scummvm/sound/softsynth/mt32/tables.cpp
Paweł Kołodziejski bb03e03561 fixed warnings for msvc7
svn-id: r20831
2006-02-23 18:11:22 +00:00

750 lines
24 KiB
C++

/* Copyright (c) 2003-2005 Various contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "mt32emu.h"
#ifdef MACOSX
// Older versions of Mac OS X didn't supply a powf function. To ensure
// binary compatibiity, we force using pow instead of powf (the only
// potential drawback is that it might be a little bit slower).
#define powf pow
#endif
#define FIXEDPOINT_MAKE(x, point) ((Bit32u)((1 << point) * x))
namespace MT32Emu {
//Amplitude time velocity follow exponential coefficients
static const double tvcatconst[5] = {0.0, 0.002791309, 0.005942882, 0.012652792, 0.026938637};
static const double tvcatmult[5] = {1.0, 1.072662811, 1.169129367, 1.288579123, 1.229630539};
// These are division constants for the TVF depth key follow
static const Bit32u depexp[5] = {3000, 950, 485, 255, 138};
//Envelope time keyfollow exponential coefficients
static const double tkcatconst[5] = {0.0, 0.005853144, 0.011148054, 0.019086143, 0.043333215};
static const double tkcatmult[5] = {1.0, 1.058245688, 1.048488989, 1.016049301, 1.097538067};
// Begin filter stuff
// Pre-warp the coefficients of a numerator or denominator.
// Note that a0 is assumed to be 1, so there is no wrapping
// of it.
static void prewarp(double *a1, double *a2, double fc, double fs) {
double wp;
wp = 2.0 * fs * tan(DOUBLE_PI * fc / fs);
*a2 = *a2 / (wp * wp);
*a1 = *a1 / wp;
}
// Transform the numerator and denominator coefficients
// of s-domain biquad section into corresponding
// z-domain coefficients.
//
// Store the 4 IIR coefficients in array pointed by coef
// in following order:
// beta1, beta2 (denominator)
// alpha1, alpha2 (numerator)
//
// Arguments:
// a0-a2 - s-domain numerator coefficients
// b0-b2 - s-domain denominator coefficients
// k - filter gain factor. initially set to 1
// and modified by each biquad section in such
// a way, as to make it the coefficient by
// which to multiply the overall filter gain
// in order to achieve a desired overall filter gain,
// specified in initial value of k.
// fs - sampling rate (Hz)
// coef - array of z-domain coefficients to be filled in.
//
// Return:
// On return, set coef z-domain coefficients
static void bilinear(double a0, double a1, double a2, double b0, double b1, double b2, double *k, double fs, float *coef) {
double ad, bd;
// alpha (Numerator in s-domain)
ad = 4. * a2 * fs * fs + 2. * a1 * fs + a0;
// beta (Denominator in s-domain)
bd = 4. * b2 * fs * fs + 2. * b1* fs + b0;
// update gain constant for this section
*k *= ad/bd;
// Denominator
*coef++ = (float)((2. * b0 - 8. * b2 * fs * fs) / bd); // beta1
*coef++ = (float)((4. * b2 * fs * fs - 2. * b1 * fs + b0) / bd); // beta2
// Nominator
*coef++ = (float)((2. * a0 - 8. * a2 * fs * fs) / ad); // alpha1
*coef = (float)((4. * a2 * fs * fs - 2. * a1 * fs + a0) / ad); // alpha2
}
// a0-a2: numerator coefficients
// b0-b2: denominator coefficients
// fc: Filter cutoff frequency
// fs: sampling rate
// k: overall gain factor
// coef: pointer to 4 iir coefficients
static void szxform(double *a0, double *a1, double *a2, double *b0, double *b1, double *b2, double fc, double fs, double *k, float *coef) {
// Calculate a1 and a2 and overwrite the original values
prewarp(a1, a2, fc, fs);
prewarp(b1, b2, fc, fs);
bilinear(*a0, *a1, *a2, *b0, *b1, *b2, k, fs, coef);
}
static void initFilter(float fs, float fc, float *icoeff, float Q) {
float *coef;
double a0, a1, a2, b0, b1, b2;
double k = 1.5; // Set overall filter gain factor
coef = icoeff + 1; // Skip k, or gain
// Section 1
a0 = 1.0;
a1 = 0;
a2 = 0;
b0 = 1.0;
b1 = 0.765367 / Q; // Divide by resonance or Q
b2 = 1.0;
szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef);
coef += 4; // Point to next filter section
// Section 2
a0 = 1.0;
a1 = 0;
a2 = 0;
b0 = 1.0;
b1 = 1.847759 / Q;
b2 = 1.0;
szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef);
icoeff[0] = (float)k;
}
void Tables::initFiltCoeff(float samplerate) {
for (int j = 0; j < FILTERGRAN; j++) {
for (int res = 0; res < 31; res++) {
float tres = resonanceFactor[res];
initFilter((float)samplerate, (((float)(j+1.0)/FILTERGRAN)) * ((float)samplerate/2), filtCoeff[j][res], tres);
}
}
}
void Tables::initEnvelopes(float samplerate) {
for (int lf = 0; lf <= 100; lf++) {
float elf = (float)lf;
// General envelope
// This formula fits observation of the CM-32L by +/- 0.03s or so for the second time value in the filter,
// when all other times were 0 and all levels were 100. Note that variations occur depending on the level
// delta of the section, which we're not fully emulating.
float seconds = powf(2.0f, (elf / 8.0f) + 7.0f) / 32768.0f;
int samples = (int)(seconds * samplerate);
envTime[lf] = samples;
// Cap on envelope times depending on the level delta
if (elf == 0) {
envDeltaMaxTime[lf] = 63;
} else {
float cap = 11.0f * (float)log(elf) + 64;
if (cap > 100.0f) {
cap = 100.0f;
}
envDeltaMaxTime[lf] = (int)cap;
}
// This (approximately) represents the time durations when the target level is 0.
// Not sure why this is a special case, but it's seen to be from the real thing.
seconds = powf(2, (elf / 8.0f) + 6) / 32768.0f;
envDecayTime[lf] = (int)(seconds * samplerate);
// I am certain of this: Verified by hand LFO log
lfoPeriod[lf] = (Bit32u)(((float)samplerate) / (powf(1.088883372f, (float)lf) * 0.021236044f));
}
}
void Tables::initMT32ConstantTables(Synth *synth) {
int lf;
synth->printDebug("Initialising Pitch Tables");
for (lf = -108; lf <= 108; lf++) {
tvfKeyfollowMult[lf + 108] = (int)(256 * powf(2.0f, (float)(lf / 24.0f)));
//synth->printDebug("KT %d = %d", f, keytable[f+108]);
}
for (int res = 0; res < 31; res++) {
resonanceFactor[res] = powf((float)res / 30.0f, 5.0f) + 1.0f;
}
int period = 65536;
for (int ang = 0; ang < period; ang++) {
int halfang = (period / 2);
int angval = ang % halfang;
float tval = (((float)angval / (float)halfang) - 0.5f) * 2;
if (ang >= halfang)
tval = -tval;
sintable[ang] = (Bit16s)(tval * 50.0f) + 50;
}
int velt, dep;
float tempdep;
for (velt = 0; velt < 128; velt++) {
for (dep = 0; dep < 5; dep++) {
if (dep > 0) {
float ff = (float)(exp(3.5f * tvcatconst[dep] * (59.0f - (float)velt)) * tvcatmult[dep]);
tempdep = 256.0f * ff;
envTimeVelfollowMult[dep][velt] = (int)tempdep;
//if ((velt % 16) == 0) {
// synth->printDebug("Key %d, depth %d, factor %d", velt, dep, (int)tempdep);
//}
} else
envTimeVelfollowMult[dep][velt] = 256;
}
for (dep = -7; dep < 8; dep++) {
float fldep = (float)abs(dep) / 7.0f;
fldep = powf(fldep,2.5f);
if (dep < 0)
fldep = fldep * -1.0f;
pwVelfollowAdd[dep+7][velt] = Bit32s((fldep * (float)velt * 100) / 128.0);
}
}
for (dep = 0; dep <= 100; dep++) {
for (velt = 0; velt < 128; velt++) {
float fdep = (float)dep * 0.000347013f; // Another MT-32 constant
float fv = ((float)velt - 64.0f)/7.26f;
float flogdep = powf(10, fdep * fv);
float fbase;
if (velt > 64)
synth->tables.tvfVelfollowMult[velt][dep] = (int)(flogdep * 256.0);
else {
//lff = 1 - (pow(((128.0 - (float)lf) / 64.0),.25) * ((float)velt / 96));
fbase = 1 - (powf(((float)dep / 100.0f),.25f) * ((float)(64-velt) / 96.0f));
synth->tables.tvfVelfollowMult[velt][dep] = (int)(fbase * 256.0);
}
//synth->printDebug("Filvel dep %d velt %d = %x", dep, velt, filveltable[velt][dep]);
}
}
for (lf = 0; lf < 128; lf++) {
float veloFract = lf / 127.0f;
for (int velsens = 0; velsens <= 100; velsens++) {
float sensFract = (velsens - 50) / 50.0f;
if (velsens < 50) {
tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, veloFract * -sensFract * 127.0f / 20.0f), 8);
} else {
tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, (1.0f - veloFract) * sensFract * 127.0f / 20.0f), 8);
}
}
}
for (lf = 0; lf <= 100; lf++) {
// Converts the 0-100 range used by the MT-32 to volume multiplier
volumeMult[lf] = FIXEDPOINT_MAKE(powf((float)lf / 100.0f, FLOAT_LN), 7);
}
for (lf = 0; lf <= 100; lf++) {
float mv = lf / 100.0f;
float pt = mv - 0.5f;
if (pt < 0)
pt = 0;
// Original (CC version)
//pwFactor[lf] = (int)(pt * 210.04f) + 128;
// Approximation from sample comparison
pwFactor[lf] = (int)(pt * 179.0f) + 128;
}
for (unsigned int i = 0; i < MAX_SAMPLE_OUTPUT; i++) {
int myRand;
myRand = rand();
//myRand = ((myRand - 16383) * 7168) >> 16;
// This one is slower but works with all values of RAND_MAX
myRand = (int)((myRand - RAND_MAX / 2) / (float)RAND_MAX * (7168 / 2));
//FIXME:KG: Original ultimately set the lowest two bits to 0, for no obvious reason
noiseBuf[i] = (Bit16s)myRand;
}
float tdist;
float padjtable[51];
for (lf = 0; lf <= 50; lf++) {
if (lf == 0)
padjtable[lf] = 7;
else if (lf == 1)
padjtable[lf] = 6;
else if (lf == 2)
padjtable[lf] = 5;
else if (lf == 3)
padjtable[lf] = 4;
else if (lf == 4)
padjtable[lf] = 4 - (0.333333f);
else if (lf == 5)
padjtable[lf] = 4 - (0.333333f * 2);
else if (lf == 6)
padjtable[lf] = 3;
else if ((lf > 6) && (lf <= 12)) {
tdist = (lf-6.0f) / 6.0f;
padjtable[lf] = 3.0f - tdist;
} else if ((lf > 12) && (lf <= 25)) {
tdist = (lf - 12.0f) / 13.0f;
padjtable[lf] = 2.0f - tdist;
} else {
tdist = (lf - 25.0f) / 25.0f;
padjtable[lf] = 1.0f - tdist;
}
//synth->printDebug("lf %d = padj %f", lf, padjtable[lf]);
}
float lfp, depf, finalval, tlf;
int depat, pval, depti;
for (lf = 0; lf <= 10; lf++) {
// I believe the depth is cubed or something
for (depat = 0; depat <= 100; depat++) {
if (lf > 0) {
depti = abs(depat - 50);
tlf = (float)lf - padjtable[depti];
if (tlf < 0)
tlf = 0;
lfp = (float)exp(0.713619942f * tlf) / 407.4945111f;
if (depat < 50)
finalval = 4096.0f * powf(2, -lfp);
else
finalval = 4096.0f * powf(2, lfp);
pval = (int)finalval;
pitchEnvVal[lf][depat] = pval;
//synth->printDebug("lf %d depat %d pval %d tlf %f lfp %f", lf,depat,pval, tlf, lfp);
} else {
pitchEnvVal[lf][depat] = 4096;
//synth->printDebug("lf %d depat %d pval 4096", lf, depat);
}
}
}
for (lf = 0; lf <= 100; lf++) {
// It's linear - verified on MT-32 - one of the few things linear
lfp = ((float)lf * 0.1904f) / 310.55f;
for (depat = 0; depat <= 100; depat++) {
depf = ((float)depat - 50.0f) / 50.0f;
//finalval = pow(2, lfp * depf * .5);
finalval = 4096.0f + (4096.0f * lfp * depf);
pval = (int)finalval;
lfoShift[lf][depat] = pval;
//synth->printDebug("lf %d depat %d pval %x", lf,depat,pval);
}
}
for (lf = 0; lf <= 12; lf++) {
for (int distval = 0; distval < 128; distval++) {
float amplog, dval;
if (lf == 0) {
amplog = 0;
dval = 1;
tvaBiasMult[lf][distval] = 256;
} else {
/*
amplog = powf(1.431817011f, (float)lf) / FLOAT_PI;
dval = ((128.0f - (float)distval) / 128.0f);
amplog = exp(amplog);
dval = powf(amplog, dval) / amplog;
tvaBiasMult[lf][distval] = (int)(dval * 256.0);
*/
// Lets assume for a second it's linear
// Distance of full volume reduction
amplog = (float)(12.0f / (float)lf) * 24.0f;
if (distval > amplog) {
tvaBiasMult[lf][distval] = 0;
} else {
dval = (amplog - (float)distval) / amplog;
tvaBiasMult[lf][distval] = (int)(dval * 256.0f);
}
}
//synth->printDebug("Ampbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvaBiasMult[lf][distval],amplog);
}
}
for (lf = 0; lf <= 14; lf++) {
for (int distval = 0; distval < 128; distval++) {
float filval = fabsf((float)((lf - 7) * 12) / 7.0f);
float amplog, dval;
if (lf == 7) {
amplog = 0;
dval = 1;
tvfBiasMult[lf][distval] = 256;
} else {
//amplog = pow(1.431817011, filval) / FLOAT_PI;
amplog = powf(1.531817011f, filval) / FLOAT_PI;
dval = (128.0f - (float)distval) / 128.0f;
amplog = (float)exp(amplog);
dval = powf(amplog,dval)/amplog;
if (lf < 8) {
tvfBiasMult[lf][distval] = (int)(dval * 256.0f);
} else {
dval = powf(dval, 0.3333333f);
if (dval < 0.01f)
dval = 0.01f;
dval = 1 / dval;
tvfBiasMult[lf][distval] = (int)(dval * 256.0f);
}
}
//synth->printDebug("Fbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvfBiasMult[lf][distval],amplog);
}
}
}
// Per-note table initialisation follows
static void initSaw(NoteLookup *noteLookup, Bit32s div2) {
int tmpdiv = div2 << 16;
for (int rsaw = 0; rsaw <= 100; rsaw++) {
float fsaw;
if (rsaw < 50)
fsaw = 50.0f;
else
fsaw = (float)rsaw;
//(66 - (((A8 - 50) / 50) ^ 0.63) * 50) / 132
float sawfact = (66.0f - (powf((fsaw - 50.0f) / 50.0f, 0.63f) * 50.0f)) / 132.0f;
noteLookup->sawTable[rsaw] = (int)(sawfact * (float)tmpdiv) >> 16;
//synth->printDebug("F %d divtable %d saw %d sawtable %d", f, div, rsaw, sawtable[f][rsaw]);
}
}
static void initDep(KeyLookup *keyLookup, float f) {
for (int dep = 0; dep < 5; dep++) {
if (dep == 0) {
keyLookup->envDepthMult[dep] = 256;
keyLookup->envTimeMult[dep] = 256;
} else {
float depfac = 3000.0f;
float ff, tempdep;
depfac = (float)depexp[dep];
ff = (f - (float)MIDDLEC) / depfac;
tempdep = powf(2, ff) * 256.0f;
keyLookup->envDepthMult[dep] = (int)tempdep;
ff = (float)(exp(tkcatconst[dep] * ((float)MIDDLEC - f)) * tkcatmult[dep]);
keyLookup->envTimeMult[dep] = (int)(ff * 256.0f);
}
}
//synth->printDebug("F %f d1 %x d2 %x d3 %x d4 %x d5 %x", f, noteLookup->fildepTable[0], noteLookup->fildepTable[1], noteLookup->fildepTable[2], noteLookup->fildepTable[3], noteLookup->fildepTable[4]);
}
Bit16s Tables::clampWF(Synth *synth, const char *n, float ampVal, double input) {
Bit32s x = (Bit32s)(input * ampVal);
if (x < -ampVal - 1) {
synth->printDebug("%s==%d<-WGAMP-1!", n, x);
x = (Bit32s)(-ampVal - 1);
} else if (x > ampVal) {
synth->printDebug("%s==%d>WGAMP!", n, x);
x = (Bit32s)ampVal;
}
return (Bit16s)x;
}
File *Tables::initWave(Synth *synth, NoteLookup *noteLookup, float ampVal, float div2, File *file) {
int iDiv2 = (int)div2;
noteLookup->waveformSize[0] = iDiv2 << 1;
noteLookup->waveformSize[1] = iDiv2 << 1;
noteLookup->waveformSize[2] = iDiv2 << 2;
for (int i = 0; i < 3; i++) {
if (noteLookup->waveforms[i] == NULL) {
noteLookup->waveforms[i] = new Bit16s[noteLookup->waveformSize[i]];
}
}
if (file != NULL) {
for (int i = 0; i < 3 && file != NULL; i++) {
size_t len = noteLookup->waveformSize[i];
for (unsigned int j = 0; j < len; j++) {
if (!file->readBit16u((Bit16u *)&noteLookup->waveforms[i][j])) {
synth->printDebug("Error reading wave file cache!");
file->close();
file = NULL;
break;
}
}
}
}
if (file == NULL) {
double sd = DOUBLE_PI / div2;
for (int fa = 0; fa < (iDiv2 << 1); fa++) {
// sa ranges from 0 to 2PI
double sa = fa * sd;
// Calculate a sample for the bandlimited sawtooth wave
double saw = 0.0;
int sincs = iDiv2 >> 1;
double sinus = 1.0;
for (int sincNum = 1; sincNum <= sincs; sincNum++) {
saw += sin(sinus * sa) / sinus;
sinus++;
}
// This works pretty well
// Multiplied by 0.84 so that the spikes caused by bandlimiting don't overdrive the amplitude
noteLookup->waveforms[0][fa] = clampWF(synth, "saw", ampVal, -saw / (0.5 * DOUBLE_PI) * 0.84);
noteLookup->waveforms[1][fa] = clampWF(synth, "cos", ampVal, -cos(sa / 2.0));
noteLookup->waveforms[2][fa * 2] = clampWF(synth, "cosoff_0", ampVal, -cos(sa - DOUBLE_PI));
noteLookup->waveforms[2][fa * 2 + 1] = clampWF(synth, "cosoff_1", ampVal, -cos((sa + (sd / 2)) - DOUBLE_PI));
}
}
return file;
}
static void initFiltTable(NoteLookup *noteLookup, float freq, float rate) {
for (int tr = 0; tr <= 200; tr++) {
float ftr = (float)tr;
// Verified exact on MT-32
if (tr > 100)
ftr = 100.0f + (powf((ftr - 100.0f) / 100.0f, 3.0f) * 100.0f);
// I think this is the one
float brsq = powf(10.0f, (tr / 50.0f) - 1.0f);
noteLookup->filtTable[0][tr] = (int)((freq * brsq) / (rate / 2) * FILTERGRAN);
if (noteLookup->filtTable[0][tr]>=((FILTERGRAN*15)/16))
noteLookup->filtTable[0][tr] = ((FILTERGRAN*15)/16);
float brsa = powf(10.0f, ((tr / 55.0f) - 1.0f)) / 2.0f;
noteLookup->filtTable[1][tr] = (int)((freq * brsa) / (rate / 2) * FILTERGRAN);
if (noteLookup->filtTable[1][tr]>=((FILTERGRAN*15)/16))
noteLookup->filtTable[1][tr] = ((FILTERGRAN*15)/16);
}
}
static void initNFiltTable(NoteLookup *noteLookup, float freq, float rate) {
for (int cf = 0; cf <= 100; cf++) {
float cfmult = (float)cf;
for (int tf = 0;tf <= 100; tf++) {
float tfadd = (float)tf;
//float freqsum = exp((cfmult + tfadd) / 30.0f) / 4.0f;
//float freqsum = 0.15f * exp(0.45f * ((cfmult + tfadd) / 10.0f));
float freqsum = powf(2.0f, ((cfmult + tfadd) - 40.0f) / 16.0f);
noteLookup->nfiltTable[cf][tf] = (int)((freq * freqsum) / (rate / 2) * FILTERGRAN);
if (noteLookup->nfiltTable[cf][tf] >= ((FILTERGRAN * 15) / 16))
noteLookup->nfiltTable[cf][tf] = ((FILTERGRAN * 15) / 16);
}
}
}
File *Tables::initNote(Synth *synth, NoteLookup *noteLookup, float note, float rate, float masterTune, PCMWaveEntry *pcmWaves, File *file) {
float freq = (float)(masterTune * pow(2.0, ((double)note - MIDDLEA) / 12.0));
float div2 = rate * 2.0f / freq;
noteLookup->div2 = (int)div2;
if (noteLookup->div2 == 0)
noteLookup->div2 = 1;
initSaw(noteLookup, noteLookup->div2);
//synth->printDebug("Note %f; freq=%f, div=%f", note, freq, rate / freq);
file = initWave(synth, noteLookup, (const float)WGAMP, div2, file);
// Create the pitch tables
if (noteLookup->wavTable == NULL)
noteLookup->wavTable = new Bit32u[synth->controlROMMap->pcmCount];
double rateMult = 32000.0 / rate;
double tuner = freq * 65536.0f;
for (int pc = 0; pc < synth->controlROMMap->pcmCount; pc++) {
noteLookup->wavTable[pc] = (int)(tuner / pcmWaves[pc].tune * rateMult);
}
initFiltTable(noteLookup, freq, rate);
initNFiltTable(noteLookup, freq, rate);
return file;
}
bool Tables::initNotes(Synth *synth, PCMWaveEntry *pcmWaves, float rate, float masterTune) {
const char *NoteNames[12] = {
"C ", "C#", "D ", "D#", "E ", "F ", "F#", "G ", "G#", "A ", "A#", "B "
};
char filename[64];
int intRate = (int)rate;
char version[4] = {0, 0, 0, 5};
sprintf(filename, "waveformcache-%d-%.2f.raw", intRate, masterTune);
File *file = NULL;
char header[20];
strncpy(header, "MT32WAVE", 8);
int pos = 8;
// Version...
for (int i = 0; i < 4; i++)
header[pos++] = version[i];
header[pos++] = (char)((intRate >> 24) & 0xFF);
header[pos++] = (char)((intRate >> 16) & 0xFF);
header[pos++] = (char)((intRate >> 8) & 0xFF);
header[pos++] = (char)(intRate & 0xFF);
int intTuning = (int)masterTune;
header[pos++] = (char)((intTuning >> 8) & 0xFF);
header[pos++] = (char)(intTuning & 0xFF);
header[pos++] = 0;
header[pos] = (char)((masterTune - intTuning) * 10);
#if MT32EMU_WAVECACHEMODE < 2
bool reading = false;
file = synth->openFile(filename, File::OpenMode_read);
if (file != NULL) {
char fileHeader[20];
if (file->read(fileHeader, 20) == 20) {
if (memcmp(fileHeader, header, 20) == 0) {
Bit16u endianCheck;
if (file->readBit16u(&endianCheck)) {
if (endianCheck == 1) {
reading = true;
} else {
synth->printDebug("Endian check in %s does not match expected", filename);
}
} else {
synth->printDebug("Unable to read endian check in %s", filename);
}
} else {
synth->printDebug("Header of %s does not match expected", filename);
}
} else {
synth->printDebug("Error reading 16 bytes of %s", filename);
}
if (!reading) {
file->close();
file = NULL;
}
} else {
synth->printDebug("Unable to open %s for reading", filename);
}
#endif
float progress = 0.0f;
bool abort = false;
synth->report(ReportType_progressInit, &progress);
for (int f = LOWEST_NOTE; f <= HIGHEST_NOTE; f++) {
synth->printDebug("Initialising note %s%d", NoteNames[f % 12], (f / 12) - 2);
NoteLookup *noteLookup = &noteLookups[f - LOWEST_NOTE];
file = initNote(synth, noteLookup, (float)f, rate, masterTune, pcmWaves, file);
progress = (f - LOWEST_NOTE + 1) / (float)NUM_NOTES;
abort = synth->report(ReportType_progressInit, &progress) != 0;
if (abort)
break;
}
#if MT32EMU_WAVECACHEMODE == 0 || MT32EMU_WAVECACHEMODE == 2
if (file == NULL) {
file = synth->openFile(filename, File::OpenMode_write);
if (file != NULL) {
if (file->write(header, 20) == 20 && file->writeBit16u(1)) {
for (int f = 0; f < NUM_NOTES; f++) {
for (int i = 0; i < 3 && file != NULL; i++) {
int len = noteLookups[f].waveformSize[i];
for (int j = 0; j < len; j++) {
if (!file->writeBit16u(noteLookups[f].waveforms[i][j])) {
synth->printDebug("Error writing waveform cache file");
file->close();
file = NULL;
break;
}
}
}
}
} else {
synth->printDebug("Error writing 16-byte header to %s - won't continue saving", filename);
}
} else {
synth->printDebug("Unable to open %s for writing - won't be created", filename);
}
}
#endif
if (file != NULL)
synth->closeFile(file);
return !abort;
}
void Tables::freeNotes() {
for (int t = 0; t < 3; t++) {
for (int m = 0; m < NUM_NOTES; m++) {
if (noteLookups[m].waveforms[t] != NULL) {
delete[] noteLookups[m].waveforms[t];
noteLookups[m].waveforms[t] = NULL;
noteLookups[m].waveformSize[t] = 0;
}
if (noteLookups[m].wavTable != NULL) {
delete[] noteLookups[m].wavTable;
noteLookups[m].wavTable = NULL;
}
}
}
initialisedMasterTune = 0.0f;
}
Tables::Tables() {
initialisedSampleRate = 0.0f;
initialisedMasterTune = 0.0f;
memset(&noteLookups, 0, sizeof(noteLookups));
}
bool Tables::init(Synth *synth, PCMWaveEntry *pcmWaves, float sampleRate, float masterTune) {
if (sampleRate <= 0.0f) {
synth->printDebug("Bad sampleRate (%d <= 0.0f)", sampleRate);
return false;
}
if (initialisedSampleRate == 0.0f) {
initMT32ConstantTables(synth);
}
if (initialisedSampleRate != sampleRate) {
initFiltCoeff(sampleRate);
initEnvelopes(sampleRate);
for (int key = 12; key <= 108; key++) {
initDep(&keyLookups[key - 12], (float)key);
}
}
if (initialisedSampleRate != sampleRate || initialisedMasterTune != masterTune) {
freeNotes();
if (!initNotes(synth, pcmWaves, sampleRate, masterTune)) {
return false;
}
initialisedSampleRate = sampleRate;
initialisedMasterTune = masterTune;
}
return true;
}
}