scummvm/video/qt_decoder.cpp

996 lines
31 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
//
// Partially based on ffmpeg code.
//
// Copyright (c) 2001 Fabrice Bellard.
// First version by Francois Revol revol@free.fr
// Seek function by Gael Chardon gael.dev@4now.net
//
#include "video/qt_decoder.h"
#include "video/qt_data.h"
#include "audio/audiostream.h"
#include "common/debug.h"
#include "common/memstream.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "common/util.h"
// Video codecs
#include "image/codecs/codec.h"
namespace Video {
////////////////////////////////////////////
// QuickTimeDecoder
////////////////////////////////////////////
QuickTimeDecoder::QuickTimeDecoder() {
_scaledSurface = 0;
_width = _height = 0;
_enableEditListBoundsCheckQuirk = false;
}
QuickTimeDecoder::~QuickTimeDecoder() {
close();
}
bool QuickTimeDecoder::loadFile(const Common::Path &filename) {
if (!Common::QuickTimeParser::parseFile(filename))
return false;
init();
return true;
}
bool QuickTimeDecoder::loadStream(Common::SeekableReadStream *stream) {
if (!Common::QuickTimeParser::parseStream(stream))
return false;
init();
return true;
}
void QuickTimeDecoder::close() {
VideoDecoder::close();
Common::QuickTimeParser::close();
if (_scaledSurface) {
_scaledSurface->free();
delete _scaledSurface;
_scaledSurface = 0;
}
}
const Graphics::Surface *QuickTimeDecoder::decodeNextFrame() {
const Graphics::Surface *frame = VideoDecoder::decodeNextFrame();
// Update audio buffers too
// (needs to be done after we find the next track)
updateAudioBuffer();
// We have to initialize the scaled surface
if (frame && (_scaleFactorX != 1 || _scaleFactorY != 1)) {
if (!_scaledSurface) {
_scaledSurface = new Graphics::Surface();
_scaledSurface->create(_width, _height, getPixelFormat());
}
scaleSurface(frame, _scaledSurface, _scaleFactorX, _scaleFactorY);
return _scaledSurface;
}
return frame;
}
Common::QuickTimeParser::SampleDesc *QuickTimeDecoder::readSampleDesc(Common::QuickTimeParser::Track *track, uint32 format, uint32 descSize) {
if (track->codecType == CODEC_TYPE_VIDEO) {
debug(0, "Video Codec FourCC: \'%s\'", tag2str(format));
VideoSampleDesc *entry = new VideoSampleDesc(track, format);
_fd->readUint16BE(); // version
_fd->readUint16BE(); // revision level
_fd->readUint32BE(); // vendor
_fd->readUint32BE(); // temporal quality
_fd->readUint32BE(); // spacial quality
uint16 width = _fd->readUint16BE(); // width
uint16 height = _fd->readUint16BE(); // height
// The width is most likely invalid for entries after the first one
// so only set the overall width if it is not zero here.
if (width)
track->width = width;
if (height)
track->height = height;
_fd->readUint32BE(); // horiz resolution
_fd->readUint32BE(); // vert resolution
_fd->readUint32BE(); // data size, always 0
_fd->readUint16BE(); // frames per samples
byte codecName[32];
_fd->read(codecName, 32); // codec name, pascal string (FIXME: true for mp4?)
if (codecName[0] <= 31) {
memcpy(entry->_codecName, &codecName[1], codecName[0]);
entry->_codecName[codecName[0]] = 0;
}
entry->_bitsPerSample = _fd->readUint16BE(); // depth
entry->_colorTableId = _fd->readUint16BE(); // colortable id
// figure out the palette situation
byte colorDepth = entry->_bitsPerSample & 0x1F;
bool colorGreyscale = (entry->_bitsPerSample & 0x20) != 0;
debug(0, "color depth: %d", colorDepth);
// if the depth is 2, 4, or 8 bpp, file is palettized
if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) {
// Initialize the palette
entry->_palette = new byte[256 * 3]();
if (colorGreyscale) {
debug(0, "Greyscale palette");
// compute the greyscale palette
uint16 colorCount = 1 << colorDepth;
int16 colorIndex = 255;
byte colorDec = 256 / (colorCount - 1);
for (uint16 j = 0; j < colorCount; j++) {
entry->_palette[j * 3] = entry->_palette[j * 3 + 1] = entry->_palette[j * 3 + 2] = colorIndex;
colorIndex -= colorDec;
if (colorIndex < 0)
colorIndex = 0;
}
} else if (entry->_colorTableId & 0x08) {
// if flag bit 3 is set, use the default palette
//uint16 colorCount = 1 << colorDepth;
debug(0, "Predefined palette! %dbpp", colorDepth);
if (colorDepth == 2)
memcpy(entry->_palette, quickTimeDefaultPalette4, 4 * 3);
else if (colorDepth == 4)
memcpy(entry->_palette, quickTimeDefaultPalette16, 16 * 3);
else if (colorDepth == 8)
memcpy(entry->_palette, quickTimeDefaultPalette256, 256 * 3);
} else {
debug(0, "Palette from file");
// load the palette from the file
uint32 colorStart = _fd->readUint32BE();
/* uint16 colorCount = */ _fd->readUint16BE();
uint16 colorEnd = _fd->readUint16BE();
for (uint32 j = colorStart; j <= colorEnd; j++) {
// each R, G, or B component is 16 bits;
// only use the top 8 bits; skip alpha bytes
// up front
_fd->readByte();
_fd->readByte();
entry->_palette[j * 3] = _fd->readByte();
_fd->readByte();
entry->_palette[j * 3 + 1] = _fd->readByte();
_fd->readByte();
entry->_palette[j * 3 + 2] = _fd->readByte();
_fd->readByte();
}
}
entry->_bitsPerSample &= 0x1f; // clear grayscale bit
}
return entry;
}
// Pass it on up
return Audio::QuickTimeAudioDecoder::readSampleDesc(track, format, descSize);
}
void QuickTimeDecoder::init() {
Audio::QuickTimeAudioDecoder::init();
// Initialize all the audio tracks
for (uint32 i = 0; i < _audioTracks.size(); i++)
addTrack(new AudioTrackHandler(this, _audioTracks[i]));
// Initialize all the video tracks
const Common::Array<Common::QuickTimeParser::Track *> &tracks = Common::QuickTimeParser::_tracks;
for (uint32 i = 0; i < tracks.size(); i++) {
if (tracks[i]->codecType == CODEC_TYPE_VIDEO) {
for (uint32 j = 0; j < tracks[i]->sampleDescs.size(); j++)
((VideoSampleDesc *)tracks[i]->sampleDescs[j])->initCodec();
addTrack(new VideoTrackHandler(this, tracks[i]));
}
}
// Prepare the first video track
VideoTrackHandler *nextVideoTrack = (VideoTrackHandler *)findNextVideoTrack();
if (nextVideoTrack) {
if (_scaleFactorX != 1 || _scaleFactorY != 1) {
// We have to take the scale into consideration when setting width/height
_width = (nextVideoTrack->getScaledWidth() / _scaleFactorX).toInt();
_height = (nextVideoTrack->getScaledHeight() / _scaleFactorY).toInt();
} else {
_width = nextVideoTrack->getWidth();
_height = nextVideoTrack->getHeight();
}
}
}
void QuickTimeDecoder::updateAudioBuffer() {
// Updates the audio buffers for all audio tracks
for (TrackListIterator it = getTrackListBegin(); it != getTrackListEnd(); it++)
if ((*it)->getTrackType() == VideoDecoder::Track::kTrackTypeAudio)
((AudioTrackHandler *)*it)->updateBuffer();
}
void QuickTimeDecoder::scaleSurface(const Graphics::Surface *src, Graphics::Surface *dst, const Common::Rational &scaleFactorX, const Common::Rational &scaleFactorY) {
assert(src && dst);
for (int32 j = 0; j < dst->h; j++)
for (int32 k = 0; k < dst->w; k++)
memcpy(dst->getBasePtr(k, j), src->getBasePtr((k * scaleFactorX).toInt() , (j * scaleFactorY).toInt()), src->format.bytesPerPixel);
}
QuickTimeDecoder::VideoSampleDesc::VideoSampleDesc(Common::QuickTimeParser::Track *parentTrack, uint32 codecTag) : Common::QuickTimeParser::SampleDesc(parentTrack, codecTag) {
memset(_codecName, 0, 32);
_colorTableId = 0;
_palette = 0;
_videoCodec = 0;
_bitsPerSample = 0;
}
QuickTimeDecoder::VideoSampleDesc::~VideoSampleDesc() {
delete[] _palette;
delete _videoCodec;
}
void QuickTimeDecoder::VideoSampleDesc::initCodec() {
_videoCodec = Image::createQuickTimeCodec(_codecTag, _parentTrack->width, _parentTrack->height, _bitsPerSample);
}
QuickTimeDecoder::AudioTrackHandler::AudioTrackHandler(QuickTimeDecoder *decoder, QuickTimeAudioTrack *audioTrack) :
SeekableAudioTrack(decoder->getSoundType()),
_decoder(decoder),
_audioTrack(audioTrack) {
}
void QuickTimeDecoder::AudioTrackHandler::updateBuffer() {
if (_decoder->endOfVideoTracks()) // If we have no video left (or no video), there's nothing to base our buffer against
_audioTrack->queueRemainingAudio();
else // Otherwise, queue enough to get us to the next frame plus another half second spare
_audioTrack->queueAudio(Audio::Timestamp(_decoder->getTimeToNextFrame() + 500, 1000));
}
Audio::SeekableAudioStream *QuickTimeDecoder::AudioTrackHandler::getSeekableAudioStream() const {
return _audioTrack;
}
QuickTimeDecoder::VideoTrackHandler::VideoTrackHandler(QuickTimeDecoder *decoder, Common::QuickTimeParser::Track *parent) : _decoder(decoder), _parent(parent) {
if (decoder->_enableEditListBoundsCheckQuirk) {
checkEditListBounds();
}
_curEdit = 0;
_curFrame = -1;
_delayedFrameToBufferTo = -1;
enterNewEditListEntry(true, true); // might set _curFrame
_durationOverride = -1;
_scaledSurface = 0;
_curPalette = 0;
_dirtyPalette = false;
_reversed = false;
_forcedDitherPalette = 0;
_ditherTable = 0;
_ditherFrame = 0;
}
// FIXME: This check breaks valid QuickTime movies, such as the KQ6 Mac opening.
// It doesn't take media rate into account and mixes up units that are in movie
// time scale and media time scale, which is easy to do since they're often the
// same value. Other decoder bugs have been fixed since this was written, so it
// would be good to re-evaluate what the problem was with the Riven Spanish video.
// It's now disabled for everything except Riven.
void QuickTimeDecoder::VideoTrackHandler::checkEditListBounds() {
// Check all the edit list entries are within the bounds of the media
// In the Spanish version of Riven, the last edit of the video ogk.mov
// ends one frame after the end of the media.
uint32 offset = 0;
uint32 mediaDuration = _parent->mediaDuration * _decoder->_timeScale / _parent->timeScale;
for (uint i = 0; i < _parent->editList.size(); i++) {
EditListEntry &edit = _parent->editList[i];
if (edit.mediaTime < 0) {
offset += edit.trackDuration;
continue; // Ignore empty edits
}
if ((uint32) edit.mediaTime > mediaDuration) {
// Check if the edit starts after the end of the media
// If so, mark it as empty so it is ignored
edit.mediaTime = -1;
} else if (edit.mediaTime + edit.trackDuration > mediaDuration) {
// Check if the edit ends after the end of the media
// If so, clip it so it fits in the media
edit.trackDuration = mediaDuration - edit.mediaTime;
}
edit.timeOffset = offset;
offset += edit.trackDuration;
}
}
QuickTimeDecoder::VideoTrackHandler::~VideoTrackHandler() {
if (_scaledSurface) {
_scaledSurface->free();
delete _scaledSurface;
}
delete[] _forcedDitherPalette;
delete[] _ditherTable;
if (_ditherFrame) {
_ditherFrame->free();
delete _ditherFrame;
}
}
bool QuickTimeDecoder::VideoTrackHandler::endOfTrack() const {
// A track is over when we've finished going through all edits
return _reversed ? (_curEdit == 0 && _curFrame < 0) : atLastEdit();
}
bool QuickTimeDecoder::VideoTrackHandler::seek(const Audio::Timestamp &requestedTime) {
_delayedFrameToBufferTo = -1; // abort any delayed buffering
uint32 convertedFrames = requestedTime.convertToFramerate(_decoder->_timeScale).totalNumberOfFrames();
for (_curEdit = 0; !atLastEdit(); _curEdit++)
if (convertedFrames >= _parent->editList[_curEdit].timeOffset && convertedFrames < _parent->editList[_curEdit].timeOffset + _parent->editList[_curEdit].trackDuration)
break;
// If we did reach the end of the track, break out
if (atLastEdit()) {
// Call setReverse to set the position to the last frame of the last edit
if (_reversed)
setReverse(true);
return true;
}
// If this track is in an empty edit, position us at the next non-empty
// edit. There's nothing else to do after this.
if (_parent->editList[_curEdit].mediaTime == -1) {
while (!atLastEdit() && _parent->editList[_curEdit].mediaTime == -1)
_curEdit++;
if (!atLastEdit())
enterNewEditListEntry(true);
return true;
}
enterNewEditListEntry(false);
// One extra check for the end of a track
if (atLastEdit()) {
// Call setReverse to set the position to the last frame of the last edit
if (_reversed)
setReverse(true);
return true;
}
// Now we're in the edit and need to figure out what frame we need
Audio::Timestamp time = requestedTime.convertToFramerate(_parent->timeScale);
while (getRateAdjustedFrameTime() < (uint32)time.totalNumberOfFrames()) {
_curFrame++;
if (_durationOverride >= 0) {
_nextFrameStartTime += _durationOverride;
_durationOverride = -1;
} else {
_nextFrameStartTime += getCurFrameDuration();
}
}
// Check if we went past, then adjust the frame times
if (getRateAdjustedFrameTime() != (uint32)time.totalNumberOfFrames()) {
_curFrame--;
_durationOverride = getRateAdjustedFrameTime() - time.totalNumberOfFrames();
_nextFrameStartTime = time.totalNumberOfFrames();
}
if (_reversed) {
// Call setReverse again to update
setReverse(true);
} else {
// Handle the keyframe here
int32 destinationFrame = _curFrame + 1;
assert(destinationFrame < (int32)_parent->frameCount);
_curFrame = findKeyFrame(destinationFrame) - 1;
while (_curFrame < destinationFrame - 1)
bufferNextFrame();
}
return true;
}
Audio::Timestamp QuickTimeDecoder::VideoTrackHandler::getDuration() const {
return Audio::Timestamp(0, _parent->duration, _decoder->_timeScale);
}
uint16 QuickTimeDecoder::VideoTrackHandler::getWidth() const {
return getScaledWidth().toInt();
}
uint16 QuickTimeDecoder::VideoTrackHandler::getHeight() const {
return getScaledHeight().toInt();
}
Graphics::PixelFormat QuickTimeDecoder::VideoTrackHandler::getPixelFormat() const {
if (_forcedDitherPalette)
return Graphics::PixelFormat::createFormatCLUT8();
return ((VideoSampleDesc *)_parent->sampleDescs[0])->_videoCodec->getPixelFormat();
}
bool QuickTimeDecoder::VideoTrackHandler::setOutputPixelFormat(const Graphics::PixelFormat &format) {
if (_forcedDitherPalette)
return false;
return ((VideoSampleDesc *)_parent->sampleDescs[0])->_videoCodec->setOutputPixelFormat(format);
}
int QuickTimeDecoder::VideoTrackHandler::getFrameCount() const {
return _parent->frameCount;
}
uint32 QuickTimeDecoder::VideoTrackHandler::getNextFrameStartTime() const {
if (endOfTrack())
return 0;
Audio::Timestamp frameTime(0, getRateAdjustedFrameTime(), _parent->timeScale);
// Check if the frame goes beyond the end of the edit. In that case, the next frame
// should really be when we cross the edit boundary.
if (_reversed) {
Audio::Timestamp editStartTime(0, _parent->editList[_curEdit].timeOffset, _decoder->_timeScale);
if (frameTime < editStartTime)
return editStartTime.msecs();
} else {
Audio::Timestamp nextEditStartTime(0, _parent->editList[_curEdit].timeOffset + _parent->editList[_curEdit].trackDuration, _decoder->_timeScale);
if (frameTime > nextEditStartTime)
return nextEditStartTime.msecs();
}
// Not past an edit boundary, so the frame time is what should be used
return frameTime.msecs();
}
const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::decodeNextFrame() {
if (endOfTrack())
return 0;
if (_reversed) {
// Subtract one to place us on the frame before the current displayed frame.
_curFrame--;
// We have one "dummy" frame at the end to so the last frame is displayed
// for the right amount of time.
if (_curFrame < 0)
return 0;
// Decode from the last key frame to the frame before the one we need.
// TODO: Probably would be wise to do some caching
int targetFrame = _curFrame;
_curFrame = findKeyFrame(targetFrame) - 1;
while (_curFrame != targetFrame - 1)
bufferNextFrame();
}
// Update the edit list, if applicable
// FIXME: Add support for playing backwards videos with more than one edit
// For now, stay on the first edit for reversed playback
if (endOfCurEdit() && !_reversed) {
_curEdit++;
if (atLastEdit())
return 0;
enterNewEditListEntry(true);
if (isEmptyEdit())
return 0;
}
const Graphics::Surface *frame = bufferNextFrame();
if (_reversed) {
if (_durationOverride >= 0) {
// Use our own duration overridden from a media seek
_nextFrameStartTime -= _durationOverride;
_durationOverride = -1;
} else {
// Just need to subtract the time
_nextFrameStartTime -= getCurFrameDuration();
}
} else {
if (_durationOverride >= 0) {
// Use our own duration overridden from a media seek
_nextFrameStartTime += _durationOverride;
_durationOverride = -1;
} else {
_nextFrameStartTime += getCurFrameDuration();
}
}
// Handle forced dithering
if (frame && _forcedDitherPalette)
frame = forceDither(*frame);
if (frame && (_parent->scaleFactorX != 1 || _parent->scaleFactorY != 1)) {
if (!_scaledSurface) {
_scaledSurface = new Graphics::Surface();
_scaledSurface->create(getScaledWidth().toInt(), getScaledHeight().toInt(), getPixelFormat());
}
_decoder->scaleSurface(frame, _scaledSurface, _parent->scaleFactorX, _parent->scaleFactorY);
return _scaledSurface;
}
return frame;
}
Audio::Timestamp QuickTimeDecoder::VideoTrackHandler::getFrameTime(uint frame) const {
// TODO: This probably doesn't work right with edit lists
int cumulativeDuration = 0;
for (int ttsIndex = 0; ttsIndex < _parent->timeToSampleCount; ttsIndex++) {
const TimeToSampleEntry &tts = _parent->timeToSample[ttsIndex];
if ((int)frame < tts.count)
return Audio::Timestamp(0, _parent->timeScale).addFrames(cumulativeDuration + frame * tts.duration);
else {
frame -= tts.count;
cumulativeDuration += tts.duration * tts.count;
}
}
return Audio::Timestamp().addFrames(-1);
}
const byte *QuickTimeDecoder::VideoTrackHandler::getPalette() const {
_dirtyPalette = false;
return _forcedDitherPalette ? _forcedDitherPalette : _curPalette;
}
bool QuickTimeDecoder::VideoTrackHandler::setReverse(bool reverse) {
_delayedFrameToBufferTo = -1; // abort any delayed buffering
_reversed = reverse;
if (_reversed) {
if (_parent->editList.size() != 1) {
// TODO: Myst's holo.mov needs this :(
warning("Can only set reverse without edits");
return false;
}
if (atLastEdit()) {
// If we're at the end of the video, go to the penultimate edit.
// The current frame is set to one beyond the last frame here;
// one "past" the currently displayed frame.
_curEdit = _parent->editList.size() - 1;
_curFrame = _parent->frameCount;
_nextFrameStartTime = _parent->editList[_curEdit].trackDuration + _parent->editList[_curEdit].timeOffset;
} else if (_durationOverride >= 0) {
// We just had a media seek, so "pivot" around the frame that should
// be displayed.
_curFrame += 2;
_nextFrameStartTime += _durationOverride;
} else {
// We need to put _curFrame to be the one after the one that should be displayed.
// Since we're on the frame that should be displaying right now, add one.
_curFrame++;
}
} else {
// Update the edit list, if applicable
if (!atLastEdit() && endOfCurEdit()) {
_curEdit++;
if (atLastEdit())
return true;
}
if (_durationOverride >= 0) {
// We just had a media seek, so "pivot" around the frame that should
// be displayed.
_curFrame--;
_nextFrameStartTime -= _durationOverride;
}
// We need to put _curFrame to be the one before the one that should be displayed.
// Since we're on the frame that should be displaying right now, subtract one.
// (As long as the current frame isn't -1, of course)
if (_curFrame > 0) {
// We then need to handle the keyframe situation
int targetFrame = _curFrame - 1;
_curFrame = findKeyFrame(targetFrame) - 1;
while (_curFrame < targetFrame)
bufferNextFrame();
} else if (_curFrame == 0) {
// Make us start at the first frame (no keyframe needed)
_curFrame--;
}
}
return true;
}
Common::Rational QuickTimeDecoder::VideoTrackHandler::getScaledWidth() const {
return Common::Rational(_parent->width) / _parent->scaleFactorX;
}
Common::Rational QuickTimeDecoder::VideoTrackHandler::getScaledHeight() const {
return Common::Rational(_parent->height) / _parent->scaleFactorY;
}
Common::SeekableReadStream *QuickTimeDecoder::VideoTrackHandler::getNextFramePacket(uint32 &descId) {
// First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for.
int32 totalSampleCount = 0;
int32 sampleInChunk = 0;
int32 actualChunk = -1;
uint32 sampleToChunkIndex = 0;
for (uint32 i = 0; i < _parent->chunkCount; i++) {
if (sampleToChunkIndex < _parent->sampleToChunkCount && i >= _parent->sampleToChunk[sampleToChunkIndex].first)
sampleToChunkIndex++;
totalSampleCount += _parent->sampleToChunk[sampleToChunkIndex - 1].count;
if (totalSampleCount > _curFrame) {
actualChunk = i;
descId = _parent->sampleToChunk[sampleToChunkIndex - 1].id;
sampleInChunk = _parent->sampleToChunk[sampleToChunkIndex - 1].count - totalSampleCount + _curFrame;
break;
}
}
if (actualChunk < 0)
error("Could not find data for frame %d", _curFrame);
// Next seek to that frame
Common::SeekableReadStream *stream = _decoder->_fd;
stream->seek(_parent->chunkOffsets[actualChunk]);
// Then, if the chunk holds more than one frame, seek to where the frame we want is located
for (int32 i = _curFrame - sampleInChunk; i < _curFrame; i++) {
if (_parent->sampleSize != 0)
stream->skip(_parent->sampleSize);
else
stream->skip(_parent->sampleSizes[i]);
}
// Finally, read in the raw data for the frame
//debug("Frame Data[%d]: Offset = %d, Size = %d", _curFrame, stream->pos(), _parent->sampleSizes[_curFrame]);
if (_parent->sampleSize != 0)
return stream->readStream(_parent->sampleSize);
return stream->readStream(_parent->sampleSizes[_curFrame]);
}
uint32 QuickTimeDecoder::VideoTrackHandler::getCurFrameDuration() {
uint32 curFrameIndex = 0;
for (int32 i = 0; i < _parent->timeToSampleCount; i++) {
curFrameIndex += _parent->timeToSample[i].count;
if ((uint32)_curFrame < curFrameIndex) {
// Ok, now we have what duration this frame has.
return _parent->timeToSample[i].duration;
}
}
// This should never occur
error("Cannot find duration for frame %d", _curFrame);
return 0;
}
uint32 QuickTimeDecoder::VideoTrackHandler::findKeyFrame(uint32 frame) const {
for (int i = _parent->keyframeCount - 1; i >= 0; i--)
if (_parent->keyframes[i] <= frame)
return _parent->keyframes[i];
// If none found, we'll assume the requested frame is a key frame
return frame;
}
bool QuickTimeDecoder::VideoTrackHandler::isEmptyEdit() const {
return (_parent->editList[_curEdit].mediaTime == -1);
}
void QuickTimeDecoder::VideoTrackHandler::enterNewEditListEntry(bool bufferFrames, bool initializingTrack) {
if (atLastEdit())
return;
// if this is an empty edit then the only thing to do is set the
// time for the next frame, which is the duration of this edit.
if (isEmptyEdit()) {
_curFrame = -1;
_nextFrameStartTime = getCurEditTimeOffset() + getCurEditTrackDuration();
return;
}
uint32 mediaTime = _parent->editList[_curEdit].mediaTime;
uint32 frameNum = 0;
uint32 totalDuration = 0;
_durationOverride = -1;
// Track down where the mediaTime is in the media
// This is basically time -> frame mapping
// Note that this code uses first frame = 0
for (int32 i = 0; i < _parent->timeToSampleCount; i++) {
uint32 duration = _parent->timeToSample[i].count * _parent->timeToSample[i].duration;
if (totalDuration + duration >= mediaTime) {
uint32 frameInc = (mediaTime - totalDuration) / _parent->timeToSample[i].duration;
frameNum += frameInc;
totalDuration += frameInc * _parent->timeToSample[i].duration;
// If we didn't get to the exact media time, mark an override for
// the time.
if (totalDuration != mediaTime)
_durationOverride = totalDuration + _parent->timeToSample[i].duration - mediaTime;
break;
}
frameNum += _parent->timeToSample[i].count;
totalDuration += duration;
}
if (bufferFrames) {
// Track down the keyframe
// Then decode until the frame before target
_curFrame = findKeyFrame(frameNum) - 1;
if (initializingTrack) {
// We can't decode frames during track initialization,
// so delay buffering until the first decode.
_delayedFrameToBufferTo = (int32)frameNum - 1;
} else {
while (_curFrame < (int32)frameNum - 1) {
bufferNextFrame();
}
}
} else {
// Since frameNum is the frame that needs to be displayed
// we'll set _curFrame to be the "last frame displayed"
_curFrame = frameNum - 1;
}
_nextFrameStartTime = getCurEditTimeOffset();
}
const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::bufferNextFrame() {
// Buffer any frames that were identified during track initialization
// and delayed until decoding.
if (_delayedFrameToBufferTo != -1) {
int32 frameNum = _delayedFrameToBufferTo;
_delayedFrameToBufferTo = -1;
while (_curFrame < frameNum) {
bufferNextFrame();
}
}
_curFrame++;
// Get the next packet
uint32 descId;
Common::SeekableReadStream *frameData = getNextFramePacket(descId);
if (!frameData || !descId || descId > _parent->sampleDescs.size()) {
delete frameData;
return 0;
}
// Find which video description entry we want
VideoSampleDesc *entry = (VideoSampleDesc *)_parent->sampleDescs[descId - 1];
if (!entry->_videoCodec) {
delete frameData;
return 0;
}
const Graphics::Surface *frame = entry->_videoCodec->decodeFrame(*frameData);
delete frameData;
// Update the palette
if (entry->_videoCodec->containsPalette()) {
// The codec itself contains a palette
if (entry->_videoCodec->hasDirtyPalette()) {
_curPalette = entry->_videoCodec->getPalette();
_dirtyPalette = true;
}
} else {
// Check if the video description has been updated
byte *palette = entry->_palette;
if (palette != _curPalette) {
_curPalette = palette;
_dirtyPalette = true;
}
}
return frame;
}
uint32 QuickTimeDecoder::VideoTrackHandler::getRateAdjustedFrameTime() const {
// Figure out what time the next frame is at taking the edit list rate into account,
// unless this is an empty edit, in which case the rate isn't applicable.
Common::Rational offsetFromEdit = Common::Rational(_nextFrameStartTime - getCurEditTimeOffset());
if (!isEmptyEdit()) {
offsetFromEdit /= _parent->editList[_curEdit].mediaRate;
}
uint32 convertedTime = offsetFromEdit.toInt();
if ((offsetFromEdit.getNumerator() % offsetFromEdit.getDenominator()) > (offsetFromEdit.getDenominator() / 2))
convertedTime++;
return convertedTime + getCurEditTimeOffset();
}
uint32 QuickTimeDecoder::VideoTrackHandler::getCurEditTimeOffset() const {
// Need to convert to the track scale
// We have to round the time off to the nearest in the scale, otherwise
// bad things happen. QuickTime docs are pretty silent on all this stuff,
// so this was found from samples. It doesn't help that this is really
// the only open source implementation of QuickTime edits.
uint32 mult = _parent->editList[_curEdit].timeOffset * _parent->timeScale;
uint32 result = mult / _decoder->_timeScale;
if ((mult % _decoder->_timeScale) > (_decoder->_timeScale / 2))
result++;
return result;
}
uint32 QuickTimeDecoder::VideoTrackHandler::getCurEditTrackDuration() const {
// convert from movie time scale to the track's media time scale
return _parent->editList[_curEdit].trackDuration * _parent->timeScale / _decoder->_timeScale;
}
bool QuickTimeDecoder::VideoTrackHandler::atLastEdit() const {
return _curEdit == _parent->editList.size();
}
bool QuickTimeDecoder::VideoTrackHandler::endOfCurEdit() const {
// We're at the end of the edit once the next frame's time would
// bring us past the end of the edit.
return getRateAdjustedFrameTime() >= getCurEditTimeOffset() + getCurEditTrackDuration();
}
bool QuickTimeDecoder::VideoTrackHandler::canDither() const {
for (uint i = 0; i < _parent->sampleDescs.size(); i++) {
VideoSampleDesc *desc = (VideoSampleDesc *)_parent->sampleDescs[i];
if (!desc || !desc->_videoCodec)
return false;
}
return true;
}
void QuickTimeDecoder::VideoTrackHandler::setDither(const byte *palette) {
assert(canDither());
for (uint i = 0; i < _parent->sampleDescs.size(); i++) {
VideoSampleDesc *desc = (VideoSampleDesc *)_parent->sampleDescs[i];
if (desc->_videoCodec->canDither(Image::Codec::kDitherTypeQT)) {
// Codec dither
desc->_videoCodec->setDither(Image::Codec::kDitherTypeQT, palette);
} else {
// Forced dither
_forcedDitherPalette = new byte[256 * 3];
memcpy(_forcedDitherPalette, palette, 256 * 3);
_ditherTable = Image::Codec::createQuickTimeDitherTable(_forcedDitherPalette, 256);
_dirtyPalette = true;
}
}
}
namespace {
// Return a pixel in RGB554
uint16 makeDitherColor(byte r, byte g, byte b) {
return ((r & 0xF8) << 6) | ((g & 0xF8) << 1) | (b >> 4);
}
// Default template to convert a dither color
template<typename PixelInt>
inline uint16 readDitherColor(PixelInt srcColor, const Graphics::PixelFormat& format, const byte *palette) {
byte r, g, b;
format.colorToRGB(srcColor, r, g, b);
return makeDitherColor(r, g, b);
}
// Specialized version for 8bpp
template<>
inline uint16 readDitherColor(byte srcColor, const Graphics::PixelFormat& format, const byte *palette) {
return makeDitherColor(palette[srcColor * 3], palette[srcColor * 3 + 1], palette[srcColor * 3 + 2]);
}
template<typename PixelInt>
void ditherFrame(const Graphics::Surface &src, Graphics::Surface &dst, const byte *ditherTable, const byte *palette = 0) {
static const uint16 colorTableOffsets[] = { 0x0000, 0xC000, 0x4000, 0x8000 };
for (int y = 0; y < dst.h; y++) {
const PixelInt *srcPtr = (const PixelInt *)src.getBasePtr(0, y);
byte *dstPtr = (byte *)dst.getBasePtr(0, y);
uint16 colorTableOffset = colorTableOffsets[y & 3];
for (int x = 0; x < dst.w; x++) {
uint16 color = readDitherColor(*srcPtr++, src.format, palette);
*dstPtr++ = ditherTable[colorTableOffset + color];
colorTableOffset += 0x4000;
}
}
}
} // End of anonymous namespace
const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::forceDither(const Graphics::Surface &frame) {
if (frame.format.bytesPerPixel == 1) {
// This should always be true, but this is for sanity
if (!_curPalette)
return &frame;
// If the palettes match, bail out
if (memcmp(_forcedDitherPalette, _curPalette, 256 * 3) == 0)
return &frame;
}
// Need to create a new one
if (!_ditherFrame) {
_ditherFrame = new Graphics::Surface();
_ditherFrame->create(frame.w, frame.h, Graphics::PixelFormat::createFormatCLUT8());
}
if (frame.format.bytesPerPixel == 1)
ditherFrame<byte>(frame, *_ditherFrame, _ditherTable, _curPalette);
else if (frame.format.bytesPerPixel == 2)
ditherFrame<uint16>(frame, *_ditherFrame, _ditherTable);
else if (frame.format.bytesPerPixel == 4)
ditherFrame<uint32>(frame, *_ditherFrame, _ditherTable);
return _ditherFrame;
}
} // End of namespace Video