scummvm/saga/gfx.cpp
Eugene Sandulenko cdead6d57b - Stripped down unused SURFACE parameter in palette-related functions
- Fixed scenes glitch when loading saved game. This is done by closing
  load window right after game is loaded which differs from original but
  seems more logical to me
- Fixed wrong palette when Dragon maze was loaded from a savegame. We just
  didn't process Palette resource for it.

svn-id: r18494
2005-07-05 15:15:35 +00:00

658 lines
13 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2004-2005 The ScummVM project
*
* The ReInherit Engine is (C)2000-2003 by Daniel Balsom.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
// Misc. graphics routines
// Line drawing code utilizes Bresenham's run-length slice algorithm
// described in "Michael Abrash's Graphics Programming Black Book",
// Coriolis Group Books, 1997
#include "saga/saga.h"
#include "saga/gfx.h"
#include "saga/interface.h"
#include "common/system.h"
namespace Saga {
Gfx::Gfx(OSystem *system, int width, int height, GameDetector &detector) : _system(system) {
SURFACE back_buf;
_system->beginGFXTransaction();
_vm->initCommonGFX(detector);
_system->initSize(width, height);
_system->endGFXTransaction();
debug(0, "Init screen %dx%d", width, height);
// Convert surface data to R surface data
back_buf.pixels = calloc(1, width * height);
back_buf.w = width;
back_buf.h = height;
back_buf.pitch = width;
back_buf.bytesPerPixel = 1;
back_buf.clip_rect.left = 0;
back_buf.clip_rect.top = 0;
back_buf.clip_rect.right = width;
back_buf.clip_rect.bottom = height;
// Set module data
_back_buf = back_buf;
_init = 1;
// For now, always show the mouse cursor.
setCursor();
_system->showMouse(true);
}
/*
~Gfx() {
free(GfxModule.r_back_buf->pixels);
}
*/
int drawPalette(SURFACE *dst_s) {
int x;
int y;
int color = 0;
Rect pal_rect;
for (y = 0; y < 16; y++) {
pal_rect.top = (y * 8) + 4;
pal_rect.bottom = pal_rect.top + 8;
for (x = 0; x < 16; x++) {
pal_rect.left = (x * 8) + 4;
pal_rect.right = pal_rect.left + 8;
drawRect(dst_s, pal_rect, color);
color++;
}
}
return 0;
}
// TODO: I've fixed at least one clipping bug here, but I have a feeling there
// are several more.
// * Copies a rectangle from a raw 8 bit pixel buffer to the specified surface.
// The buffer is of width 'src_w' and height 'src_h'. The rectangle to be
// copied is defined by 'src_rect'.
// The rectangle is copied to the destination surface at point 'dst_pt'.
// - If dst_pt is NULL, the buffer is rectangle is copied to the destination
// origin.
// - If src_rect is NULL, the entire buffer is copied./
// - The surface must match the logical dimensions of the buffer exactly.
// - Returns FAILURE on error
int bufToSurface(SURFACE *ds, const byte *src, int src_w, int src_h,
Rect *src_rect, Point *dst_pt) {
const byte *read_p;
byte *write_p;
int row;
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
int dst_off_x, dst_off_y;
int src_off_x, src_off_y;
int src_draw_w, src_draw_h;
// Clamp source rectangle to source buffer
if (src_rect != NULL) {
src_rect->clip(src_w, src_h);
s = *src_rect;
} else {
s.left = 0;
s.top = 0;
s.right = src_w;
s.bottom = src_h;
}
if (s.width() <= 0 || s.height() <= 0) {
// Empty or negative region
return FAILURE;
}
// Get destination origin and clip rectangle
if (dst_pt != NULL) {
d_x = dst_pt->x;
d_y = dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
clip = ds->clip_rect;
if (clip.left == clip.right) {
clip.left = 0;
clip.right = ds->w;
}
if (clip.top == clip.bottom) {
clip.top = 0;
clip.bottom = ds->h;
}
// Clip source rectangle to destination surface
dst_off_x = d_x;
dst_off_y = d_y;
src_off_x = s.left;
src_off_y = s.top;
src_draw_w = s.width();
src_draw_h = s.height();
// Clip to left edge
if (d_x < clip.left) {
if (d_x <= (-src_draw_w)) {
// dst rect completely off left edge
return SUCCESS;
}
src_off_x += (clip.left - d_x);
src_draw_w -= (clip.left - d_x);
dst_off_x = clip.left;
}
// Clip to top edge
if (d_y < clip.top) {
if (d_y >= (-src_draw_h)) {
// dst rect completely off top edge
return SUCCESS;
}
src_off_y += (clip.top - d_y);
src_draw_h -= (clip.top - d_y);
dst_off_y = clip.top;
}
// Clip to right edge
if (d_x >= clip.right) {
// dst rect completely off right edge
return SUCCESS;
}
if ((d_x + src_draw_w) > clip.right) {
src_draw_w = clip.right - d_x;
}
// Clip to bottom edge
if (d_y > clip.bottom) {
// dst rect completely off bottom edge
return SUCCESS;
}
if ((d_y + src_draw_h) > clip.bottom) {
src_draw_h = clip.bottom - d_y;
}
// Transfer buffer data to surface
read_p = (src + src_off_x) + (src_w * src_off_y);
write_p = ((byte *)ds->pixels + dst_off_x) + (ds->pitch * dst_off_y);
for (row = 0; row < src_draw_h; row++) {
memcpy(write_p, read_p, src_draw_w);
write_p += ds->pitch;
read_p += src_w;
}
return SUCCESS;
}
int bufToBuffer(byte *dst_buf, int dst_w, int dst_h, const byte *src,
int src_w, int src_h, Rect *src_rect, Point *dst_pt) {
const byte *read_p;
byte *write_p;
int row;
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
int dst_off_x, dst_off_y;
int src_off_x, src_off_y;
int src_draw_w, src_draw_h;
// Clamp source rectangle to source buffer
if (src_rect != NULL) {
src_rect->clip(src_w, src_h);
s.left = src_rect->left;
s.top = src_rect->top;
s.right = src_rect->right;
s.bottom = src_rect->bottom;
} else {
s.left = 0;
s.top = 0;
s.right = src_w;
s.bottom = src_h;
}
if (s.width() <= 0 || s.height() <= 0) {
// Empty or negative region
return FAILURE;
}
// Get destination origin and clip rectangle
if (dst_pt != NULL) {
d_x = dst_pt->x;
d_y = dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
clip.left = 0;
clip.top = 0;
clip.right = dst_w;
clip.bottom = dst_h;
// Clip source rectangle to destination surface
dst_off_x = d_x;
dst_off_y = d_y;
src_off_x = s.left;
src_off_y = s.top;
src_draw_w = s.width();
src_draw_h = s.height();
// Clip to left edge
if (d_x < clip.left) {
if (d_x <= (-src_draw_w)) {
// dst rect completely off left edge
return SUCCESS;
}
src_off_x += (clip.left - d_x);
src_draw_w -= (clip.left - d_x);
dst_off_x = clip.left;
}
// Clip to top edge
if (d_y < clip.top) {
if (d_y >= (-src_draw_h)) {
// dst rect completely off top edge
return SUCCESS;
}
src_off_y += (clip.top - d_y);
src_draw_h -= (clip.top - d_y);
dst_off_y = clip.top;
}
// Clip to right edge
if (d_x >= clip.right) {
// dst rect completely off right edge
return SUCCESS;
}
if ((d_x + src_draw_w) > clip.right) {
src_draw_w = clip.right - d_x;
}
// Clip to bottom edge
if (d_y >= clip.bottom) {
// dst rect completely off bottom edge
return SUCCESS;
}
if ((d_y + src_draw_h) > clip.bottom) {
src_draw_h = clip.bottom - d_y;
}
// Transfer buffer data to surface
read_p = (src + src_off_x) + (src_w * src_off_y);
write_p = (dst_buf + dst_off_x) + (dst_w * dst_off_y);
for (row = 0; row < src_draw_h; row++) {
memcpy(write_p, read_p, src_draw_w);
write_p += dst_w;
read_p += src_w;
}
return SUCCESS;
}
// Fills a rectangle in the surface ds from point 'p1' to point 'p2' using
// the specified color.
int drawRect(SURFACE *ds, Rect &dst_rect, int color) {
dst_rect.clip(ds->w, ds->h);
if (!dst_rect.isValidRect()) {
// Empty or negative region
return FAILURE;
}
ds->fillRect(dst_rect, color);
return SUCCESS;
}
int drawFrame(SURFACE *ds, const Point *p1, const Point *p2, int color) {
int min_x;
int max_x;
int min_y;
int max_y;
assert((ds != NULL) && (p1 != NULL) && (p2 != NULL));
min_x = MIN(p1->x, p2->x);
max_x = MAX(p1->x, p2->x);
min_y = MIN(p1->y, p2->y);
max_y = MAX(p1->y, p2->y);
ds->frameRect(Common::Rect(min_x, min_y, max_x+1, max_y+1), color);
return SUCCESS;
}
int drawPolyLine(SURFACE *ds, const Point *pts, int pt_ct, int draw_color) {
assert((ds != NULL) & (pts != NULL));
if (pt_ct < 3) {
return FAILURE;
}
for (int i = 1; i < pt_ct; i++)
ds->drawLine(pts[i].x, pts[i].y, pts[i - 1].x, pts[i - 1].y, draw_color);
ds->drawLine(pts[pt_ct - 1].x, pts[pt_ct - 1].y, pts[0].x, pts[0].y, draw_color);
return SUCCESS;
}
int getClipInfo(CLIPINFO *clipinfo) {
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
if (clipinfo == NULL) {
return FAILURE;
}
if (clipinfo->dst_pt != NULL) {
d_x = clipinfo->dst_pt->x;
d_y = clipinfo->dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
// Get the clip rect.
clip.left = clipinfo->dst_rect->left;
clip.right = clipinfo->dst_rect->right;
clip.top = clipinfo->dst_rect->top;
clip.bottom = clipinfo->dst_rect->bottom;
// Adjust the rect to draw to its screen coordinates
s.left = d_x + clipinfo->src_rect->left;
s.right = d_x + clipinfo->src_rect->right;
s.top = d_y + clipinfo->src_rect->top;
s.bottom = d_y + clipinfo->src_rect->bottom;
s.clip(clip);
if (s.width() <= 0 || s.height() <= 0) {
clipinfo->nodraw = 1;
return SUCCESS;
}
clipinfo->nodraw = 0;
clipinfo->src_draw_x = s.left - clipinfo->src_rect->left - d_x;
clipinfo->src_draw_y = s.top - clipinfo->src_rect->top - d_y;
clipinfo->dst_draw_x = s.left;
clipinfo->dst_draw_y = s.top;
clipinfo->draw_w = s.width();
clipinfo->draw_h = s.height();
return SUCCESS;
}
SURFACE *Gfx::getBackBuffer() {
return &_back_buf;
}
int Gfx::setPalette(PALENTRY *pal) {
int i;
byte *ppal;
for (i = 0, ppal = _cur_pal; i < PAL_ENTRIES; i++, ppal += 4) {
ppal[0] = pal[i].red;
ppal[1] = pal[i].green;
ppal[2] = pal[i].blue;
ppal[3] = 0;
}
_system->setPalette(_cur_pal, 0, PAL_ENTRIES);
return SUCCESS;
}
int Gfx::getCurrentPal(PALENTRY *src_pal) {
int i;
byte *ppal;
for (i = 0, ppal = _cur_pal; i < PAL_ENTRIES; i++, ppal += 4) {
src_pal[i].red = ppal[0];
src_pal[i].green = ppal[1];
src_pal[i].blue = ppal[2];
}
return SUCCESS;
}
int Gfx::palToBlack(PALENTRY *src_pal, double percent) {
int i;
//int fade_max = 255;
int new_entry;
byte *ppal;
double fpercent;
if (percent > 1.0) {
percent = 1.0;
}
// Exponential fade
fpercent = percent * percent;
fpercent = 1.0 - fpercent;
// Use the correct percentage change per frame for each palette entry
for (i = 0, ppal = _cur_pal; i < PAL_ENTRIES; i++, ppal += 4) {
new_entry = (int)(src_pal[i].red * fpercent);
if (new_entry < 0) {
ppal[0] = 0;
} else {
ppal[0] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].green * fpercent);
if (new_entry < 0) {
ppal[1] = 0;
} else {
ppal[1] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].blue * fpercent);
if (new_entry < 0) {
ppal[2] = 0;
} else {
ppal[2] = (byte) new_entry;
}
ppal[3] = 0;
}
_system->setPalette(_cur_pal, 0, PAL_ENTRIES);
return SUCCESS;
}
int Gfx::blackToPal(PALENTRY *src_pal, double percent) {
int new_entry;
double fpercent;
int color_delta;
int best_wdelta = 0;
int best_windex = 0;
int best_bindex = 0;
int best_bdelta = 1000;
byte *ppal;
int i;
if (percent > 1.0) {
percent = 1.0;
}
// Exponential fade
fpercent = percent * percent;
fpercent = 1.0 - fpercent;
// Use the correct percentage change per frame for each palette entry
for (i = 0, ppal = _cur_pal; i < PAL_ENTRIES; i++, ppal += 4) {
new_entry = (int)(src_pal[i].red - src_pal[i].red * fpercent);
if (new_entry < 0) {
ppal[0] = 0;
} else {
ppal[0] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].green - src_pal[i].green * fpercent);
if (new_entry < 0) {
ppal[1] = 0;
} else {
ppal[1] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].blue - src_pal[i].blue * fpercent);
if (new_entry < 0) {
ppal[2] = 0;
} else {
ppal[2] = (byte) new_entry;
}
ppal[3] = 0;
}
// Find the best white and black color indices again
if (percent >= 1.0) {
for (i = 0, ppal = _cur_pal; i < PAL_ENTRIES; i++, ppal += 4) {
color_delta = ppal[0];
color_delta += ppal[1];
color_delta += ppal[2];
if (color_delta < best_bdelta) {
best_bindex = i;
best_bdelta = color_delta;
}
if (color_delta > best_wdelta) {
best_windex = i;
best_wdelta = color_delta;
}
}
}
_system->setPalette(_cur_pal, 0, PAL_ENTRIES);
return SUCCESS;
}
void Gfx::showCursor(bool state) {
updateCursor();
g_system->showMouse(state);
}
void Gfx::setCursor() {
// Set up the mouse cursor
const byte A = kITEColorLightGrey;
const byte B = kITEColorWhite;
const byte cursor_img[CURSOR_W * CURSOR_H] = {
0, 0, 0, A, 0, 0, 0,
0, 0, 0, A, 0, 0, 0,
0, 0, 0, A, 0, 0, 0,
A, A, A, B, A, A, A,
0, 0, 0, A, 0, 0, 0,
0, 0, 0, A, 0, 0, 0,
0, 0, 0, A, 0, 0, 0,
};
_system->setMouseCursor(cursor_img, CURSOR_W, CURSOR_H, 3, 3, 0);
}
bool hitTestPoly(const Point *points, unsigned int npoints, const Point& test_point) {
int yflag0;
int yflag1;
bool inside_flag = false;
unsigned int pt;
const Point *vtx0 = &points[npoints - 1];
const Point *vtx1 = &points[0];
yflag0 = (vtx0->y >= test_point.y);
for (pt = 0; pt < npoints; pt++, vtx1++) {
yflag1 = (vtx1->y >= test_point.y);
if (yflag0 != yflag1) {
if (((vtx1->y - test_point.y) * (vtx0->x - vtx1->x) >=
(vtx1->x - test_point.x) * (vtx0->y - vtx1->y)) == yflag1) {
inside_flag = !inside_flag;
}
}
yflag0 = yflag1;
vtx0 = vtx1;
}
return inside_flag;
}
} // End of namespace Saga