scummvm/math/rotation3d.h
2012-12-19 23:15:43 +01:00

181 lines
4.9 KiB
C++

/* ResidualVM - A 3D game interpreter
*
* ResidualVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef MATH_ROTATION3D_H
#define MATH_ROTATION3D_H
#include "common/streamdebug.h"
#include "math/utils.h"
#include "math/transform.h"
#include "math/angle.h"
namespace Math {
template<class T>
class Rotation3D : public Transform<T> {
public:
Rotation3D();
void buildFromPitchYawRoll(const Angle &pitch, const Angle &yaw, const Angle &roll);
void buildAroundPitch(const Angle &pitch);
void buildAroundYaw(const Angle &yaw);
void buildAroundRoll(const Angle &roll);
void getPitchYawRoll(Angle* pPitch, Angle* pYaw, Angle* pRoll) const;
Angle getPitch() const;
Angle getYaw() const;
Angle getRoll() const;
};
template<class T>
Rotation3D<T>::Rotation3D() :
Transform<T>() {
}
// NOTE: Builds a rotation matrix of form R_Yaw * R_Pitch * R_Roll (i.e. R_z * R_x * R_y).
// The order of rotations is of the form Matrix * Vector, so roll is applied first, then pitch, then yaw.
template<class T>
void Rotation3D<T>::buildFromPitchYawRoll(const Angle &pitch, const Angle &yaw, const Angle &roll) {
T temp;
buildAroundYaw(yaw); // Rotate about +Z
temp.buildAroundPitch(pitch); // Rotate about +X
this->getMatrix() = this->getMatrix() * temp;
temp.buildAroundRoll(roll); // Rotate about +Y
this->getMatrix() = this->getMatrix() * temp;
// The created matrix has the Euler order ZXY. (M*v)
}
// at. Rotates about the +X axis.
template<class T>
void Rotation3D<T>::buildAroundPitch(const Angle &pitch) {
float cosa = pitch.getCosine();
float sina = pitch.getSine();
this->getMatrix().getRow(0) << 1.f << 0.f << 0.f;
this->getMatrix().getRow(1) << 0.f << cosa << -sina;
this->getMatrix().getRow(2) << 0.f << sina << cosa;
}
// right. Rotates about the +Y axis.
template<class T>
void Rotation3D<T>::buildAroundRoll(const Angle &roll) {
float cosa = roll.getCosine();
float sina = roll.getSine();
this->getMatrix().getRow(0) << cosa << 0.f << sina;
this->getMatrix().getRow(1) << 0.f << 1.f << 0.f;
this->getMatrix().getRow(2) << -sina << 0.f << cosa;
}
// up. Rotates about the +Z axis.
template<class T>
void Rotation3D<T>::buildAroundYaw(const Angle &yaw) {
float cosa = yaw.getCosine();
float sina = yaw.getSine();
this->getMatrix().getRow(0) << cosa << -sina << 0.f;
this->getMatrix().getRow(1) << sina << cosa << 0.f;
this->getMatrix().getRow(2) << 0.f << 0.f << 1.f;
}
/**
* Decomposes the matrix M to form M = R_z * R_x * R_y (R_D being the cardinal rotation
* matrix about the axis +D), and outputs the angles of rotation in parameters pPitch, pYaw and pRoll.
* In the convention of the coordinate system used in Grim Fandango characters:
* Pitch is rotation about the X axis (right)
* Yaw is rotation about the Z axis (up)
* Roll is rotation about the Y axix (out)
* This function was adapted from http://www.geometrictools.com/Documentation/EulerAngles.pdf
* The matrix M must be orthonormal.
*/
template<class T>
void Rotation3D<T>::getPitchYawRoll(Angle *pPitch, Angle *pYaw, Angle *pRoll) const {
const T *m = &(this->getMatrix()); // so dumb
float x,y,z;
if (m->getValue(2, 1) < 1.f) {
if (m->getValue(2, 1) > -1.f) {
x = asin(m->getValue(2, 1));
z = atan2(-m->getValue(0, 1), m->getValue(1, 1));
y = atan2(-m->getValue(2, 0), m->getValue(2, 2));
}
else {
// Not a unique solution. Pick an arbitrary one.
x = -3.141592654f/2.f;
z = -atan2(-m->getValue(0, 2), m->getValue(0, 0));
y = 0;
}
}
else {
// Not a unique solution. Pick an arbitrary one.
x = 3.141592654f/2.f;
z = atan2(m->getValue(0, 2), m->getValue(0, 0));
y = 0;
}
if (pPitch)
*pPitch = Math::Angle::fromRadians(x);
if (pRoll)
*pRoll = Math::Angle::fromRadians(y);
if (pYaw)
*pYaw = Math::Angle::fromRadians(z);
}
template<class T>
Angle Rotation3D<T>::getPitch() const {
Angle pitch;
getPitchYawRoll(&pitch, 0, 0);
return pitch;
}
template<class T>
Angle Rotation3D<T>::getYaw() const {
Angle yaw;
getPitchYawRoll(0, &yaw, 0);
return yaw;
}
template<class T>
Angle Rotation3D<T>::getRoll() const {
Angle roll;
getPitchYawRoll(0, 0, &roll);
return roll;
}
}
#endif