frame[0].uv_w = _iv_frame[1].uv_w = chroma_width;
_iv_frame[0].uv_h = _iv_frame[1].uv_h = chroma_height;
_iv_frame[0].the_buf_size = bufsize;
_iv_frame[1].the_buf_size = 0;
_iv_frame[0].the_buf = new byte[bufsize];
memset(_iv_frame[0].the_buf, 0, bufsize);
_iv_frame[1].the_buf = 0;
uint32 offs = 0;
_iv_frame[0].Ybuf = _iv_frame[0].the_buf + luma_width;
offs += luma_pixels + luma_width * 2;
_iv_frame[1].Ybuf = _iv_frame[0].the_buf + offs;
offs += (luma_pixels + luma_width);
_iv_frame[0].Ubuf = _iv_frame[0].the_buf + offs;
offs += (chroma_pixels + chroma_width);
_iv_frame[1].Ubuf = _iv_frame[0].the_buf + offs;
offs += (chroma_pixels + chroma_width);
_iv_frame[0].Vbuf = _iv_frame[0].the_buf + offs;
offs += (chroma_pixels + chroma_width);
_iv_frame[1].Vbuf = _iv_frame[0].the_buf + offs;
for(int i = 1; i <= luma_width; i++)
_iv_frame[0].Ybuf[-i] = _iv_frame[1].Ybuf[-i] =
_iv_frame[0].Ubuf[-i] = 0x80;
for(int i = 1; i <= chroma_width; i++) {
_iv_frame[1].Ubuf[-i] = 0x80;
_iv_frame[0].Vbuf[-i] = 0x80;
_iv_frame[1].Vbuf[-i] = 0x80;
_iv_frame[1].Vbuf[chroma_pixels+i-1] = 0x80;
}
}
bool Indeo3::decompressFrame(byte *inData, uint32 dataLen,
byte *outData, uint16 width, uint16 height) {
// Not Indeo 3? Fail
if (!isIndeo3(inData, dataLen))
return false;
assert(outData);
assert(_palLUT);
uint32 frameDataLen = READ_LE_UINT32(inData + 12);
// Less data than the frame should have? Fail
if (dataLen < (frameDataLen - 16))
return false;
Common::MemoryReadStream frame(inData, dataLen);
frame.skip(16); // Header
frame.skip(2); // Unknown
uint16 flags1 = frame.readUint16LE();
uint32 flags3 = frame.readUint32LE();
uint8 flags2 = frame.readByte();
// Finding the reference frame
if(flags1 & 0x200) {
_cur_frame = _iv_frame + 1;
_ref_frame = _iv_frame;
} else {
_cur_frame = _iv_frame;
_ref_frame = _iv_frame + 1;
}
if (flags3 == 0x80)
return true;
frame.skip(3);
uint16 fHeight = frame.readUint16LE();
uint16 fWidth = frame.readUint16LE();
uint32 chromaHeight = ((fHeight >> 2) + 3) & 0x7FFC;
uint32 chromaWidth = ((fWidth >> 2) + 3) & 0x7FFC;
uint32 offs;
uint32 offsY = frame.readUint32LE() + 16;
uint32 offsU = frame.readUint32LE() + 16;
uint32 offsV = frame.readUint32LE() + 16;
frame.skip(4);
uint32 hPos = frame.pos();
byte *hdr_pos = inData + hPos;
byte *buf_pos;
// Luminance Y
frame.seek(offsY);
buf_pos = inData + offsY + 4;
offs = frame.readUint32LE();
decodeChunk(_cur_frame->Ybuf, _ref_frame->Ybuf, fWidth, fHeight,
buf_pos + offs * 2, flags2, hdr_pos, buf_pos, MIN<int>(fWidth, 160));
// Chrominance U
frame.seek(offsU);
buf_pos = inData + offsU + 4;
offs = frame.readUint32LE();
decodeChunk(_cur_frame->Vbuf, _ref_frame->Vbuf, chromaWidth, chromaHeight,
buf_pos + offs * 2, flags2, hdr_pos, buf_pos, MIN<int>(chromaWidth, 40));
// Chrominance V
frame.seek(offsV);
buf_pos = inData + offsV + 4;
offs = frame.readUint32LE();
decodeChunk(_cur_frame->Ubuf, _ref_frame->Ubuf, chromaWidth, chromaHeight,
buf_pos + offs * 2, flags2, hdr_pos, buf_pos, MIN<int>(chromaWidth, 40));
BlitState blitState;
blitState.widthY = _cur_frame->y_w;
blitState.widthUV = _cur_frame->uv_w;
blitState.uwidthUV = chromaWidth;
blitState.uwidthOut = fWidth;
blitState.heightY = _cur_frame->y_h;
blitState.heightUV = _cur_frame->uv_h;
blitState.uheightUV = chromaHeight;
blitState.uheightOut = fHeight;
blitState.scaleWYUV = blitState.widthY / blitState.widthUV;
blitState.scaleHYUV = blitState.heightY / blitState.heightUV;
blitState.scaleWYOut = blitState.widthY / blitState.uwidthOut;
blitState.scaleHYOut = blitState.heightY / blitState.uheightOut;
blitState.lineWidthOut = blitState.scaleWYOut * blitState.uwidthOut;
blitState.lineHeightOut = blitState.scaleHYOut * blitState.uheightOut;
blitState.bufY = _cur_frame->Ybuf;
blitState.bufU = _cur_frame->Ubuf;
blitState.bufV = _cur_frame->Vbuf;
blitState.bufOut = outData;
blitFrame(blitState);
return true;
}
void Indeo3::blitFrame(BlitState &s) {
if (_ditherSL)
_ditherSL->newFrame();
for (s.curY = 0; s.curY < s.uheightOut; s.curY++) {
if (_dither == kDitherNone)
blitLine(s);
else
blitLineDither(s);
}
}
void Indeo3::blitLine(BlitState &s) {
byte *lineU = s.bufU + (s.curY >> 2) * s.uwidthUV;
byte *lineV = s.bufV + (s.curY >> 2) * s.uwidthUV;
for (s.curX = 0; s.curX < s.uwidthOut; s.curX++) {
byte dataY = *s.bufY++;
byte dataU = lineU[s.curX >> 2];
byte dataV = lineV[s.curX >> 2];
for (int n = 0; n < s.scaleWYOut; n++)
*s.bufOut++ = _palLUT->findNearest(dataY, dataU, dataV);
}
byte *lineDest = s.bufOut - s.lineWidthOut;
for (int n = 1; n < s.scaleHYOut; n++) {
memcpy(s.bufOut, lineDest, s.lineWidthOut);
s.bufOut += s.lineWidthOut;
}
}
void Indeo3::blitLineDither(BlitState &s) {
byte *lineU = s.bufU + (s.curY >> 2) * s.uwidthUV;
byte *lineV = s.bufV + (s.curY >> 2) * s.uwidthUV;
for (uint16 i = 0; i < s.scaleHYOut; i++) {
byte *bufY = s.bufY;
for (s.curX = 0; s.curX < s.uwidthOut; s.curX++) {
byte dataY = *bufY++;
byte dataU = lineU[s.curX >> 2];
byte dataV = lineV[s.curX >> 2];
for (int n = 0; n < s.scaleWYOut; n++)
*s.bufOut++ = _ditherSL->dither(dataY, dataU, dataV, s.curX * s.scaleWYOut + n);
}
_ditherSL->nextLine();
}
s.bufY += s.uwidthOut;
}
typedef struct {
int32 xpos;
int32 ypos;
int32 width;
int32 height;
int32 split_flag;
int32 split_direction;
int32 usl7;
} ustr_t;
/* ---------------------------------------------------------------------- */
#define LV1_CHECK(buf1,rle_v3,lv1,lp2) \
if((lv1 & 0x80) != 0) { \
if(rle_v3 != 0) \
rle_v3 = 0; \
else { \
rle_v3 = 1; \
buf1 -= 2; \
} \
} \
lp2 = 4;
#define RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3) \
if(rle_v3 == 0) { \
rle_v2 = *buf1; \
rle_v1 = 1; \
if(rle_v2 > 32) { \
rle_v2 -= 32; \
rle_v1 = 0; \
} \
rle_v3 = 1; \
} \
buf1--;
#define LP2_CHECK(buf1,rle_v3,lp2) \
if(lp2 == 0 && rle_v3 != 0) \
rle_v3 = 0; \
else { \
buf1--; \
rle_v3 = 1; \
}
#define RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2) \
rle_v2--; \
if(rle_v2 == 0) { \
rle_v3 = 0; \
buf1 += 2; \
} \
lp2 = 4;
void Indeo3::decodeChunk(byte *cur, byte *ref, int width, int height,
const byte *buf1, uint32 fflags2, const byte *hdr,
const byte *buf2, int min_width_160) {
byte bit_buf;
uint32 bit_pos, lv, lv1, lv2;
int32 *width_tbl, width_tbl_arr[10];
const int8 *ref_vectors;
byte *cur_frm_pos, *ref_frm_pos, *cp, *cp2;
uint32 *cur_lp, *ref_lp;
const uint32 *correction_lp[2], *correctionloworder_lp[2], *correctionhighorder_lp[2];
uint16 *correction_type_sp[2];
ustr_t strip_tbl[20], *strip;
int i, j, k, lp1, lp2, flag1, cmd;
int blks_width, blks_height, region_160_width;
int rle_v1, rle_v2, rle_v3;
uint16 res;
bit_buf = 0;
ref_vectors = NULL;
width_tbl = width_tbl_arr + 1;
i = (width < 0 ? width + 3 : width)/4;
for(j = -1; j < 8; j++)
width_tbl[j] = i * j;
strip = strip_tbl;
for(region_160_width = 0; region_160_width < (width - min_width_160); region_160_width += min_width_160);
strip->ypos = strip->xpos = 0;
for(strip->width = min_width_160; width > strip->width; strip->width *= 2);
strip->height = height;
strip->split_direction = 0;
strip->split_flag = 0;
strip->usl7 = 0;
bit_pos = 0;
rle_v1 = rle_v2 = rle_v3 = 0;
while(strip >= strip_tbl) {
if(bit_pos <= 0) {
bit_pos = 8;
bit_buf = *buf1++;
}
bit_pos -= 2;
cmd = (bit_buf >> bit_pos) & 0x03;
if(cmd == 0) {
strip++;
memcpy(strip, strip-1, sizeof(ustr_t));
strip->split_flag = 1;
strip->split_direction = 0;
strip->height = (strip->height > 8 ? ((strip->height+8)>>4)<<3 : 4);
continue;
} else if(cmd == 1) {
strip++;
memcpy(strip, strip-1, sizeof(ustr_t));
strip->split_flag = 1;
strip->split_direction = 1;
strip->width = (strip->width > 8 ? ((strip->width+8)>>4)<<3 : 4);
continue;
} else if(cmd == 2) {
if(strip->usl7 == 0) {
strip->usl7 = 1;
ref_vectors = NULL;
continue;
}
} else if(cmd == 3) {
if(strip->usl7 == 0) {
strip->usl7 = 1;
ref_vectors = (const signed char*)buf2 + (*buf1 * 2);
buf1++;
continue;
}
}
cur_frm_pos = cur + width * strip->ypos + strip->xpos;
if((blks_width = strip->width) < 0)
blks_width += 3;
blks_width >>= 2;
blks_height = strip->height;
if(ref_vectors != NULL) {
ref_frm_pos = ref + (ref_vectors[0] + strip->ypos) * width +
ref_vectors[1] + strip->xpos;
} else
ref_frm_pos = cur_frm_pos - width_tbl[4];
if(cmd == 2) {
if(bit_pos <= 0) {
bit_pos = 8;
bit_buf = *buf1++;
}
bit_pos -= 2;
cmd = (bit_buf >> bit_pos) & 0x03;
if(cmd == 0 || ref_vectors != NULL) {
for(lp1 = 0; lp1 < blks_width; lp1++) {
for(i = 0, j = 0; i < blks_height; i++, j += width_tbl[1])
((uint32 *)cur_frm_pos)[j] = ((uint32 *)ref_frm_pos)[j];
cur_frm_pos += 4;
ref_frm_pos += 4;
}
} else if(cmd != 1)
return;
} else {
k = *buf1 >> 4;
j = *buf1 & 0x0f;
buf1++;
lv = j + fflags2;
if((lv - 8) <= 7 && (k == 0 || k == 3 || k == 10)) {
cp2 = _ModPred + ((lv - 8) << 7);
cp = ref_frm_pos;
for(i = 0; i < blks_width << 2; i++) {
int v = *cp >> 1;
*(cp++) = cp2[v];
}
}
if(k == 1 || k == 4) {
lv = (hdr[j] & 0xf) + fflags2;
correction_type_sp[0] = _corrector_type + (lv << 8);
correction_lp[0] = correction + (lv << 8);
lv = (hdr[j] >> 4) + fflags2;
correction_lp[1] = correction + (lv << 8);
correction_type_sp[1] = _corrector_type + (lv << 8);
} else {
correctionloworder_lp[0] = correctionloworder_lp[1] = correctionloworder + (lv << 8);
correctionhighorder_lp[0] = correctionhighorder_lp[1] = correctionhighorder + (lv << 8);
correction_type_sp[0] = correction_type_sp[1] = _corrector_type + (lv << 8);
correction_lp[0] = correction_lp[1] = correction + (lv << 8);
}
switch(k) {
case 1:
case 0: /********** CASE 0 **********/
for( ; blks_height > 0; blks_height -= 4) {
for(lp1 = 0; lp1 < blks_width; lp1++) {
for(lp2 = 0; lp2 < 4; ) {
k = *buf1++;
cur_lp = ((uint32 *)cur_frm_pos) + width_tbl[lp2];
ref_lp = ((uint32 *)ref_frm_pos) + width_tbl[lp2];
switch(correction_type_sp[0][k]) {
case 0:
*cur_lp = FROM_LE_32(((FROM_LE_32(*ref_lp) >> 1) + correction_lp[lp2 & 0x01][k]) << 1);
lp2++;
break;
case 1:
res = ((FROM_LE_16(((uint16 *)(ref_lp))[0]) >> 1) + correction_lp[lp2 & 0x01][*buf1]) << 1;
((uint16 *)cur_lp)[0] = FROM_LE_16(res);
res = ((FROM_LE_16(((uint16 *)(ref_lp))[1]) >> 1) + correction_lp[lp2 & 0x01][k]) << 1;
((uint16 *)cur_lp)[1] = FROM_LE_16(res);
buf1++;
lp2++;
break;
case 2:
if(lp2 == 0) {
for(i = 0, j = 0; i < 2; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 += 2;
}
break;
case 3:
if(lp2 < 2) {
for(i = 0, j = 0; i < (3 - lp2); i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 = 3;
}
break;
case 8:
if(lp2 == 0) {
RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3)
if(rle_v1 == 1 || ref_vectors != NULL) {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
}
RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2)
break;
} else {
rle_v1 = 1;
rle_v2 = *buf1 - 1;
}
case 5:
LP2_CHECK(buf1,rle_v3,lp2)
case 4:
for(i = 0, j = 0; i < (4 - lp2); i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 = 4;
break;
case 7:
if(rle_v3 != 0)
rle_v3 = 0;
else {
buf1--;
rle_v3 = 1;
}
case 6:
if(ref_vectors != NULL) {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
}
lp2 = 4;
break;
case 9:
lv1 = *buf1++;
lv = (lv1 & 0x7F) << 1;
lv += (lv << 8);
lv += (lv << 16);
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = lv;
LV1_CHECK(buf1,rle_v3,lv1,lp2)
break;
default:
return;
}
}
cur_frm_pos += 4;
ref_frm_pos += 4;
}
cur_frm_pos += ((width - blks_width) * 4);
ref_frm_pos += ((width - blks_width) * 4);
}
break;
case 4:
case 3: /********** CASE 3 **********/
if(ref_vectors != NULL)
return;
flag1 = 1;
for( ; blks_height > 0; blks_height -= 8) {
for(lp1 = 0; lp1 < blks_width; lp1++) {
for(lp2 = 0; lp2 < 4; ) {
k = *buf1++;
cur_lp = ((uint32 *)cur_frm_pos) + width_tbl[lp2 * 2];
ref_lp = ((uint32 *)cur_frm_pos) + width_tbl[(lp2 * 2) - 1];
switch(correction_type_sp[lp2 & 0x01][k]) {
case 0:
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(*ref_lp) >> 1) + correction_lp[lp2 & 0x01][k]) << 1);
if(lp2 > 0 || flag1 == 0 || strip->ypos != 0)
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
else
cur_lp[0] = FROM_LE_32(((FROM_LE_32(*ref_lp) >> 1) + correction_lp[lp2 & 0x01][k]) << 1);
lp2++;
break;
case 1:
res = ((FROM_LE_16(((uint16 *)ref_lp)[0]) >> 1) + correction_lp[lp2 & 0x01][*buf1]) << 1;
((uint16 *)cur_lp)[width_tbl[2]] = FROM_LE_16(res);
res = ((FROM_LE_16(((uint16 *)ref_lp)[1]) >> 1) + correction_lp[lp2 & 0x01][k]) << 1;
((uint16 *)cur_lp)[width_tbl[2]+1] = FROM_LE_16(res);
if(lp2 > 0 || flag1 == 0 || strip->ypos != 0)
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
else
cur_lp[0] = cur_lp[width_tbl[1]];
buf1++;
lp2++;
break;
case 2:
if(lp2 == 0) {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = *ref_lp;
lp2 += 2;
}
break;
case 3:
if(lp2 < 2) {
for(i = 0, j = 0; i < 6 - (lp2 * 2); i++, j += width_tbl[1])
cur_lp[j] = *ref_lp;
lp2 = 3;
}
break;
case 6:
lp2 = 4;
break;
case 7:
if(rle_v3 != 0)
rle_v3 = 0;
else {
buf1--;
rle_v3 = 1;
}
lp2 = 4;
break;
case 8:
if(lp2 == 0) {
RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3)
if(rle_v1 == 1) {
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
}
RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2)
break;
} else {
rle_v2 = (*buf1) - 1;
rle_v1 = 1;
}
case 5:
LP2_CHECK(buf1,rle_v3,lp2)
case 4:
for(i = 0, j = 0; i < 8 - (lp2 * 2); i++, j += width_tbl[1])
cur_lp[j] = *ref_lp;
lp2 = 4;
break;
case 9:
warning("Indeo3::decodeChunk: Untested (1)");
lv1 = *buf1++;
lv = (lv1 & 0x7F) << 1;
lv += (lv << 8);
lv += (lv << 16);
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = lv;
LV1_CHECK(buf1,rle_v3,lv1,lp2)
break;
default:
return;
}
}
cur_frm_pos += 4;
}
cur_frm_pos += (((width * 2) - blks_width) * 4);
flag1 = 0;
}
break;
case 10: /********** CASE 10 **********/
if(ref_vectors == NULL) {
flag1 = 1;
for( ; blks_height > 0; blks_height -= 8) {
for(lp1 = 0; lp1 < blks_width; lp1 += 2) {
for(lp2 = 0; lp2 < 4; ) {
k = *buf1++;
cur_lp = ((uint32 *)cur_frm_pos) + width_tbl[lp2 * 2];
ref_lp = ((uint32 *)cur_frm_pos) + width_tbl[(lp2 * 2) - 1];
lv1 = ref_lp[0];
lv2 = ref_lp[1];
if(lp2 == 0 && flag1 != 0) {
#if defined(SCUMM_BIG_ENDIAN)
lv1 = lv1 & 0xFF00FF00;
lv1 = (lv1 >> 8) | lv1;
lv2 = lv2 & 0xFF00FF00;
lv2 = (lv2 >> 8) | lv2;
#else
lv1 = lv1 & 0x00FF00FF;
lv1 = (lv1 << 8) | lv1;
lv2 = lv2 & 0x00FF00FF;
lv2 = (lv2 << 8) | lv2;
#endif
}
switch(correction_type_sp[lp2 & 0x01][k]) {
case 0:
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(lv1) >> 1) + correctionloworder_lp[lp2 & 0x01][k]) << 1);
cur_lp[width_tbl[1]+1] = FROM_LE_32(((FROM_LE_32(lv2) >> 1) + correctionhighorder_lp[lp2 & 0x01][k]) << 1);
if(lp2 > 0 || strip->ypos != 0 || flag1 == 0) {
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
cur_lp[0] = cur_lp[width_tbl[1]];
cur_lp[1] = cur_lp[width_tbl[1]+1];
}
lp2++;
break;
case 1:
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(lv1) >> 1) + correctionloworder_lp[lp2 & 0x01][*buf1]) << 1);
cur_lp[width_tbl[1]+1] = FROM_LE_32(((FROM_LE_32(lv2) >> 1) + correctionloworder_lp[lp2 & 0x01][k]) << 1);
if(lp2 > 0 || strip->ypos != 0 || flag1 == 0) {
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
cur_lp[0] = cur_lp[width_tbl[1]];
cur_lp[1] = cur_lp[width_tbl[1]+1];
}
buf1++;
lp2++;
break;
case 2:
if(lp2 == 0) {
if(flag1 != 0) {
for(i = 0, j = width_tbl[1]; i < 3; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
}
lp2 += 2;
}
break;
case 3:
if(lp2 < 2) {
if(lp2 == 0 && flag1 != 0) {
for(i = 0, j = width_tbl[1]; i < 5; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
for(i = 0, j = 0; i < 6 - (lp2 * 2); i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
}
lp2 = 3;
}
break;
case 8:
if(lp2 == 0) {
RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3)
if(rle_v1 == 1) {
if(flag1 != 0) {
for(i = 0, j = width_tbl[1]; i < 7; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
}
}
RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2)
break;
} else {
rle_v1 = 1;
rle_v2 = (*buf1) - 1;
}
case 5:
LP2_CHECK(buf1,rle_v3,lp2)
case 4:
if(lp2 == 0 && flag1 != 0) {
for(i = 0, j = width_tbl[1]; i < 7; i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
cur_lp[0] = ((cur_lp[-width_tbl[1]] >> 1) + (cur_lp[width_tbl[1]] >> 1)) & 0xFEFEFEFE;
cur_lp[1] = ((cur_lp[-width_tbl[1]+1] >> 1) + (cur_lp[width_tbl[1]+1] >> 1)) & 0xFEFEFEFE;
} else {
for(i = 0, j = 0; i < 8 - (lp2 * 2); i++, j += width_tbl[1]) {
cur_lp[j] = lv1;
cur_lp[j+1] = lv2;
}
}
lp2 = 4;
break;
case 6:
lp2 = 4;
break;
case 7:
if(lp2 == 0) {
if(rle_v3 != 0)
rle_v3 = 0;
else {
buf1--;
rle_v3 = 1;
}
lp2 = 4;
}
break;
case 9:
warning("Indeo3::decodeChunk: Untested (2)");
lv1 = *buf1;
lv = (lv1 & 0x7F) << 1;
lv += (lv << 8);
lv += (lv << 16);
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1])
cur_lp[j] = lv;
LV1_CHECK(buf1,rle_v3,lv1,lp2)
break;
default:
return;
}
}
cur_frm_pos += 8;
}
cur_frm_pos += (((width * 2) - blks_width) * 4);
flag1 = 0;
}
} else {
for( ; blks_height > 0; blks_height -= 8) {
for(lp1 = 0; lp1 < blks_width; lp1 += 2) {
for(lp2 = 0; lp2 < 4; ) {
k = *buf1++;
cur_lp = ((uint32 *)cur_frm_pos) + width_tbl[lp2 * 2];
ref_lp = ((uint32 *)ref_frm_pos) + width_tbl[lp2 * 2];
switch(correction_type_sp[lp2 & 0x01][k]) {
case 0:
lv1 = correctionloworder_lp[lp2 & 0x01][k];
lv2 = correctionhighorder_lp[lp2 & 0x01][k];
cur_lp[0] = FROM_LE_32(((FROM_LE_32(ref_lp[0]) >> 1) + lv1) << 1);
cur_lp[1] = FROM_LE_32(((FROM_LE_32(ref_lp[1]) >> 1) + lv2) << 1);
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(ref_lp[width_tbl[1]]) >> 1) + lv1) << 1);
cur_lp[width_tbl[1]+1] = FROM_LE_32(((FROM_LE_32(ref_lp[width_tbl[1]+1]) >> 1) + lv2) << 1);
lp2++;
break;
case 1:
lv1 = correctionloworder_lp[lp2 & 0x01][*buf1++];
lv2 = correctionloworder_lp[lp2 & 0x01][k];
cur_lp[0] = FROM_LE_32(((FROM_LE_32(ref_lp[0]) >> 1) + lv1) << 1);
cur_lp[1] = FROM_LE_32(((FROM_LE_32(ref_lp[1]) >> 1) + lv2) << 1);
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(ref_lp[width_tbl[1]]) >> 1) + lv1) << 1);
cur_lp[width_tbl[1]+1] = FROM_LE_32(((FROM_LE_32(ref_lp[width_tbl[1]+1]) >> 1) + lv2) << 1);
lp2++;
break;
case 2:
if(lp2 == 0) {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1]) {
cur_lp[j] = ref_lp[j];
cur_lp[j+1] = ref_lp[j+1];
}
lp2 += 2;
}
break;
case 3:
if(lp2 < 2) {
for(i = 0, j = 0; i < 6 - (lp2 * 2); i++, j += width_tbl[1]) {
cur_lp[j] = ref_lp[j];
cur_lp[j+1] = ref_lp[j+1];
}
lp2 = 3;
}
break;
case 8:
if(lp2 == 0) {
RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3)
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1]) {
((uint32 *)cur_frm_pos)[j] = ((uint32 *)ref_frm_pos)[j];
((uint32 *)cur_frm_pos)[j+1] = ((uint32 *)ref_frm_pos)[j+1];
}
RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2)
break;
} else {
rle_v1 = 1;
rle_v2 = (*buf1) - 1;
}
case 5:
case 7:
LP2_CHECK(buf1,rle_v3,lp2)
case 6:
case 4:
for(i = 0, j = 0; i < 8 - (lp2 * 2); i++, j += width_tbl[1]) {
cur_lp[j] = ref_lp[j];
cur_lp[j+1] = ref_lp[j+1];
}
lp2 = 4;
break;
case 9:
warning("Indeo3::decodeChunk: Untested (3)");
lv1 = *buf1;
lv = (lv1 & 0x7F) << 1;
lv += (lv << 8);
lv += (lv << 16);
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1])
((uint32 *)cur_frm_pos)[j] = ((uint32 *)cur_frm_pos)[j+1] = lv;
LV1_CHECK(buf1,rle_v3,lv1,lp2)
break;
default:
return;
}
}
cur_frm_pos += 8;
ref_frm_pos += 8;
}
cur_frm_pos += (((width * 2) - blks_width) * 4);
ref_frm_pos += (((width * 2) - blks_width) * 4);
}
}
break;
case 11: /********** CASE 11 **********/
if(ref_vectors == NULL)
return;
for( ; blks_height > 0; blks_height -= 8) {
for(lp1 = 0; lp1 < blks_width; lp1++) {
for(lp2 = 0; lp2 < 4; ) {
k = *buf1++;
cur_lp = ((uint32 *)cur_frm_pos) + width_tbl[lp2 * 2];
ref_lp = ((uint32 *)ref_frm_pos) + width_tbl[lp2 * 2];
switch(correction_type_sp[lp2 & 0x01][k]) {
case 0:
cur_lp[0] = FROM_LE_32(((FROM_LE_32(*ref_lp) >> 1) + correction_lp[lp2 & 0x01][k]) << 1);
cur_lp[width_tbl[1]] = FROM_LE_32(((FROM_LE_32(ref_lp[width_tbl[1]]) >> 1) + correction_lp[lp2 & 0x01][k]) << 1);
lp2++;
break;
case 1:
lv1 = (uint16)(correction_lp[lp2 & 0x01][*buf1++]);
lv2 = (uint16)(correction_lp[lp2 & 0x01][k]);
res = (uint16)(((FROM_LE_16(((uint16 *)ref_lp)[0]) >> 1) + lv1) << 1);
((uint16 *)cur_lp)[0] = FROM_LE_16(res);
res = (uint16)(((FROM_LE_16(((uint16 *)ref_lp)[1]) >> 1) + lv2) << 1);
((uint16 *)cur_lp)[1] = FROM_LE_16(res);
res = (uint16)(((FROM_LE_16(((uint16 *)ref_lp)[width_tbl[2]]) >> 1) + lv1) << 1);
((uint16 *)cur_lp)[width_tbl[2]] = FROM_LE_16(res);
res = (uint16)(((FROM_LE_16(((uint16 *)ref_lp)[width_tbl[2]+1]) >> 1) + lv2) << 1);
((uint16 *)cur_lp)[width_tbl[2]+1] = FROM_LE_16(res);
lp2++;
break;
case 2:
if(lp2 == 0) {
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 += 2;
}
break;
case 3:
if(lp2 < 2) {
for(i = 0, j = 0; i < 6 - (lp2 * 2); i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 = 3;
}
break;
case 8:
if(lp2 == 0) {
RLE_V3_CHECK(buf1,rle_v1,rle_v2,rle_v3)
for(i = 0, j = 0; i < 8; i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
RLE_V2_CHECK(buf1,rle_v2, rle_v3,lp2)
break;
} else {
rle_v1 = 1;
rle_v2 = (*buf1) - 1;
}
case 5:
case 7:
LP2_CHECK(buf1,rle_v3,lp2)
case 4:
case 6:
for(i = 0, j = 0; i < 8 - (lp2 * 2); i++, j += width_tbl[1])
cur_lp[j] = ref_lp[j];
lp2 = 4;
break;
case 9:
warning("Indeo3::decodeChunk: Untested (4)");
lv1 = *buf1++;
lv = (lv1 & 0x7F) << 1;
lv += (lv << 8);
lv += (lv << 16);
for(i = 0, j = 0; i < 4; i++, j += width_tbl[1])
cur_lp[j] = lv;
LV1_CHECK(buf1,rle_v3,lv1,lp2)
break;
default:
return;
}
}
cur_frm_pos += 4;
ref_frm_pos += 4;
}
cur_frm_pos += (((width * 2) - blks_width) * 4);
ref_frm_pos += (((width * 2) - blks_width) * 4);
}
break;
default:
return;
}
}
if(strip < strip_tbl)
return;
for( ; strip >= strip_tbl; strip--) {
if(strip->split_flag != 0) {
strip->split_flag = 0;
strip->usl7 = (strip-1)->usl7;
if(strip->split_direction) {
strip->xpos += strip->width;
strip->width = (strip-1)->width - strip->width;
if(region_160_width <= strip->xpos && width < strip->width + strip->xpos)
strip->width = width - strip->xpos;
} else {
strip->ypos += strip->height;
strip->height = (strip-1)->height - strip->height;
}
break;
}
}
}
}
} // End of namespace Gob