scummvm/engines/sci/engine/savegame.cpp
Filippos Karapetis c716e43a2b - Added auto-detection for EGA graphics. As a result of this, GF_SCI1_EGA has been removed and versions SCI_VERSION_01_EGA and SCI_VERSION_01_VGA have been merged into SCI_VERSION_01
- Simplified the checks for EGA and VGA graphics
- Fixed a bug in script_adjust_opcode_formats()
- Simplified the code in GfxResManager::getView() a bit

svn-id: r42206
2009-07-07 07:44:25 +00:00

878 lines
24 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/stream.h"
#include "common/system.h"
#include "common/func.h"
#include "common/serializer.h"
#include <time.h> // FIXME: For struct tm
#include "sci/sci.h"
#include "sci/gfx/operations.h"
#include "sci/gfx/menubar.h"
#include "sci/gfx/gfx_state_internal.h" // required for GfxPort, GfxContainer
#include "sci/sfx/core.h"
#include "sci/sfx/iterator.h"
#include "sci/engine/state.h"
#include "sci/engine/intmap.h"
#include "sci/engine/savegame.h"
namespace Sci {
// from ksound.cpp:
SongIterator *build_iterator(EngineState *s, int song_nr, SongIteratorType type, songit_id_t id);
#pragma mark -
// TODO: Many of the following sync_*() methods should be turned into member funcs
// of the classes they are syncing.
static void sync_MemObjPtr(Common::Serializer &s, MemObject *&obj);
static void sync_songlib_t(Common::Serializer &s, SongLibrary &obj);
static void sync_reg_t(Common::Serializer &s, reg_t &obj) {
s.syncAsUint16LE(obj.segment);
s.syncAsUint16LE(obj.offset);
}
// FIXME: Sync a C string, using malloc/free storage.
// Much better to replace all of these by Common::String
static void syncCStr(Common::Serializer &s, char **str) {
Common::String tmp;
if (s.isSaving() && *str)
tmp = *str;
s.syncString(tmp);
if (s.isLoading()) {
//free(*str);
*str = strdup(tmp.c_str());
}
}
static void sync_song_t(Common::Serializer &s, Song &obj) {
s.syncAsSint32LE(obj._handle);
s.syncAsSint32LE(obj._resourceNum);
s.syncAsSint32LE(obj._priority);
s.syncAsSint32LE(obj._status);
s.syncAsSint32LE(obj._restoreBehavior);
s.syncAsSint32LE(obj._restoreTime);
s.syncAsSint32LE(obj._loops);
s.syncAsSint32LE(obj._hold);
if (s.isLoading()) {
obj._it = 0;
obj._delay = 0;
obj._next = 0;
obj._nextPlaying = 0;
obj._nextStopping = 0;
}
}
// Experimental hack: Use syncWithSerializer to sync. By default, this assume
// the object to be synced is a subclass of Serializable and thus tries to invoke
// the saveLoadWithSerializer() method. But it is possible to specialize this
// template function to handle stuff that is not implementing that interface.
template<typename T>
void syncWithSerializer(Common::Serializer &s, T &obj) {
obj.saveLoadWithSerializer(s);
}
// By default, sync using syncWithSerializer, which in turn can easily be overloaded.
template <typename T>
struct DefaultSyncer : Common::BinaryFunction<Common::Serializer, T, void> {
void operator()(Common::Serializer &s, T &obj) const {
//obj.saveLoadWithSerializer(s);
syncWithSerializer(s, obj);
}
};
/**
* Sync a Common::Array using a Common::Serializer.
* When saving, this writes the length of the array, then syncs (writes) all entries.
* When loading, it loads the length of the array, then resizes it accordingly, before
* syncing all entries.
*
* Note: This shouldn't be in common/array.h nor in common/serializer.h, after
* all, not all code using arrays wants to use the serializer, and vice versa.
* But we could put this into a separate header file in common/ at some point.
* Something like common/serializer-extras.h or so.
*
* TODO: Add something like this for lists, queues....
*/
template <typename T, class Syncer = DefaultSyncer<T> >
struct ArraySyncer : Common::BinaryFunction<Common::Serializer, T, void> {
void operator()(Common::Serializer &s, Common::Array<T> &arr) const {
uint len = arr.size();
s.syncAsUint32LE(len);
Syncer sync;
// Resize the array if loading.
if (s.isLoading())
arr.resize(len);
typename Common::Array<T>::iterator i;
for (i = arr.begin(); i != arr.end(); ++i) {
sync(s, *i);
}
}
};
// Convenience wrapper
template<typename T>
void syncArray(Common::Serializer &s, Common::Array<T> &arr) {
ArraySyncer<T> sync;
sync(s, arr);
}
template <>
void syncWithSerializer(Common::Serializer &s, reg_t &obj) {
sync_reg_t(s, obj);
}
void MenuItem::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsSint32LE(_type);
s.syncString(_keytext);
s.skip(4); // Obsolete: Used to be keytext_size
s.syncAsSint32LE(_flags);
s.syncBytes(_said, MENU_SAID_SPEC_SIZE);
sync_reg_t(s, _saidPos);
s.syncString(_text);
sync_reg_t(s, _textPos);
s.syncAsSint32LE(_modifiers);
s.syncAsSint32LE(_key);
s.syncAsSint32LE(_enabled);
s.syncAsSint32LE(_tag);
}
void Menu::saveLoadWithSerializer(Common::Serializer &s) {
s.syncString(_title);
s.syncAsSint32LE(_titleWidth);
s.syncAsSint32LE(_width);
syncArray<MenuItem>(s, _items);
}
void Menubar::saveLoadWithSerializer(Common::Serializer &s) {
syncArray<Menu>(s, _menus);
}
void SegManager::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsSint32LE(reserved_id);
s.syncAsSint32LE(exports_wide);
s.skip(4); // Obsolete: Used to be gc_mark_bits
id_seg_map->saveLoadWithSerializer(s);
uint sync_heap_size = _heap.size();
s.syncAsUint32LE(sync_heap_size);
_heap.resize(sync_heap_size);
for (uint i = 0; i < sync_heap_size; ++i)
sync_MemObjPtr(s, _heap[i]);
s.syncAsSint32LE(Clones_seg_id);
s.syncAsSint32LE(Lists_seg_id);
s.syncAsSint32LE(Nodes_seg_id);
}
static void sync_SegManagerPtr(Common::Serializer &s, SegManager *&obj) {
bool sci11 = false;
if (s.isSaving()) {
assert(obj);
sci11 = obj->isSci1_1;
}
s.syncAsByte(sci11);
if (s.isLoading()) {
// FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch.
delete obj;
obj = new SegManager(sci11);
}
obj->saveLoadWithSerializer(s);
}
template <>
void syncWithSerializer(Common::Serializer &s, Class &obj) {
s.syncAsSint32LE(obj.script);
sync_reg_t(s, obj.reg);
}
static void sync_sfx_state_t(Common::Serializer &s, SfxState &obj) {
sync_songlib_t(s, obj._songlib);
}
static void sync_SavegameMetadata(Common::Serializer &s, SavegameMetadata &obj) {
// TODO: It would be a good idea to store a magic number & a header size here,
// so that we can implement backward compatibility if the savegame format changes.
s.syncString(obj.savegame_name);
s.syncAsSint32LE(obj.savegame_version);
s.syncString(obj.game_version);
s.syncAsSint32LE(obj.version);
s.syncAsSint32LE(obj.savegame_date);
s.syncAsSint32LE(obj.savegame_time);
}
void EngineState::saveLoadWithSerializer(Common::Serializer &s) {
s.skip(4); // Obsolete: Used to be savegame_version
syncCStr(s, &game_version);
s.skip(4); // Obsolete: Used to be version
// FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch.
if (s.isLoading()) {
//free(menubar);
_menubar = new Menubar();
} else
assert(_menubar);
_menubar->saveLoadWithSerializer(s);
s.syncAsSint32LE(status_bar_foreground);
s.syncAsSint32LE(status_bar_background);
sync_SegManagerPtr(s, seg_manager);
syncArray<Class>(s, _classtable);
sync_sfx_state_t(s, _sound);
}
void LocalVariables::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsSint32LE(script_id);
syncArray<reg_t>(s, _locals);
}
template <>
void syncWithSerializer(Common::Serializer &s, Object &obj) {
s.syncAsSint32LE(obj.flags);
sync_reg_t(s, obj.pos);
s.syncAsSint32LE(obj.variable_names_nr);
s.syncAsSint32LE(obj.methods_nr);
syncArray<reg_t>(s, obj._variables);
}
template <>
void syncWithSerializer(Common::Serializer &s, Table<Clone>::Entry &obj) {
s.syncAsSint32LE(obj.next_free);
syncWithSerializer<Object>(s, obj);
}
template <>
void syncWithSerializer(Common::Serializer &s, Table<List>::Entry &obj) {
s.syncAsSint32LE(obj.next_free);
sync_reg_t(s, obj.first);
sync_reg_t(s, obj.last);
}
template <>
void syncWithSerializer(Common::Serializer &s, Table<Node>::Entry &obj) {
s.syncAsSint32LE(obj.next_free);
sync_reg_t(s, obj.pred);
sync_reg_t(s, obj.succ);
sync_reg_t(s, obj.key);
sync_reg_t(s, obj.value);
}
template <typename T>
void sync_Table(Common::Serializer &s, T &obj) {
s.syncAsSint32LE(obj.first_free);
s.syncAsSint32LE(obj.entries_used);
syncArray<typename T::Entry>(s, obj._table);
}
void CloneTable::saveLoadWithSerializer(Common::Serializer &s) {
sync_Table<CloneTable>(s, *this);
}
void NodeTable::saveLoadWithSerializer(Common::Serializer &s) {
sync_Table<NodeTable>(s, *this);
}
void ListTable::saveLoadWithSerializer(Common::Serializer &s) {
sync_Table<ListTable>(s, *this);
}
void HunkTable::saveLoadWithSerializer(Common::Serializer &s) {
if (s.isLoading()) {
initTable();
}
}
void Script::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsSint32LE(nr);
s.syncAsUint32LE(buf_size);
s.syncAsUint32LE(script_size);
s.syncAsUint32LE(heap_size);
// FIXME: revamp obj_indices handling
if (!obj_indices) {
assert(s.isLoading());
obj_indices = new IntMapper();
}
obj_indices->saveLoadWithSerializer(s);
s.syncAsSint32LE(exports_nr);
s.syncAsSint32LE(synonyms_nr);
s.syncAsSint32LE(lockers);
syncArray<Object>(s, _objects);
s.syncAsSint32LE(locals_offset);
s.syncAsSint32LE(locals_segment);
s.syncAsSint32LE(_markedAsDeleted);
}
static void sync_SystemString(Common::Serializer &s, SystemString &obj) {
syncCStr(s, &obj.name);
s.syncAsSint32LE(obj.max_size);
// FIXME: This is a *WEIRD* hack: We sync a reg_t* as if it was a string.
// No idea why, but this mimicks what the old save/load code used to do.
syncCStr(s, (char **)&obj.value);
}
void SystemStrings::saveLoadWithSerializer(Common::Serializer &s) {
for (int i = 0; i < SYS_STRINGS_MAX; ++i)
sync_SystemString(s, strings[i]);
}
void DynMem::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsSint32LE(_size);
syncCStr(s, &_description);
if (!_buf && _size) {
_buf = (byte *)calloc(_size, 1);
}
if (_size)
s.syncBytes(_buf, _size);
}
void DataStack::saveLoadWithSerializer(Common::Serializer &s) {
s.syncAsUint32LE(nr);
if (s.isLoading()) {
//free(entries);
entries = (reg_t *)calloc(nr, sizeof(reg_t));
}
}
void StringFrag::saveLoadWithSerializer(Common::Serializer &s) {
// TODO
}
#pragma mark -
static void sync_songlib_t(Common::Serializer &s, SongLibrary &obj) {
int songcount = 0;
if (s.isSaving())
songcount = obj.countSongs();
s.syncAsUint32LE(songcount);
if (s.isLoading()) {
obj._lib = 0;
while (songcount--) {
Song *newsong = (Song *)calloc(1, sizeof(Song));
sync_song_t(s, *newsong);
obj.addSong(newsong);
}
} else {
Song *seeker = obj._lib;
while (seeker) {
seeker->_restoreTime = seeker->_it->getTimepos();
sync_song_t(s, *seeker);
seeker = seeker->_next;
}
}
}
static void sync_MemObjPtr(Common::Serializer &s, MemObject *&mobj) {
// Sync the memobj type
MemObjectType type = (s.isSaving() && mobj) ? mobj->getType() : MEM_OBJ_INVALID;
s.syncAsUint32LE(type);
// If we were saving and mobj == 0, or if we are loading and this is an
// entry marked as empty -> we are done.
if (type == MEM_OBJ_INVALID) {
mobj = 0;
return;
}
if (s.isLoading()) {
//assert(!mobj);
mobj = MemObject::createMemObject(type);
} else {
assert(mobj);
}
s.syncAsSint32LE(mobj->_segmgrId);
mobj->saveLoadWithSerializer(s);
}
#pragma mark -
int gamestate_save(EngineState *s, Common::WriteStream *fh, const char* savename) {
tm curTime;
g_system->getTimeAndDate(curTime);
SavegameMetadata meta;
meta.savegame_version = CURRENT_SAVEGAME_VERSION;
meta.savegame_name = savename;
meta.version = s->_version;
meta.game_version = s->game_version;
meta.savegame_date = ((curTime.tm_mday & 0xFF) << 24) | (((curTime.tm_mon + 1) & 0xFF) << 16) | ((curTime.tm_year + 1900) & 0xFFFF);
meta.savegame_time = ((curTime.tm_hour & 0xFF) << 16) | (((curTime.tm_min) & 0xFF) << 8) | ((curTime.tm_sec) & 0xFF);
if (s->execution_stack_base) {
warning("Cannot save from below kernel function");
return 1;
}
/*
if (s->sound_server) {
if ((s->sound_server->save)(s, dirname)) {
warning("Saving failed for the sound subsystem");
//chdir("..");
return 1;
}
}
*/
// Calculate the time spent with this game
s->game_time = (g_system->getMillis() - s->game_start_time) / 1000;
Common::Serializer ser(0, fh);
sync_SavegameMetadata(ser, meta);
s->saveLoadWithSerializer(ser); // FIXME: Error handling?
return 0;
}
// FIXME: This should probably be turned into a SegManager method
static SegmentId find_unique_seg_by_type(SegManager *self, int type) {
for (uint i = 0; i < self->_heap.size(); i++)
if (self->_heap[i] &&
self->_heap[i]->getType() == type)
return i;
return -1;
}
static byte *find_unique_script_block(EngineState *s, byte *buf, int type) {
if (s->_flags & GF_SCI0_OLD)
buf += 2;
do {
int seeker_type = READ_LE_UINT16(buf);
if (seeker_type == 0) break;
if (seeker_type == type) return buf;
int seeker_size = READ_LE_UINT16(buf + 2);
assert(seeker_size > 0);
buf += seeker_size;
} while(1);
return NULL;
}
// FIXME: This should probably be turned into an EngineState method
static void reconstruct_stack(EngineState *retval) {
SegmentId stack_seg = find_unique_seg_by_type(retval->seg_manager, MEM_OBJ_STACK);
DataStack *stack = (DataStack *)(retval->seg_manager->_heap[stack_seg]);
retval->stack_segment = stack_seg;
retval->stack_base = stack->entries;
retval->stack_top = retval->stack_base + VM_STACK_SIZE;
}
static bool clone_entry_used(CloneTable *table, int n) {
int seeker = table->first_free;
while (seeker != CloneTable::HEAPENTRY_INVALID) {
if (seeker == n)
return false;
seeker = table->_table[seeker].next_free;
}
return true;
}
static void load_script(EngineState *s, SegmentId seg) {
Resource *script, *heap = NULL;
Script *scr = (Script *)(s->seg_manager->_heap[seg]);
assert(scr);
scr->buf = (byte *)malloc(scr->buf_size);
assert(scr->buf);
script = s->resmgr->findResource(ResourceId(kResourceTypeScript, scr->nr), 0);
if (s->_version >= SCI_VERSION_1_1)
heap = s->resmgr->findResource(ResourceId(kResourceTypeHeap, scr->nr), 0);
memcpy(scr->buf, script->data, script->size);
if (s->seg_manager->isSci1_1)
memcpy(scr->buf + scr->script_size, heap->data, heap->size);
}
// FIXME: The following should likely become a SegManager method
static void reconstruct_scripts(EngineState *s, SegManager *self) {
uint i, j;
MemObject *mobj;
for (i = 0; i < self->_heap.size(); i++) {
if (self->_heap[i]) {
mobj = self->_heap[i];
switch (mobj->getType()) {
case MEM_OBJ_SCRIPT: {
Script *scr = (Script *)mobj;
// FIXME: Unify this code with script_instantiate_*
load_script(s, i);
scr->locals_block = (scr->locals_segment == 0) ? NULL : (LocalVariables *)(s->seg_manager->_heap[scr->locals_segment]);
if (s->seg_manager->isSci1_1) {
scr->export_table = 0;
scr->synonyms = 0;
if (READ_LE_UINT16(scr->buf + 6) > 0) {
scr->setExportTableOffset(6);
}
} else {
scr->export_table = (uint16 *) find_unique_script_block(s, scr->buf, SCI_OBJ_EXPORTS);
scr->synonyms = find_unique_script_block(s, scr->buf, SCI_OBJ_SYNONYMS);
scr->export_table += 3;
}
scr->_codeBlocks.clear();
for (j = 0; j < scr->_objects.size(); j++) {
byte *data = scr->buf + scr->_objects[j].pos.offset;
scr->_objects[j].base = scr->buf;
scr->_objects[j].base_obj = data;
}
break;
}
default:
break;
}
}
}
for (i = 0; i < self->_heap.size(); i++) {
if (self->_heap[i]) {
mobj = self->_heap[i];
switch (mobj->getType()) {
case MEM_OBJ_SCRIPT: {
Script *scr = (Script *)mobj;
for (j = 0; j < scr->_objects.size(); j++) {
byte *data = scr->buf + scr->_objects[j].pos.offset;
if (self->isSci1_1) {
uint16 *funct_area = (uint16 *) (scr->buf + READ_LE_UINT16( data + 6 ));
uint16 *prop_area = (uint16 *) (scr->buf + READ_LE_UINT16( data + 4 ));
scr->_objects[j].base_method = funct_area;
scr->_objects[j].base_vars = prop_area;
} else {
int funct_area = READ_LE_UINT16( data + SCRIPT_FUNCTAREAPTR_OFFSET );
Object *base_obj;
base_obj = obj_get(s, scr->_objects[j]._variables[SCRIPT_SPECIES_SELECTOR]);
if (!base_obj) {
warning("Object without a base class: Script %d, index %d (reg address %04x:%04x",
scr->nr, j, PRINT_REG(scr->_objects[j]._variables[SCRIPT_SPECIES_SELECTOR]));
continue;
}
scr->_objects[j].variable_names_nr = base_obj->_variables.size();
scr->_objects[j].base_obj = base_obj->base_obj;
scr->_objects[j].base_method = (uint16 *)(data + funct_area);
scr->_objects[j].base_vars = (uint16 *)(data + scr->_objects[j].variable_names_nr * 2 + SCRIPT_SELECTOR_OFFSET);
}
}
break;
}
default:
break;
}
}
}
}
// FIXME: The following should likely become a SegManager method
static void reconstruct_clones(EngineState *s, SegManager *self) {
for (uint i = 0; i < self->_heap.size(); i++) {
if (self->_heap[i]) {
MemObject *mobj = self->_heap[i];
switch (mobj->getType()) {
case MEM_OBJ_CLONES: {
CloneTable *ct = (CloneTable *)mobj;
/*
printf("Free list: ");
for (uint j = ct->first_free; j != HEAPENTRY_INVALID; j = ct->_table[j].next_free) {
printf("%d ", j);
}
printf("\n");
printf("Entries w/zero vars: ");
for (uint j = 0; j < ct->_table.size(); j++) {
if (ct->_table[j].variables == NULL)
printf("%d ", j);
}
printf("\n");
*/
for (uint j = 0; j < ct->_table.size(); j++) {
Object *base_obj;
if (!clone_entry_used(ct, j)) {
continue;
}
CloneTable::Entry &seeker = ct->_table[j];
base_obj = obj_get(s, seeker._variables[SCRIPT_SPECIES_SELECTOR]);
if (!base_obj) {
printf("Clone entry without a base class: %d\n", j);
seeker.base = seeker.base_obj = NULL;
seeker.base_vars = seeker.base_method = NULL;
} else {
seeker.base = base_obj->base;
seeker.base_obj = base_obj->base_obj;
seeker.base_vars = base_obj->base_vars;
seeker.base_method = base_obj->base_method;
}
}
break;
}
default:
break;
}
}
}
}
int _reset_graphics_input(EngineState *s);
static void reconstruct_sounds(EngineState *s) {
Song *seeker;
SongIteratorType it_type = s->resmgr->_sciVersion >= SCI_VERSION_01 ? SCI_SONG_ITERATOR_TYPE_SCI1 : SCI_SONG_ITERATOR_TYPE_SCI0;
seeker = s->_sound._songlib._lib;
while (seeker) {
SongIterator *base, *ff;
int oldstatus;
SongIterator::Message msg;
base = ff = build_iterator(s, seeker->_resourceNum, it_type, seeker->_handle);
if (seeker->_restoreBehavior == RESTORE_BEHAVIOR_CONTINUE)
ff = new_fast_forward_iterator(base, seeker->_restoreTime);
ff->init();
msg = SongIterator::Message(seeker->_handle, SIMSG_SET_LOOPS(seeker->_loops));
songit_handle_message(&ff, msg);
msg = SongIterator::Message(seeker->_handle, SIMSG_SET_HOLD(seeker->_hold));
songit_handle_message(&ff, msg);
oldstatus = seeker->_status;
seeker->_status = SOUND_STATUS_STOPPED;
seeker->_it = ff;
s->_sound.sfx_song_set_status(seeker->_handle, oldstatus);
seeker = seeker->_next;
}
}
void internal_stringfrag_strncpy(EngineState *s, reg_t *dest, reg_t *src, int len);
EngineState *gamestate_restore(EngineState *s, Common::SeekableReadStream *fh) {
EngineState *retval;
SongLibrary temp;
/*
if (s->sound_server) {
if ((s->sound_server->restore)(s, dirname)) {
warning("Restoring failed for the sound subsystem");
return NULL;
}
}
*/
SavegameMetadata meta;
Common::Serializer ser(fh, 0);
sync_SavegameMetadata(ser, meta);
if (fh->eos())
return false;
if ((meta.savegame_version < MINIMUM_SAVEGAME_VERSION) ||
(meta.savegame_version > CURRENT_SAVEGAME_VERSION)) {
if (meta.savegame_version < MINIMUM_SAVEGAME_VERSION)
warning("Old savegame version detected- can't load");
else
warning("Savegame version is %d- maximum supported is %0d", meta.savegame_version, CURRENT_SAVEGAME_VERSION);
return NULL;
}
// FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch.
retval = new EngineState(s->resmgr, s->_version, s->_flags);
// Copy some old data
retval->gfx_state = s->gfx_state;
retval->sound_mute = s->sound_mute;
retval->sound_volume = s->sound_volume;
retval->saveLoadWithSerializer(ser); // FIXME: Error handling?
s->_sound.sfx_exit();
// Set exec stack base to zero
retval->execution_stack_base = 0;
// Now copy all current state information
// Graphics and input state:
retval->animation_granularity = s->animation_granularity;
retval->gfx_state = s->gfx_state;
retval->old_screen = 0;
temp = retval->_sound._songlib;
retval->_sound.sfx_init(retval->resmgr, s->sfx_init_flags);
retval->sfx_init_flags = s->sfx_init_flags;
retval->_sound._songlib.freeSounds();
retval->_sound._songlib = temp;
_reset_graphics_input(retval);
reconstruct_stack(retval);
reconstruct_scripts(retval, retval->seg_manager);
reconstruct_clones(retval, retval->seg_manager);
retval->game_obj = s->game_obj;
retval->script_000 = retval->seg_manager->getScript(script_get_segment(s, 0, SCRIPT_GET_DONT_LOAD));
retval->gc_countdown = GC_INTERVAL - 1;
retval->sys_strings_segment = find_unique_seg_by_type(retval->seg_manager, MEM_OBJ_SYS_STRINGS);
retval->sys_strings = (SystemStrings *)GET_SEGMENT(*retval->seg_manager, retval->sys_strings_segment, MEM_OBJ_SYS_STRINGS);
// Restore system strings
SystemString *str;
// First, pad memory
for (int i = 0; i < SYS_STRINGS_MAX; i++) {
str = &retval->sys_strings->strings[i];
char *data = (char *)str->value;
if (data) {
str->value = (reg_t *)calloc(str->max_size + 1, sizeof(reg_t));
strncpy((char *)str->value, data, str->max_size + 1); // FIXME -- strncpy or internal_stringfrag_strncpy ?
free(data);
}
}
str = &retval->sys_strings->strings[SYS_STRING_SAVEDIR];
internal_stringfrag_strncpy(s, str->value, s->sys_strings->strings[SYS_STRING_SAVEDIR].value, str->max_size);
str->value[str->max_size - 1].segment = s->string_frag_segment; // Make sure to terminate
str->value[str->max_size - 1].offset &= 0xff00; // Make sure to terminate
// Time state:
retval->last_wait_time = g_system->getMillis();
retval->game_start_time = g_system->getMillis() - retval->game_time * 1000;
// static parser information:
assert(0 == retval->_vocabulary);
retval->_vocabulary = s->_vocabulary;
// s->_vocabulary = 0; // FIXME: We should set s->_vocabulary to 0 here,
// else it could be freed when the old EngineState is freed. Luckily, this freeing currently
// never happens, so we don't need to.
retval->parser_base = make_reg(s->sys_strings_segment, SYS_STRING_PARSER_BASE);
// static VM/Kernel information:
assert(0 == retval->_kernel);
retval->_kernel = s->_kernel;
// s->_kernel = 0; // FIXME: We should set s->_kernel to 0 here,
// else it could be freed when the old EngineState is freed. Luckily, this freeing currently
// never happens, so we don't need to.
// Copy breakpoint information from current game instance
retval->have_bp = s->have_bp;
retval->bp_list = s->bp_list;
retval->kernel_opt_flags = 0;
retval->successor = NULL;
retval->pic_priority_table = (int *)gfxop_get_pic_metainfo(retval->gfx_state);
retval->_gameName = obj_get_name(retval, retval->game_obj);
retval->_sound._it = NULL;
retval->_sound._flags = s->_sound._flags;
retval->_sound._song = NULL;
retval->_sound._suspended = s->_sound._suspended;
reconstruct_sounds(retval);
// Message state:
retval->_msgState = s->_msgState;
return retval;
}
bool get_savegame_metadata(Common::SeekableReadStream *stream, SavegameMetadata *meta) {
assert(stream);
assert(meta);
Common::Serializer ser(stream, 0);
sync_SavegameMetadata(ser, *meta);
if (stream->eos())
return false;
if ((meta->savegame_version < MINIMUM_SAVEGAME_VERSION) ||
(meta->savegame_version > CURRENT_SAVEGAME_VERSION)) {
if (meta->savegame_version < MINIMUM_SAVEGAME_VERSION)
warning("Old savegame version detected- can't load");
else
warning("Savegame version is %d- maximum supported is %0d", meta->savegame_version, CURRENT_SAVEGAME_VERSION);
return false;
}
return true;
}
} // End of namespace Sci