mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-28 12:46:56 +00:00
188cdf937d
svn-id: r20780
934 lines
32 KiB
C++
934 lines
32 KiB
C++
/* ScummVM - Scumm Interpreter
|
|
* Copyright (C) 2001 Ludvig Strigeus
|
|
* Copyright (C) 2001-2006 The ScummVM project
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* $URL$
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#ifndef COMMON_SYSTEM_H
|
|
#define COMMON_SYSTEM_H
|
|
|
|
#include "common/scummsys.h"
|
|
#include "common/mutex.h"
|
|
#include "common/rect.h"
|
|
#include "common/singleton.h"
|
|
|
|
namespace Graphics {
|
|
struct Surface;
|
|
}
|
|
|
|
namespace Common {
|
|
class SaveFileManager;
|
|
}
|
|
|
|
/**
|
|
* Interface for ScummVM backends. If you want to port ScummVM to a system
|
|
* which is not currently covered by any of our backends, this is the place
|
|
* to start. ScummVM will create an instance of a subclass of this interface
|
|
* and use it to interact with the system.
|
|
*
|
|
* In particular, a backend provides a video surface for ScummVM to draw in;
|
|
* methods to create timers, to handle user input events,
|
|
* control audio CD playback, and sound output.
|
|
*/
|
|
class OSystem : public Common::Singleton<OSystem> {
|
|
protected:
|
|
static OSystem *makeInstance();
|
|
friend class Common::Singleton<SingletonBaseType>;
|
|
|
|
public:
|
|
|
|
/**
|
|
* The following method is called once, from main.cpp, after all
|
|
* config data (including command line params etc.) are fully loaded.
|
|
*/
|
|
virtual void initBackend() { }
|
|
|
|
/** @name Feature flags */
|
|
//@{
|
|
|
|
/**
|
|
* A feature in this context means an ability of the backend which can be
|
|
* either on or off. Examples include:
|
|
* - fullscreen mode
|
|
* - aspect ration correction
|
|
* - a virtual keyboard for text entry (on PDAs)
|
|
*/
|
|
enum Feature {
|
|
/**
|
|
* If your backend supports both a windowed and a fullscreen mode,
|
|
* then this feature flag can be used to switch between the two.
|
|
*/
|
|
kFeatureFullscreenMode,
|
|
|
|
/**
|
|
* Control aspect ratio correction. Aspect ratio correction is used to
|
|
* correct games running at 320x200 (i.e with an aspect ratio of 8:5),
|
|
* but which on their original hardware were displayed with the
|
|
* standard 4:3 ratio (that is, the original graphics used non-square
|
|
* pixels). When the backend support this, then games running at
|
|
* 320x200 pixels should be scaled up to 320x240 pixels. For all other
|
|
* resolutions, ignore this feature flag.
|
|
* @note You can find utility functions in common/scaler.h which can
|
|
* be used to implement aspect ratio correction. In particular,
|
|
* stretch200To240() can stretch a rect, including (very fast)
|
|
* interpolation, and works in-place.
|
|
*/
|
|
kFeatureAspectRatioCorrection,
|
|
|
|
/**
|
|
* Determine whether a virtual keyboard is too be shown or not.
|
|
* This would mostly be implemented by backends for hand held devices,
|
|
* like PocketPC, Palms, Symbian phones like the P800, Zaurus, etc.
|
|
*/
|
|
kFeatureVirtualKeyboard,
|
|
|
|
/**
|
|
* This flag is a bit more obscure: it gives a hint to the backend that
|
|
* the frontend code is very inefficient in doing screen updates. So
|
|
* the frontend might do a lot of fullscreen blits even though only a
|
|
* tiny portion of the actual screen data changed. In that case, it
|
|
* might pay off for the backend to compute which parts actual changed,
|
|
* and then only mark those as dirty.
|
|
* Implementing this is purely optional, and no harm should arise
|
|
* when not doing so (except for decreased speed in said frontends).
|
|
*/
|
|
kFeatureAutoComputeDirtyRects,
|
|
|
|
/**
|
|
* This flags determines either cursor can have its own palette or not
|
|
* It is currently used only by some Macintosh versions of Humongous
|
|
* Entertainment games. If backend doesn't implement this feature then
|
|
* engine switches to b/w version of cursors.
|
|
*/
|
|
kFeatureCursorHasPalette,
|
|
|
|
/**
|
|
* Set to true if the overlay pixel format has an alpha channel.
|
|
*/
|
|
kFeatureOverlaySupportsAlpha
|
|
};
|
|
|
|
/**
|
|
* Determine whether the backend supports the specified feature.
|
|
*/
|
|
virtual bool hasFeature(Feature f) { return false; }
|
|
|
|
/**
|
|
* En-/disable the specified feature. For example, this may be used to
|
|
* enable fullscreen mode, or to deactivate aspect correction, etc.
|
|
*/
|
|
virtual void setFeatureState(Feature f, bool enable) {}
|
|
|
|
/**
|
|
* Query the state of the specified feature. For example, test whether
|
|
* fullscreen mode is active or not.
|
|
*/
|
|
virtual bool getFeatureState(Feature f) { return false; }
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/**
|
|
* @name Graphics
|
|
*
|
|
* The way graphics work in the class OSystem are meant to make
|
|
* it possible for game frontends to implement all they need in
|
|
* an efficient manner. The downside of this is that it may be
|
|
* rather complicated for backend authors to fully understand and
|
|
* implement the semantics of the OSystem interface.
|
|
*
|
|
*
|
|
* The graphics visible to the user in the end are actually
|
|
* composed in three layers: the game graphics, the overlay
|
|
* graphics, and the mouse.
|
|
*
|
|
* First, there are the game graphics. They are always 8bpp, and
|
|
* the methods in this section deal with them exclusively. In
|
|
* particular, the size of the game graphics is defined by a call
|
|
* to initSize(), and copyRectToScreen() blits 8bpp data into the
|
|
* game layer. Let W and H denote the width and height of the
|
|
* game graphics.
|
|
*
|
|
* Before the user sees these graphics, they may undergo certain
|
|
* transformations; for example, the may be scaled to better fit
|
|
* on the visible screen; or aspect ratio correction may be
|
|
* performed (see kFeatureAspectRatioCorrection). As a result of
|
|
* this, a pixel of the game graphics may occupy a region bigger
|
|
* than a single pixel on the screen. We define p_w and p_h to be
|
|
* the width resp. height of a game pixel on the screen.
|
|
*
|
|
* In addition, there is a vertical "shake offset" (as defined by
|
|
* setShakePos) which is used in some games to provide a shaking
|
|
* effect. Note that shaking is applied to all three layers, i.e.
|
|
* also to the overlay and the mouse. We denote the shake offset
|
|
* by S.
|
|
*
|
|
* Putting this together, a pixel (x,y) of the game graphics is
|
|
* transformed to a rectangle of height p_h and widht p_w
|
|
* appearing at position (p_w * x, p_hw * (y + S)) on the real
|
|
* screen (in addition, a backend may choose to offset
|
|
* everything, e.g. to center the graphics on the screen).
|
|
*
|
|
*
|
|
* The next layer is the overlay. It is composed over the game
|
|
* graphics. By default, it has exactly the same size and
|
|
* resolution as the game graphics. However, client code can
|
|
* specify an overlay scale (as an additional parameter to
|
|
* initSize()). This is meant to increase the resolution of the
|
|
* overlay while keeping its size the same as that of the game
|
|
* graphics. For example, if the overlay scale is 2, and the game
|
|
* graphics have a resolution of 320x200; then the overlay shall
|
|
* have a resolution of 640x400, but it still has the same
|
|
* physical size as the game graphics.
|
|
*
|
|
*
|
|
* Finally, there is the mouse layer. This layer doesn't have to
|
|
* actually exist within the backend -- it all depends on how a
|
|
* backend chooses to implement mouse cursors, but in the default
|
|
* SDL backend, it really is a separate layer. The mouse is
|
|
* always in 8bpp but can have a palette of its own, if the
|
|
* backend supports it. The scale of the mouse cursor is called
|
|
* 'cursorTargetScale'. This is meant as a hint to the backend.
|
|
* For example, let us assume the overlay is not visible, and the
|
|
* game graphics are displayed using a 2x scaler. If a mouse
|
|
* cursor with a cursorTargetScale of 1 is set, then it should be
|
|
* scaled by factor 2x, too, just like the game graphics. But if
|
|
* it has a cursorTargetScale of 2, then it shouldn't be scaled
|
|
* again by the game graphics scaler.
|
|
*/
|
|
//@{
|
|
|
|
/**
|
|
* Description of a graphics mode.
|
|
*/
|
|
struct GraphicsMode {
|
|
/**
|
|
* The 'name' of the graphics mode. This name is matched when selecting
|
|
* a mode via the command line, or via the config file.
|
|
* Examples: "1x", "advmame2x", "hq3x"
|
|
*/
|
|
const char *name;
|
|
/**
|
|
* Human readable description of the scaler.
|
|
* Examples: "Normal (no scaling)", "AdvMAME2x", "HQ3x"
|
|
*/
|
|
const char *description;
|
|
/**
|
|
* ID of the graphics mode. How to use this is completely up to the
|
|
* backend. This value will be passed to the setGraphicsMode(int)
|
|
* method by client code.
|
|
*/
|
|
int id;
|
|
};
|
|
|
|
/**
|
|
* Retrieve a list of all graphics modes supported by this backend.
|
|
* This can be both video modes as well as graphic filters/scalers;
|
|
* it is completely up to the backend maintainer to decide what is
|
|
* appropriate here and what not.
|
|
* The list is terminated by an all-zero entry.
|
|
* @return a list of supported graphics modes
|
|
*/
|
|
virtual const GraphicsMode *getSupportedGraphicsModes() const = 0;
|
|
|
|
/**
|
|
* Return the ID of the 'default' graphics mode. What exactly this means
|
|
* is up to the backend. This mode is set by the client code when no user
|
|
* overrides are present (i.e. if no custom graphics mode is selected via
|
|
* the command line or a config file).
|
|
*
|
|
* @return the ID of the 'default' graphics mode
|
|
*/
|
|
virtual int getDefaultGraphicsMode() const = 0;
|
|
|
|
/**
|
|
* Switch to the specified graphics mode. If switching to the new mode
|
|
* failed, this method returns false.
|
|
*
|
|
* @param mode the ID of the new graphics mode
|
|
* @return true if the switch was successful, false otherwise
|
|
*/
|
|
virtual bool setGraphicsMode(int mode) = 0;
|
|
|
|
/**
|
|
* Switch to the graphics mode with the given name. If 'name' is unknown,
|
|
* or if switching to the new mode failed, this method returns false.
|
|
*
|
|
* @param name the name of the new graphics mode
|
|
* @return true if the switch was successful, false otherwise
|
|
* @note This is implemented via the setGraphicsMode(int) method, as well
|
|
* as getSupportedGraphicsModes() and getDefaultGraphicsMode().
|
|
* In particular, backends do not have to overload this!
|
|
*/
|
|
bool setGraphicsMode(const char *name);
|
|
|
|
/**
|
|
* Determine which graphics mode is currently active.
|
|
* @return the active graphics mode
|
|
*/
|
|
virtual int getGraphicsMode() const = 0;
|
|
|
|
/**
|
|
* Set the size of the virtual screen. Typical sizes include:
|
|
* - 320x200 (e.g. for most SCUMM games, and Simon)
|
|
* - 320x240 (e.g. for FM-TOWN SCUMM games)
|
|
* - 640x480 (e.g. for Curse of Monkey Island)
|
|
*
|
|
* This is the resolution for which the client code generates data;
|
|
* this is not necessarily equal to the actual display size. For example,
|
|
* a backend may magnify the graphics to fit on screen (see also the
|
|
* GraphicsMode); stretch the data to perform aspect ratio correction;
|
|
* or shrink it to fit on small screens (in cell phones).
|
|
*
|
|
* @param width the new virtual screen width
|
|
* @param height the new virtual screen height
|
|
* @param overlayScale optional: the scale to be used for the overlay, if different
|
|
* from the default scale (default is -1, which means the
|
|
* overlay uses the same scale)
|
|
*/
|
|
virtual void initSize(uint width, uint height, int overlayScale = -1) = 0;
|
|
|
|
/**
|
|
* Begin a new GFX transaction, which is a sequence of GFX mode changes.
|
|
* The idea behind GFX transactions is to make it possible to activate
|
|
* several different GFX changes at once as a "batch" operation. For
|
|
* example, assume we are running in 320x200 with a 2x scaler (thus using
|
|
* 640x400 pixels in total). Now, we want to switch to 640x400 with the 1x
|
|
* scaler. Without transactions, we have to choose whether we want to first
|
|
* switch the scaler mode, or first to 640x400 mode. In either case,
|
|
* depending on the backend implementation, some ugliness may result.
|
|
* E.g. the window might briefly switch to 320x200 or 1280x800.
|
|
* Using transactions, this can be avoided.
|
|
*
|
|
* @note Transaction support is optional, and the default implementations
|
|
* of the relevant methods simply do nothing.
|
|
* @see endGFXTransaction
|
|
*/
|
|
virtual void beginGFXTransaction() {};
|
|
|
|
|
|
/**
|
|
* End (and thereby commit) the current GFX transaction.
|
|
* @see beginGFXTransaction
|
|
*/
|
|
virtual void endGFXTransaction() {};
|
|
|
|
|
|
/**
|
|
* Returns the currently set virtual screen height.
|
|
* @see initSize
|
|
* @return the currently set virtual screen height
|
|
*/
|
|
virtual int16 getHeight() = 0;
|
|
|
|
/**
|
|
* Returns the currently set virtual screen width.
|
|
* @see initSize
|
|
* @return the currently set virtual screen width
|
|
*/
|
|
virtual int16 getWidth() = 0;
|
|
|
|
/**
|
|
* Replace the specified range of the palette with new colors.
|
|
* The palette entries from 'start' till (start+num-1) will be replaced - so
|
|
* a full palette update is accomplished via start=0, num=256.
|
|
*
|
|
* The palette data is specified in interleaved RGBA format. That is, the
|
|
* first byte of the memory block 'colors' points at is the red component
|
|
* of the first new color; the second byte the blue component of the first
|
|
* new color; the third byte the green component, the last byte to the alpha
|
|
* (transparency) value. Then the second color starts, and so on. So memory
|
|
* looks like this: R1-G1-B1-A1-R2-G2-B2-A2-R3-...
|
|
*
|
|
* @param colors the new palette data, in interleaved RGB format
|
|
* @param start the first palette entry to be updated
|
|
* @param num the number of palette entries to be updated
|
|
*
|
|
* @note It is an error if start+num exceeds 256, behaviour is undefined
|
|
* in that case (the backend may ignore it silently or assert).
|
|
* @note The alpha value is not actually used, and future revisions of this
|
|
* API are probably going to remove it.
|
|
*/
|
|
virtual void setPalette(const byte *colors, uint start, uint num) = 0;
|
|
|
|
/**
|
|
* Grabs a specified part of the currently active palette.
|
|
* The format is the same as for setPalette.
|
|
*
|
|
* @param colors the palette data, in interleaved RGB format
|
|
* @param start the first platte entry to be read
|
|
* @param num the number of palette entries to be read
|
|
*/
|
|
virtual void grabPalette(byte *colors, uint start, uint num) = 0;
|
|
|
|
/**
|
|
* Blit a bitmap to the virtual screen.
|
|
* The real screen will not immediately be updated to reflect the changes.
|
|
* Client code has to to call updateScreen to ensure any changes are
|
|
* visible to the user. This can be used to optimize drawing and reduce
|
|
* flicker.
|
|
* The graphics data uses 8 bits per pixel, using the palette specified
|
|
* via setPalette.
|
|
*
|
|
* @param buf the buffer containing the graphics data source
|
|
* @param pitch the pitch of the buffer (number of bytes in a scanline)
|
|
* @param x the x coordinate of the destination rectangle
|
|
* @param y the y coordinate of the destination rectangle
|
|
* @param w the width of the destination rectangle
|
|
* @param h the height of the destination rectangle
|
|
*
|
|
* @note The specified destination rectangle must be completly contained
|
|
* in the visible screen space, and must be non-empty. If not, a
|
|
* backend may or may not perform clipping, trigger an assert or
|
|
* silently corrupt memory.
|
|
*
|
|
* @see updateScreen
|
|
*/
|
|
virtual void copyRectToScreen(const byte *buf, int pitch, int x, int y, int w, int h) = 0;
|
|
|
|
/**
|
|
* Copies the current screen contents to a new surface, with the original
|
|
* bit depth. This will allocate memory for the pixel data.
|
|
* WARNING: surf->free() must be called by the user to avoid leaking.
|
|
*
|
|
* @param surf the surfce to store the data in it
|
|
* @return true if all went well, false if an error occured
|
|
*/
|
|
virtual bool grabRawScreen(Graphics::Surface *surf) { return false; }
|
|
|
|
/**
|
|
* Clear the screen to black.
|
|
*/
|
|
virtual void clearScreen() {}
|
|
|
|
/** Update the dirty areas of the screen. */
|
|
virtual void updateScreen() = 0;
|
|
|
|
/**
|
|
* Set current shake position, a feature needed for some SCUMM screen effects.
|
|
* The effect causes the displayed graphics to be shifted upwards by the specified
|
|
* (always positive) offset. The area at the bottom of the screen which is moved
|
|
* into view by this is filled by black. This does not cause any graphic data to
|
|
* be lost - that is, to restore the original view, the game engine only has to
|
|
* call this method again with a 0 offset. No calls to copyRectToScreen are necessary.
|
|
* @param shakeOffset the shake offset
|
|
*
|
|
* @todo This is a rather special screen effect, only used by the SCUMM
|
|
* frontend - we should consider removing it from the backend API
|
|
* and instead implement the functionality in the frontend.
|
|
*/
|
|
virtual void setShakePos(int shakeOffset) = 0;
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/**
|
|
* @name Overlay
|
|
* In order to be able to display dialogs atop the game graphics, backends
|
|
* must provide an overlay mode.
|
|
*
|
|
* While the game graphics are always 8 bpp, the overlay can be 8 or 16 bpp.
|
|
* Depending on which it is, OverlayColor is 8 or 16 bit.
|
|
*
|
|
* For 'coolness' we usually want to have an overlay which is blended over
|
|
* the game graphics. On backends which support alpha blending, this is
|
|
* no issue; but on other systems (in particular those which only support
|
|
* 8bpp), this needs some trickery.
|
|
*
|
|
* Essentially, we fake (alpha) blending on these systems by copying the
|
|
* game graphics into the overlay buffer, then manually compose whatever
|
|
* graphics we want to show in the overlay.
|
|
*/
|
|
//@{
|
|
|
|
/** Activate the overlay mode. */
|
|
virtual void showOverlay() = 0;
|
|
|
|
/** Deactivate the overlay mode. */
|
|
virtual void hideOverlay() = 0;
|
|
|
|
/**
|
|
* Reset the overlay.
|
|
*
|
|
* After calling this method while the overlay mode is active, the user
|
|
* should be seeing only the game graphics. How this is achieved depends
|
|
* on how the backend implements the overlay. Either it sets all pixels of
|
|
* the overlay to be transparent (when alpha blending is used).
|
|
*
|
|
* Or, in case of fake alpha blending, it might just put a copy of the
|
|
* current game graphics screen into the overlay.
|
|
*/
|
|
virtual void clearOverlay() = 0;
|
|
|
|
/**
|
|
* Copy the content of the overlay into a buffer provided by the caller.
|
|
* This is only used to implement fake alpha blending.
|
|
*/
|
|
virtual void grabOverlay(OverlayColor *buf, int pitch) = 0;
|
|
|
|
/**
|
|
* Blit a graphics buffer to the overlay.
|
|
* In a sense, this is the reverse of grabOverlay.
|
|
* @see copyRectToScreen
|
|
* @see grabOverlay
|
|
*/
|
|
virtual void copyRectToOverlay(const OverlayColor *buf, int pitch, int x, int y, int w, int h) = 0;
|
|
|
|
/**
|
|
* Return the height of the overlay.
|
|
* @see getHeight
|
|
*/
|
|
virtual int16 getOverlayHeight() { return getHeight(); }
|
|
|
|
/**
|
|
* Return the width of the overlay.
|
|
* @see getWidth
|
|
*/
|
|
virtual int16 getOverlayWidth() { return getWidth(); }
|
|
|
|
virtual int screenToOverlayX(int x) { return x; }
|
|
virtual int screenToOverlayY(int y) { return y; }
|
|
virtual int overlayToScreenX(int x) { return x; }
|
|
virtual int overlayToScreenY(int y) { return y; }
|
|
|
|
/**
|
|
* Convert the given RGB triplet into an OverlayColor. A OverlayColor can
|
|
* be 8bit, 16bit or 32bit, depending on the target system. The default
|
|
* implementation generates a 16 bit color value, in the 565 format
|
|
* (that is, 5 bits red, 6 bits green, 5 bits blue).
|
|
* @see colorToRGB
|
|
* @see ARGBToColor
|
|
*/
|
|
virtual OverlayColor RGBToColor(uint8 r, uint8 g, uint8 b) {
|
|
return ((((r >> 3) & 0x1F) << 11) | (((g >> 2) & 0x3F) << 5) | ((b >> 3) & 0x1F));
|
|
}
|
|
|
|
/**
|
|
* Convert the given OverlayColor into a RGB triplet. An OverlayColor can
|
|
* be 8bit, 16bit or 32bit, depending on the target system. The default
|
|
* implementation takes a 16 bit color value and assumes it to be in 565 format
|
|
* (that is, 5 bits red, 6 bits green, 5 bits blue).
|
|
* @see RGBToColor
|
|
* @see colorToARGB
|
|
*/
|
|
virtual void colorToRGB(OverlayColor color, uint8 &r, uint8 &g, uint8 &b) {
|
|
r = (((color >> 11) & 0x1F) << 3);
|
|
g = (((color >> 5) & 0x3F) << 2);
|
|
b = ((color&0x1F) << 3);
|
|
}
|
|
|
|
/**
|
|
* Convert the given ARGB quadruplet into an OverlayColor. A OverlayColor can
|
|
* be 8bit, 16bit or 32bit, depending on the target system. The default
|
|
* implementation generates a 16 bit color value, in the 565 format
|
|
* (that is, 5 bits red, 6 bits green, 5 bits blue).
|
|
* @see colorToRGB
|
|
* @see RGBToColor
|
|
*/
|
|
virtual OverlayColor ARGBToColor(uint8 a, uint8 r, uint8 g, uint8 b) {
|
|
return RGBToColor(r, g, b);
|
|
}
|
|
|
|
/**
|
|
* Convert the given OverlayColor into an ARGB quadruplet. An OverlayColor can
|
|
* be 8bit, 16bit or 32bit, depending on the target system. The default
|
|
* implementation takes a 16 bit color value and assumes it to be in 565 format
|
|
* (that is, 5 bits red, 6 bits green, 5 bits blue).
|
|
* @see ARGBToColor
|
|
* @see colorToRGB
|
|
*/
|
|
virtual void colorToARGB(OverlayColor color, uint8 &a, uint8 &r, uint8 &g, uint8 &b) {
|
|
colorToRGB(color, r, g, b);
|
|
a = 255;
|
|
}
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/** @name Mouse */
|
|
//@{
|
|
|
|
/** Show or hide the mouse cursor. */
|
|
virtual bool showMouse(bool visible) = 0;
|
|
|
|
/**
|
|
* Move ("warp") the mouse cursor to the specified position in virtual
|
|
* screen coordinates.
|
|
* @param x the new x position of the mouse
|
|
* @param y the new x position of the mouse
|
|
*/
|
|
virtual void warpMouse(int x, int y) = 0;
|
|
|
|
/**
|
|
* Set the bitmap used for drawing the cursor.
|
|
*
|
|
* @param buf the pixmap data to be used (8bit/pixel)
|
|
* @param w width of the mouse cursor
|
|
* @param h height of the mouse cursor
|
|
* @param hotspotX horizontal offset from the left side to the hotspot
|
|
* @param hotspotY vertical offset from the top side to the hotspot
|
|
* @param keycolor transparency color index
|
|
* @param cursorTargetScale scale factor which cursor is designed for
|
|
*/
|
|
virtual void setMouseCursor(const byte *buf, uint w, uint h, int hotspotX, int hotspotY, byte keycolor = 255, int cursorTargetScale = 1) = 0;
|
|
|
|
/**
|
|
* Replace the specified range of cursor the palette with new colors.
|
|
* The palette entries from 'start' till (start+num-1) will be replaced - so
|
|
* a full palette update is accomplished via start=0, num=256.
|
|
*
|
|
* Backends which implement it should have kFeatureCursorHasPalette flag set
|
|
*
|
|
* @see setPalette
|
|
* @see kFeatureCursorHasPalette
|
|
*/
|
|
virtual void setCursorPalette(const byte *colors, uint start, uint num) {};
|
|
|
|
/**
|
|
* Disable or enable cursor palette.
|
|
*
|
|
* Backends which implement it should have kFeatureCursorHasPalette flag set
|
|
*
|
|
* @param disable True to disable, false to enable.
|
|
*
|
|
* @see setPalette
|
|
* @see kFeatureCursorHasPalette
|
|
*/
|
|
virtual void disableCursorPalette(bool disable) {};
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/** @name Events and Time */
|
|
//@{
|
|
|
|
typedef int (*TimerProc)(int interval);
|
|
|
|
/**
|
|
* The types of events backends may generate.
|
|
* @see Event
|
|
*
|
|
* @todo Merge EVENT_LBUTTONDOWN, EVENT_RBUTTONDOWN and EVENT_WHEELDOWN;
|
|
* likewiese EVENT_LBUTTONUP, EVENT_RBUTTONUP, EVENT_WHEELUP.
|
|
* To do that, we just have to add a field to the Event which
|
|
* indicates which button was pressed.
|
|
*/
|
|
enum EventType {
|
|
/** A key was pressed, details in Event::kbd. */
|
|
EVENT_KEYDOWN = 1,
|
|
/** A key was released, details in Event::kbd. */
|
|
EVENT_KEYUP = 2,
|
|
/** The mouse moved, details in Event::mouse. */
|
|
EVENT_MOUSEMOVE = 3,
|
|
EVENT_LBUTTONDOWN = 4,
|
|
EVENT_LBUTTONUP = 5,
|
|
EVENT_RBUTTONDOWN = 6,
|
|
EVENT_RBUTTONUP = 7,
|
|
EVENT_WHEELUP = 8,
|
|
EVENT_WHEELDOWN = 9,
|
|
|
|
EVENT_QUIT = 10,
|
|
EVENT_SCREEN_CHANGED = 11
|
|
};
|
|
|
|
/**
|
|
* Keyboard modifier flags, used for Event::kbd::flags.
|
|
*/
|
|
enum {
|
|
KBD_CTRL = 1 << 0,
|
|
KBD_ALT = 1 << 1,
|
|
KBD_SHIFT = 1 << 2
|
|
};
|
|
|
|
/**
|
|
* Data structure for an event. A pointer to an instance of Event
|
|
* can be passed to pollEvent.
|
|
* @todo Rework/document this structure. It should be made 100% clear which
|
|
* field is valid for which event type.
|
|
* Implementation wise, we might want to use the classic
|
|
* union-of-structs trick. It goes roughly like this:
|
|
* struct BasicEvent {
|
|
* EventType type;
|
|
* };
|
|
* struct MouseMovedEvent : BasicEvent {
|
|
* Common::Point pos;
|
|
* };
|
|
* struct MouseButtonEvent : MouseMovedEvent {
|
|
* int button;
|
|
* };
|
|
* struct KeyEvent : BasicEvent {
|
|
* ...
|
|
* };
|
|
* ...
|
|
* union Event {
|
|
* EventType type;
|
|
* MouseMovedEvent mouse;
|
|
* MouseButtonEvent button;
|
|
* KeyEvent key;
|
|
* ...
|
|
* };
|
|
*/
|
|
struct Event {
|
|
/** The type of the event. */
|
|
EventType type;
|
|
/**
|
|
* Keyboard data; only valid for keyboard events (EVENT_KEYDOWN and
|
|
* EVENT_KEYUP). For all other event types, content is undefined.
|
|
*/
|
|
struct {
|
|
/**
|
|
* Abstract key code (will be the same for any given key regardless
|
|
* of modifiers being held at the same time.
|
|
* For example, this is the same for both 'A' and Shift-'A'.
|
|
* @todo Document which values are to be used for non-ASCII keys
|
|
* like F1-F10. For now, let's just say that our primary backend
|
|
* is the SDL one, and it uses the values SDL uses... so until
|
|
* we fix this, your best bet is to get a copy of SDL_keysym.h
|
|
* and look at that, if you want to find out a key code.
|
|
*/
|
|
int keycode;
|
|
/**
|
|
* ASCII-value of the pressed key (if any).
|
|
* This depends on modifiers, i.e. pressing the 'A' key results in
|
|
* different values here depending on the status of shift, alt and
|
|
* caps lock.
|
|
* For the function keys F1-F9, values of 315-323 are used.
|
|
*/
|
|
uint16 ascii;
|
|
/**
|
|
* Status of the modifier keys. Bits are set in this for each
|
|
* pressed modifier
|
|
* @see KBD_CTRL, KBD_ALT, KBD_SHIFT
|
|
*/
|
|
byte flags;
|
|
} kbd;
|
|
/**
|
|
* The mouse coordinates, in virtual screen coordinates. Only valid
|
|
* for mouse events.
|
|
* Virtual screen coordinates means: the coordinate system of the
|
|
* screen area as defined by the most recent call to initSize().
|
|
*/
|
|
Common::Point mouse;
|
|
};
|
|
|
|
/**
|
|
* Get the next event in the event queue.
|
|
* @param event point to an Event struct, which will be filled with the event data.
|
|
* @return true if an event was retrieved.
|
|
*/
|
|
virtual bool pollEvent(Event &event) = 0;
|
|
|
|
/** Get the number of milliseconds since the program was started. */
|
|
virtual uint32 getMillis() = 0;
|
|
|
|
/** Delay/sleep for the specified amount of milliseconds. */
|
|
virtual void delayMillis(uint msecs) = 0;
|
|
|
|
/**
|
|
* Set the timer callback, a function which is periodically invoked by the
|
|
* backend. This can for example be done via a background thread.
|
|
* There is at most one active timer; if this method is called while there
|
|
* is already an active timer, then the new timer callback should replace
|
|
* the previous one. In particular, passing a callback pointer value of 0
|
|
* is legal and can be used to clear the current timer callback.
|
|
* @see Common::Timer
|
|
* @note The implementation of this method must be 'atomic' in the sense
|
|
* that when the method returns, the previously set callback must
|
|
* not be in use anymore (in particular, if timers are implemented
|
|
* via threads, then it must be ensured that the timer thread is
|
|
* not using the old callback function anymore).
|
|
*
|
|
* @param callback pointer to the callback. May be 0 to reset the timer
|
|
* @param interval the interval (in milliseconds) between invocations
|
|
* of the callback
|
|
*/
|
|
virtual void setTimerCallback(TimerProc callback, int interval) = 0;
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/**
|
|
* @name Mutex handling
|
|
* Historically, the OSystem API used to have a method which allowed
|
|
* creating threads. Hence mutex support was needed for thread syncing.
|
|
* To ease portability, though, we decided to remove the threading API.
|
|
* Instead, we now use timers (see setTimerCallback() and Common::Timer).
|
|
* But since those may be implemented using threads (and in fact, that's
|
|
* how our primary backend, the SDL one, does it on many systems), we
|
|
* still have to do mutex syncing in our timer callbacks.
|
|
*
|
|
* Hence backends which do not use threads to implement the timers simply
|
|
* can use dummy implementations for these methods.
|
|
*/
|
|
//@{
|
|
|
|
typedef Common::MutexRef MutexRef;
|
|
|
|
/**
|
|
* Create a new mutex.
|
|
* @return the newly created mutex, or 0 if an error occured.
|
|
*/
|
|
virtual MutexRef createMutex() = 0;
|
|
|
|
/**
|
|
* Lock the given mutex.
|
|
* @param mutex the mutex to lock.
|
|
*/
|
|
virtual void lockMutex(MutexRef mutex) = 0;
|
|
|
|
/**
|
|
* Unlock the given mutex.
|
|
* @param mutex the mutex to unlock.
|
|
*/
|
|
virtual void unlockMutex(MutexRef mutex) = 0;
|
|
|
|
/**
|
|
* Delete the given mutex. Make sure the mutex is unlocked before you delete it.
|
|
* If you delete a locked mutex, the behavior is undefined, in particular, your
|
|
* program may crash.
|
|
* @param mutex the mutex to delete.
|
|
*/
|
|
virtual void deleteMutex(MutexRef mutex) = 0;
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/** @name Sound */
|
|
//@{
|
|
typedef void (*SoundProc)(void *param, byte *buf, int len);
|
|
|
|
/**
|
|
* Set the audio callback which is invoked whenever samples need to be generated.
|
|
* Currently, only the 16-bit signed mode is ever used for Simon & Scumm
|
|
* @param proc pointer to the callback.
|
|
* @param param an arbitrary parameter which is stored and passed to proc.
|
|
*/
|
|
virtual bool setSoundCallback(SoundProc proc, void *param) = 0;
|
|
|
|
/**
|
|
* Remove any audio callback previously set via setSoundCallback, thus effectively
|
|
* stopping all audio output immediately.
|
|
* @see setSoundCallback
|
|
*/
|
|
virtual void clearSoundCallback() = 0;
|
|
|
|
/**
|
|
* Determine the output sample rate. Audio data provided by the sound
|
|
* callback will be played using this rate.
|
|
* @note Client code other than the sound mixer should _not_ use this
|
|
* method. Instead, call Mixer::getOutputRate()!
|
|
* @return the output sample rate
|
|
*/
|
|
virtual int getOutputSampleRate() const = 0;
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/**
|
|
* @name Audio CD
|
|
* The methods in this group deal with Audio CD playback.
|
|
*/
|
|
//@{
|
|
|
|
/**
|
|
* Initialise the specified CD drive for audio playback.
|
|
* @return true if the CD drive was inited succesfully
|
|
*/
|
|
virtual bool openCD(int drive) = 0;
|
|
|
|
/**
|
|
* Poll CD status.
|
|
* @return true if CD audio is playing
|
|
*/
|
|
virtual bool pollCD() = 0;
|
|
|
|
/**
|
|
* Start audio CD playback.
|
|
* @param track the track to play.
|
|
* @param num_loops how often playback should be repeated (-1 = infinitely often).
|
|
* @param start_frame the frame at which playback should start (75 frames = 1 second).
|
|
* @param duration the number of frames to play.
|
|
*/
|
|
virtual void playCD(int track, int num_loops, int start_frame, int duration) = 0;
|
|
|
|
/**
|
|
* Stop audio CD playback.
|
|
*/
|
|
virtual void stopCD() = 0;
|
|
|
|
/**
|
|
* Update cdrom audio status.
|
|
*/
|
|
virtual void updateCD() = 0;
|
|
|
|
//@}
|
|
|
|
|
|
|
|
/** @name Miscellaneous */
|
|
//@{
|
|
/** Quit (exit) the application. */
|
|
virtual void quit() = 0;
|
|
|
|
/**
|
|
* Set a window caption or any other comparable status display to the
|
|
* given value. The caption must be a pure ASCII string. Passing a
|
|
* non-ASCII string may lead to unexpected behavior, even crashes.
|
|
*
|
|
* In a future revision of this API, this may be changed to allowing
|
|
* UTF-8 or UTF-16 encoded data, or maybe ISO LATIN 1.
|
|
*
|
|
* @param caption the window caption to use, as an ASCII string
|
|
*/
|
|
virtual void setWindowCaption(const char *caption) {}
|
|
|
|
/**
|
|
* Display a message in an 'on screen display'. That is, display it in a
|
|
* fashion where it is visible on or near the screen (e.g. in a transparent
|
|
* rectangle over the regular screen content; or in a message box beneath
|
|
* it; etc.).
|
|
*
|
|
* @note There is a default implementation which uses a TimedMessageDialog
|
|
* to display the message. Hence implementing this is optional.
|
|
*
|
|
* @param msg the message to display on screen
|
|
*/
|
|
virtual void displayMessageOnOSD(const char *msg);
|
|
|
|
/** Savefile management. */
|
|
virtual Common::SaveFileManager *getSavefileManager();
|
|
|
|
//@}
|
|
};
|
|
|
|
|
|
/** The global OSystem instance. Inited in main(). */
|
|
#define g_system (&OSystem::instance())
|
|
|
|
|
|
#endif
|