scummvm/engines/sci/engine/seg_manager.cpp
2009-05-12 23:30:42 +00:00

1318 lines
35 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/engine/seg_manager.h"
#include "sci/engine/state.h"
#include "sci/engine/intmap.h"
namespace Sci {
/**
* Verify the the given condition is true, output the message if condition is false, and exit.
* @param cond condition to be verified
* @param msg the message to be printed if condition fails
*/
#define VERIFY( cond, msg ) if (!(cond)) {\
error("%s, line, %d, %s", __FILE__, __LINE__, msg); \
}
#define DEFAULT_SCRIPTS 32
#define DEFAULT_OBJECTS 8 // default # of objects per script
#define DEFAULT_OBJECTS_INCREMENT 4 // Number of additional objects to instantiate if we're running out of them
//#define GC_DEBUG // Debug garbage collection
//#define GC_DEBUG_VERBOSE // Debug garbage verbosely
#undef DEBUG_SEG_MANAGER // Define to turn on debugging
#define INVALID_SCRIPT_ID -1
int SegManager::findFreeId(int *id) {
bool was_added = false;
int retval = 0;
while (!was_added) {
retval = id_seg_map->checkKey(reserved_id, true, &was_added);
*id = reserved_id--;
if (reserved_id < -1000000)
reserved_id = -10;
// Make sure we don't underflow
}
return retval;
}
MemObject *SegManager::allocNonscriptSegment(MemObjectType type, SegmentId *segid) {
// Allocates a non-script segment
int id;
*segid = findFreeId(&id);
return memObjAllocate(*segid, id, type);
}
SegManager::SegManager(bool sci1_1) {
id_seg_map = new IntMapper();
reserved_id = INVALID_SCRIPT_ID;
id_seg_map->checkKey(reserved_id, true); // reserve 0 for seg_id
reserved_id--; // reserved_id runs in the reversed direction to make sure no one will use it.
_heap.resize(DEFAULT_SCRIPTS);
for (uint i = 0; i < _heap.size(); ++i)
_heap[i] = 0;
Clones_seg_id = 0;
Lists_seg_id = 0;
Nodes_seg_id = 0;
Hunks_seg_id = 0;
exports_wide = 0;
isSci1_1 = sci1_1;
// gc initialisation
gc_mark_bits = 0;
}
// Destroy the object, free the memorys if allocated before
SegManager::~SegManager() {
// Free memory
for (uint i = 0; i < _heap.size(); i++) {
if (_heap[i])
deallocate(i, false);
}
delete id_seg_map;
}
// allocate a memory for script from heap
// Parameters: (EngineState *) s: The state to operate on
// (int) script_nr: The script number to load
// Returns : 0 - allocation failure
// 1 - allocated successfully
// seg_id - allocated segment id
Script *SegManager::allocateScript(EngineState *s, int script_nr, int* seg_id) {
int seg;
bool was_added;
MemObject* mem;
seg = id_seg_map->checkKey(script_nr, true, &was_added);
if (!was_added) {
*seg_id = seg;
return (Script *)_heap[*seg_id];
}
// allocate the MemObject
mem = memObjAllocate(seg, script_nr, MEM_OBJ_SCRIPT);
if (!mem) {
sciprintf("%s, %d, Not enough memory, ", __FILE__, __LINE__);
return NULL;
}
*seg_id = seg;
return (Script *)mem;
}
void SegManager::setScriptSize(Script &scr, EngineState *s, int script_nr) {
Resource *script = s->resmgr->findResource(kResourceTypeScript, script_nr, 0);
Resource *heap = s->resmgr->findResource(kResourceTypeHeap, script_nr, 0);
scr.script_size = script->size;
scr.heap_size = 0; // Set later
if (!script || (s->version >= SCI_VERSION(1, 001, 000) && !heap)) {
sciprintf("%s: failed to load %s\n", __FUNCTION__, !script ? "script" : "heap");
return;
}
if (s->version < SCI_VERSION_FTU_NEW_SCRIPT_HEADER) {
scr.buf_size = script->size + READ_LE_UINT16(script->data) * 2;
//locals_size = READ_LE_UINT16(script->data) * 2;
} else if (s->version < SCI_VERSION(1, 001, 000)) {
scr.buf_size = script->size;
} else {
scr.buf_size = script->size + heap->size;
scr.heap_size = heap->size;
// Ensure that the start of the heap resource can be word-aligned.
if (script->size & 2) {
scr.buf_size++;
scr.script_size++;
}
if (scr.buf_size > 65535) {
sciprintf("Script and heap sizes combined exceed 64K.\n"
"This means a fundamental design bug was made in SCI\n"
"regarding SCI1.1 games.\nPlease report this so it can be"
"fixed in the next major version!\n");
return;
}
}
}
int SegManager::initialiseScript(Script &scr, EngineState *s, int script_nr) {
// allocate the script.buf
setScriptSize(scr, s, script_nr);
scr.buf = (byte *)malloc(scr.buf_size);
dbgPrint("scr.buf ", scr.buf);
if (!scr.buf) {
scr.freeScript();
sciprintf("SegManager: Not enough memory space for script size");
scr.buf_size = 0;
return 0;
}
// Initialize objects
scr.locals_offset = 0;
scr.locals_block = NULL;
scr._codeBlocks.clear();
scr.nr = script_nr;
scr.marked_as_deleted = 0;
scr.relocated = 0;
scr.obj_indices = new IntMapper();
if (s->version >= SCI_VERSION(1, 001, 000))
scr.heap_start = scr.buf + scr.script_size;
else
scr.heap_start = scr.buf;
return 1;
}
int SegManager::deallocate(int seg, bool recursive) {
MemObject *mobj;
VERIFY(check(seg), "invalid seg id");
mobj = _heap[seg];
id_seg_map->removeKey(mobj->getSegMgrId());
switch (mobj->getType()) {
case MEM_OBJ_SCRIPT:
// FIXME: Get rid of the recursive flag, so that we can move the
// following into the destructor. The only time it is set to false
// is in the SegManager destructor.
if (recursive && (*(Script *)mobj).locals_segment)
deallocate((*(Script *)mobj).locals_segment, recursive);
break;
case MEM_OBJ_LOCALS:
break;
case MEM_OBJ_DYNMEM:
break;
case MEM_OBJ_SYS_STRINGS:
break;
case MEM_OBJ_STACK:
break;
case MEM_OBJ_LISTS:
break;
case MEM_OBJ_NODES:
break;
case MEM_OBJ_CLONES:
break;
case MEM_OBJ_HUNK:
break;
case MEM_OBJ_STRING_FRAG:
break;
default:
error("Deallocating segment type %d not supported", mobj->getType());
}
delete mobj;
_heap[seg] = NULL;
return 1;
}
int SegManager::scriptMarkedDeleted(int script_nr) {
Script *scr = getScript(script_nr, SCRIPT_ID);
return scr->marked_as_deleted;
}
void SegManager::markScriptDeleted(int script_nr) {
Script *scr = getScript(script_nr, SCRIPT_ID);
scr->marked_as_deleted = 1;
}
void SegManager::unmarkScriptDeleted(int script_nr) {
Script *scr = getScript(script_nr, SCRIPT_ID);
scr->marked_as_deleted = 0;
}
int SegManager::scriptIsMarkedAsDeleted(SegmentId seg) {
Script *scr;
if (!check(seg))
return 0;
if (_heap[seg]->getType() != MEM_OBJ_SCRIPT)
return 0;
scr = (Script *)_heap[seg];
return scr->marked_as_deleted;
}
int SegManager::deallocateScript(int script_nr) {
int seg = segGet(script_nr);
deallocate(seg, true);
return 1;
}
MemObject *MemObject::createMemObject(MemObjectType type) {
MemObject *mem = 0;
switch (type) {
case MEM_OBJ_SCRIPT:
mem = new Script();
break;
case MEM_OBJ_CLONES:
mem = new CloneTable();
break;
case MEM_OBJ_LOCALS:
mem = new LocalVariables();
break;
case MEM_OBJ_SYS_STRINGS:
mem = new SystemStrings();
break;
case MEM_OBJ_STACK:
mem = new DataStack();
break;
case MEM_OBJ_HUNK:
mem = new HunkTable();
break;
case MEM_OBJ_STRING_FRAG:
mem = new MemObject(); // FIXME: This is a temporary hack until MEM_OBJ_STRING_FRAG is implemented
break;
case MEM_OBJ_LISTS:
mem = new ListTable();
break;
case MEM_OBJ_NODES:
mem = new NodeTable();
break;
case MEM_OBJ_DYNMEM:
mem = new DynMem();
break;
default:
error("Unknown MemObject type %d", type);
break;
}
assert(mem);
mem->_type = type;
return mem;
}
MemObject *SegManager::memObjAllocate(SegmentId segid, int hash_id, MemObjectType type) {
MemObject *mem = MemObject::createMemObject(type);
if (!mem) {
sciprintf("SegManager: invalid mobj ");
return NULL;
}
if (segid >= (int)_heap.size()) {
const int oldSize = _heap.size();
if (segid >= oldSize * 2) {
sciprintf("SegManager: hash_map error or others??");
return NULL;
}
_heap.resize(oldSize * 2);
for (int i = oldSize; i < oldSize * 2; ++i)
_heap[i] = 0;
}
mem->_segmgrId = hash_id;
// hook it to the heap
_heap[segid] = mem;
return mem;
}
void Script::freeScript() {
free(buf);
buf = NULL;
buf_size = 0;
_objects.clear();
delete obj_indices;
obj_indices = 0;
_codeBlocks.clear();
}
// memory operations
void SegManager::mcpyInOut(int dst, const void *src, size_t n, int id, idFlag flag) {
Script *scr = getScript(id, flag);
if (scr->buf) {
memcpy(scr->buf + dst, src, n);
}
}
int16 SegManager::getHeap(reg_t reg) {
MemObject *mobj;
Script *scr;
VERIFY(check(reg.segment), "Invalid seg id");
mobj = _heap[reg.segment];
switch (mobj->getType()) {
case MEM_OBJ_SCRIPT:
scr = (Script *)mobj;
VERIFY(reg.offset + 1 < (uint16)scr->buf_size, "invalid offset\n");
return (scr->buf[reg.offset] | (scr->buf[reg.offset+1]) << 8);
default:
error("SegManager::getHeap: unsupported mem obj type %d", mobj->getType());
break;
}
return 0; // never get here
}
// return the seg if script_id is valid and in the map, else -1
int SegManager::segGet(int script_id) const {
return id_seg_map->lookupKey(script_id);
}
Script *SegManager::getScript(const int id, idFlag flag) {
const int seg = (flag == SCRIPT_ID) ? segGet(id) : id;
if (seg < 0 || (uint)seg >= _heap.size()) {
error("SegManager::getScript(%d,%d): seg id %x out of bounds", id, flag, seg);
}
if (!_heap[seg]) {
error("SegManager::getScript(%d,%d): seg id %x is not in memory", id, flag, seg);
}
if (_heap[seg]->getType() != MEM_OBJ_SCRIPT) {
error("SegManager::getScript(%d,%d): seg id %x refers to type %d != MEM_OBJ_SCRIPT", id, flag, seg, _heap[seg]->getType());
}
return (Script *)_heap[seg];
}
// validate the seg
// return:
// false - invalid seg
// true - valid seg
bool SegManager::check(int seg) {
if (seg < 0 || (uint)seg >= _heap.size()) {
return false;
}
if (!_heap[seg]) {
sciprintf("SegManager: seg %x is removed from memory, but not removed from hash_map\n", seg);
return false;
}
return true;
}
int SegManager::scriptIsLoaded(int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
return check(id);
}
void SegManager::incrementLockers(int id, idFlag flag) {
Script *scr = getScript(id, flag);
scr->lockers++;
}
void SegManager::decrementLockers(int id, idFlag flag) {
Script *scr = getScript(id, flag);
if (scr->lockers > 0)
scr->lockers--;
}
int SegManager::getLockers(int id, idFlag flag) {
Script *scr = getScript(id, flag);
return scr->lockers;
}
void SegManager::setLockers(int lockers, int id, idFlag flag) {
Script *scr = getScript(id, flag);
scr->lockers = lockers;
}
void SegManager::setExportTableOffset(int offset, int id, idFlag flag) {
Script *scr = getScript(id, flag);
if (offset) {
scr->export_table = (uint16 *)(scr->buf + offset + 2);
scr->exports_nr = READ_LE_UINT16((byte *)(scr->export_table - 1));
} else {
scr->export_table = NULL;
scr->exports_nr = 0;
}
}
void SegManager::setExportWidth(int flag) {
exports_wide = flag;
}
void SegManager::setSynonymsOffset(int offset, int id, idFlag flag) {
Script *scr = getScript(id, flag);
scr->synonyms = scr->buf + offset;
}
byte *SegManager::getSynonyms(int id, idFlag flag) {
Script *scr = getScript(id, flag);
return scr->synonyms;
}
void SegManager::setSynonymsNr(int nr, int id, idFlag flag) {
Script *scr = getScript(id, flag);
scr->synonyms_nr = nr;
}
int SegManager::getSynonymsNr(int id, idFlag flag) {
Script *scr = getScript(id, flag);
return scr->synonyms_nr;
}
int SegManager::relocateBlock(Common::Array<reg_t> &block, int block_location, SegmentId segment, int location) {
int rel = location - block_location;
if (rel < 0)
return 0;
uint idx = rel >> 1;
if (idx >= block.size())
return 0;
if (rel & 1) {
sciprintf("Error: Attempt to relocate odd variable #%d.5e (relative to %04x)\n", idx, block_location);
return 0;
}
block[idx].segment = segment; // Perform relocation
if (isSci1_1)
block[idx].offset += getScript(segment, SEG_ID)->script_size;
return 1;
}
int SegManager::relocateLocal(Script *scr, SegmentId segment, int location) {
if (scr->locals_block)
return relocateBlock(scr->locals_block->_locals, scr->locals_offset, segment, location);
else
return 0; // No hands, no cookies
}
int SegManager::relocateObject(Object *obj, SegmentId segment, int location) {
return relocateBlock(obj->_variables, obj->pos.offset, segment, location);
}
void SegManager::scriptAddCodeBlock(reg_t location) {
Script *scr = getScript(location.segment, SEG_ID);
CodeBlock cb;
cb.pos = location;
cb.size = READ_LE_UINT16(scr->buf + location.offset - 2);
scr->_codeBlocks.push_back(cb);
}
void SegManager::scriptRelocate(reg_t block) {
Script *scr = getScript(block.segment, SEG_ID);
VERIFY(block.offset < (uint16)scr->buf_size && READ_LE_UINT16(scr->buf + block.offset) * 2 + block.offset < (uint16)scr->buf_size,
"Relocation block outside of script\n");
int count = READ_LE_UINT16(scr->buf + block.offset);
for (int i = 0; i <= count; i++) {
int pos = READ_LE_UINT16(scr->buf + block.offset + 2 + (i * 2));
if (!pos)
continue; // FIXME: A hack pending investigation
if (!relocateLocal(scr, block.segment, pos)) {
bool done = false;
uint k;
for (k = 0; !done && k < scr->_objects.size(); k++) {
if (relocateObject(&scr->_objects[k], block.segment, pos))
done = true;
}
for (k = 0; !done && k < scr->_codeBlocks.size(); k++) {
if (pos >= scr->_codeBlocks[k].pos.offset &&
pos < scr->_codeBlocks[k].pos.offset + scr->_codeBlocks[k].size)
done = true;
}
if (!done) {
sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block));
sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (scr->locals_block)
sciprintf("- locals: %d at %04x\n", scr->locals_block->_locals.size(), scr->locals_offset);
else
sciprintf("- No locals\n");
for (k = 0; k < scr->_objects.size(); k++)
sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->_objects[k].pos.offset, scr->_objects[k]._variables.size());
// SQ3 script 71 has broken relocation entries.
// Since this is mainstream, we can't break out as we used to do.
sciprintf("Trying to continue anyway...\n");
// BREAKPOINT();
}
}
}
}
void SegManager::heapRelocate(EngineState *s, reg_t block) {
Script *scr = getScript(block.segment, SEG_ID);
VERIFY(block.offset < (uint16)scr->heap_size && READ_LE_UINT16(scr->heap_start + block.offset) * 2 + block.offset < (uint16)scr->buf_size,
"Relocation block outside of script\n");
if (scr->relocated)
return;
scr->relocated = 1;
int count = READ_LE_UINT16(scr->heap_start + block.offset);
for (int i = 0; i < count; i++) {
int pos = READ_LE_UINT16(scr->heap_start + block.offset + 2 + (i * 2)) + scr->script_size;
if (!relocateLocal(scr, block.segment, pos)) {
bool done = false;
uint k;
for (k = 0; !done && k < scr->_objects.size(); k++) {
if (relocateObject(&scr->_objects[k], block.segment, pos))
done = true;
}
if (!done) {
sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block));
sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (scr->locals_block)
sciprintf("- locals: %d at %04x\n", scr->locals_block->_locals.size(), scr->locals_offset);
else
sciprintf("- No locals\n");
for (k = 0; k < scr->_objects.size(); k++)
sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->_objects[k].pos.offset, scr->_objects[k]._variables.size());
sciprintf("Triggering breakpoint...\n");
BREAKPOINT();
}
}
}
}
#define INST_LOOKUP_CLASS(id) ((id == 0xffff) ? NULL_REG : get_class_address(s, id, SCRIPT_GET_LOCK, NULL_REG))
reg_t get_class_address(EngineState *s, int classnr, int lock, reg_t caller);
Object *SegManager::scriptObjInit0(EngineState *s, reg_t obj_pos) {
Object *obj;
int id;
unsigned int base = obj_pos.offset - SCRIPT_OBJECT_MAGIC_OFFSET;
reg_t temp;
Script *scr = getScript(obj_pos.segment, SEG_ID);
VERIFY(base < scr->buf_size, "Attempt to initialize object beyond end of script\n");
temp = make_reg(obj_pos.segment, base);
id = scr->obj_indices->checkKey(base, true);
if ((uint)id == scr->_objects.size())
scr->_objects.push_back(Object());
obj = &scr->_objects[id];
VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < scr->buf_size, "Function area pointer stored beyond end of script\n");
{
byte *data = (byte *)(scr->buf + base);
int funct_area = READ_LE_UINT16(data + SCRIPT_FUNCTAREAPTR_OFFSET);
int variables_nr;
int functions_nr;
int is_class;
int i;
obj->flags = 0;
obj->pos = temp;
VERIFY(base + funct_area < scr->buf_size, "Function area pointer references beyond end of script");
variables_nr = READ_LE_UINT16(data + SCRIPT_SELECTORCTR_OFFSET);
functions_nr = READ_LE_UINT16(data + funct_area - 2);
is_class = READ_LE_UINT16(data + SCRIPT_INFO_OFFSET) & SCRIPT_INFO_CLASS;
VERIFY(base + funct_area + functions_nr * 2
// add again for classes, since those also store selectors
+ (is_class ? functions_nr * 2 : 0) < scr->buf_size, "Function area extends beyond end of script");
obj->_variables.resize(variables_nr);
obj->methods_nr = functions_nr;
obj->base = scr->buf;
obj->base_obj = data;
obj->base_method = (uint16 *)(data + funct_area);
obj->base_vars = NULL;
for (i = 0; i < variables_nr; i++)
obj->_variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2)));
}
return obj;
}
Object *SegManager::scriptObjInit11(EngineState *s, reg_t obj_pos) {
Object *obj;
int id;
int base = obj_pos.offset;
Script *scr = getScript(obj_pos.segment, SEG_ID);
VERIFY(base < (uint16)scr->buf_size, "Attempt to initialize object beyond end of script\n");
id = scr->obj_indices->checkKey(obj_pos.offset, true);
if ((uint)id == scr->_objects.size())
scr->_objects.push_back(Object());
obj = &scr->_objects[id];
VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < (uint16)scr->buf_size, "Function area pointer stored beyond end of script\n");
{
byte *data = (byte *)(scr->buf + base);
uint16 *funct_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 6));
uint16 *prop_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 4));
int variables_nr;
int functions_nr;
int is_class;
int i;
obj->flags = 0;
obj->pos = obj_pos;
VERIFY((byte *) funct_area < scr->buf + scr->buf_size, "Function area pointer references beyond end of script");
variables_nr = READ_LE_UINT16(data + 2);
functions_nr = READ_LE_UINT16(funct_area);
is_class = READ_LE_UINT16(data + 14) & SCRIPT_INFO_CLASS;
obj->base_method = funct_area;
obj->base_vars = prop_area;
VERIFY(((byte *) funct_area + functions_nr) < scr->buf + scr->buf_size, "Function area extends beyond end of script");
obj->variable_names_nr = variables_nr;
obj->_variables.resize(variables_nr);
obj->methods_nr = functions_nr;
obj->base = scr->buf;
obj->base_obj = data;
for (i = 0; i < variables_nr; i++)
obj->_variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2)));
}
return obj;
}
Object *SegManager::scriptObjInit(EngineState *s, reg_t obj_pos) {
if (!isSci1_1)
return scriptObjInit0(s, obj_pos);
else
return scriptObjInit11(s, obj_pos);
}
LocalVariables *SegManager::allocLocalsSegment(Script *scr, int count) {
if (!count) { // No locals
scr->locals_segment = 0;
scr->locals_block = NULL;
return NULL;
} else {
LocalVariables *locals;
if (scr->locals_segment) {
locals = (LocalVariables *)_heap[scr->locals_segment];
VERIFY(locals != NULL, "Re-used locals segment was NULL'd out");
VERIFY(locals->getType() == MEM_OBJ_LOCALS, "Re-used locals segment did not consist of local variables");
VERIFY(locals->script_id == scr->nr, "Re-used locals segment belonged to other script");
} else
locals = (LocalVariables *)allocNonscriptSegment(MEM_OBJ_LOCALS, &scr->locals_segment);
scr->locals_block = locals;
locals->script_id = scr->nr;
locals->_locals.resize(count);
return locals;
}
}
void SegManager::scriptInitialiseLocalsZero(SegmentId seg, int count) {
Script *scr = getScript(seg, SEG_ID);
scr->locals_offset = -count * 2; // Make sure it's invalid
allocLocalsSegment(scr, count);
}
void SegManager::scriptInitialiseLocals(reg_t location) {
Script *scr = getScript(location.segment, SEG_ID);
unsigned int count;
VERIFY(location.offset + 1 < (uint16)scr->buf_size, "Locals beyond end of script\n");
if (isSci1_1)
count = READ_LE_UINT16(scr->buf + location.offset - 2);
else
count = (READ_LE_UINT16(scr->buf + location.offset - 2) - 4) >> 1;
// half block size
scr->locals_offset = location.offset;
if (!(location.offset + count * 2 + 1 < scr->buf_size)) {
sciprintf("Locals extend beyond end of script: offset %04x, count %x vs size %x\n", location.offset, count, (uint)scr->buf_size);
count = (scr->buf_size - location.offset) >> 1;
}
LocalVariables *locals = allocLocalsSegment(scr, count);
if (locals) {
uint i;
byte *base = (byte *)(scr->buf + location.offset);
for (i = 0; i < count; i++)
locals->_locals[i].offset = READ_LE_UINT16(base + i * 2);
}
}
void SegManager::scriptRelocateExportsSci11(int seg) {
Script *scr = getScript(seg, SEG_ID);
for (int i = 0; i < scr->exports_nr; i++) {
/* We are forced to use an ugly heuristic here to distinguish function
exports from object/class exports. The former kind points into the
script resource, the latter into the heap resource. */
uint16 location = READ_LE_UINT16((byte *)(scr->export_table + i));
if ((location < scr->heap_size - 1) && (READ_LE_UINT16(scr->heap_start + location) == SCRIPT_OBJECT_MAGIC_NUMBER)) {
WRITE_LE_UINT16((byte *)(scr->export_table + i), location + scr->heap_start - scr->buf);
} else {
// Otherwise it's probably a function export,
// and we don't need to do anything.
}
}
}
void SegManager::scriptInitialiseObjectsSci11(EngineState *s, int seg) {
Script *scr = getScript(seg, SEG_ID);
byte *seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
if (READ_LE_UINT16(seeker + 14) & SCRIPT_INFO_CLASS) {
int classpos = seeker - scr->buf;
int species = READ_LE_UINT16(seeker + 10);
if (species < 0 || species >= (int)s->_classtable.size()) {
sciprintf("Invalid species %d(0x%x) not in interval [0,%d) while instantiating script %d\n",
species, species, s->_classtable.size(), scr->nr);
script_debug_flag = script_error_flag = 1;
return;
}
s->_classtable[species].script = scr->nr;
s->_classtable[species].reg.segment = seg;
s->_classtable[species].reg.offset = classpos;
}
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
reg_t reg;
Object *obj;
reg.segment = seg;
reg.offset = seeker - scr->buf;
obj = scriptObjInit(s, reg);
#if 0
if (obj->_variables[5].offset != 0xffff) {
obj->_variables[5] = INST_LOOKUP_CLASS(obj->_variables[5].offset);
base_obj = obj_get(s, obj->_variables[5]);
obj->variable_names_nr = base_obj->variables_nr;
obj->base_obj = base_obj->base_obj;
}
#endif
// Copy base from species class, as we need its selector IDs
obj->_variables[6] = INST_LOOKUP_CLASS(obj->_variables[6].offset);
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
}
/*
static char *SegManager::dynprintf(char *msg, ...) {
va_list argp;
char *buf = (char *)malloc(strlen(msg) + 100);
va_start(argp, msg);
vsprintf(buf, msg, argp);
va_end(argp);
return buf;
}
*/
DataStack *SegManager::allocateStack(int size, SegmentId *segid) {
MemObject *mobj = allocNonscriptSegment(MEM_OBJ_STACK, segid);
DataStack *retval = (DataStack *)mobj;
retval->entries = (reg_t *)calloc(size, sizeof(reg_t));
retval->nr = size;
return retval;
}
SystemStrings *SegManager::allocateSysStrings(SegmentId *segid) {
return (SystemStrings *)allocNonscriptSegment(MEM_OBJ_SYS_STRINGS, segid);
}
SegmentId SegManager::allocateStringFrags() {
SegmentId segid;
allocNonscriptSegment(MEM_OBJ_STRING_FRAG, &segid);
return segid;
}
uint16 SegManager::validateExportFunc(int pubfunct, int seg) {
Script *scr = getScript(seg, SEG_ID);
if (scr->exports_nr <= pubfunct) {
sciprintf("pubfunct is invalid");
return 0;
}
if (exports_wide)
pubfunct *= 2;
uint16 offset = READ_LE_UINT16((byte *)(scr->export_table + pubfunct));
VERIFY(offset < scr->buf_size, "invalid export function pointer");
return offset;
}
void SegManager::free_hunk_entry(reg_t addr) {
HunkTable *ht = (HunkTable *)GET_SEGMENT(*this, addr.segment, MEM_OBJ_HUNK);
if (!ht) {
sciprintf("Attempt to free Hunk from address "PREG": Invalid segment type\n", PRINT_REG(addr));
return;
}
ht->freeEntry(addr.offset);
}
Hunk *SegManager::alloc_hunk_entry(const char *hunk_type, int size, reg_t *reg) {
Hunk *h = alloc_Hunk(reg);
if (!h)
return NULL;
h->mem = malloc(size);
h->size = size;
h->type = hunk_type;
return h;
}
Clone *SegManager::alloc_Clone(reg_t *addr) {
CloneTable *table;
int offset;
if (!Clones_seg_id) {
table = (CloneTable *)allocNonscriptSegment(MEM_OBJ_CLONES, &(Clones_seg_id));
table->initTable();
} else
table = (CloneTable *)_heap[Clones_seg_id];
offset = table->allocEntry();
*addr = make_reg(Clones_seg_id, offset);
return &(table->_table[offset]);
}
List *SegManager::alloc_List(reg_t *addr) {
ListTable *table;
int offset;
if (!Lists_seg_id) {
table = (ListTable *)allocNonscriptSegment(MEM_OBJ_LISTS, &(Lists_seg_id));
table->initTable();
} else
table = (ListTable *)_heap[Lists_seg_id];
offset = table->allocEntry();
*addr = make_reg(Lists_seg_id, offset);
return &(table->_table[offset]);
}
Node *SegManager::alloc_Node(reg_t *addr) {
NodeTable *table;
int offset;
if (!Nodes_seg_id) {
table = (NodeTable *)allocNonscriptSegment(MEM_OBJ_NODES, &(Nodes_seg_id));
table->initTable();
} else
table = (NodeTable *)_heap[Nodes_seg_id];
offset = table->allocEntry();
*addr = make_reg(Nodes_seg_id, offset);
return &(table->_table[offset]);
}
Hunk *SegManager::alloc_Hunk(reg_t *addr) {
HunkTable *table;
int offset;
if (!Hunks_seg_id) {
table = (HunkTable *)allocNonscriptSegment(MEM_OBJ_HUNK, &(Hunks_seg_id));
table->initTable();
} else
table = (HunkTable *)_heap[Hunks_seg_id];
offset = table->allocEntry();
*addr = make_reg(Hunks_seg_id, offset);
return &(table->_table[offset]);
}
byte *MemObject::dereference(reg_t pointer, int *size) {
error("Error: Trying to dereference pointer "PREG" to inappropriate segment",
PRINT_REG(pointer));
return NULL;
}
byte *Script::dereference(reg_t pointer, int *size) {
if (pointer.offset > buf_size) {
sciprintf("Error: Attempt to dereference invalid pointer "PREG" into script segment (script size=%d)\n",
PRINT_REG(pointer), (uint)buf_size);
return NULL;
}
if (size)
*size = buf_size - pointer.offset;
return (byte *)(buf + pointer.offset);
}
byte *LocalVariables::dereference(reg_t pointer, int *size) {
// FIXME: The following doesn't seem to be endian safe.
// To fix this, we'd have to always treat the reg_t
// values stored here as in the little endian format.
int count = _locals.size() * sizeof(reg_t);
byte *base = (byte *)&_locals[0];
if (size)
*size = count;
return base + pointer.offset;
}
byte *DataStack::dereference(reg_t pointer, int *size) {
int count = nr * sizeof(reg_t);
byte *base = (byte *)entries;
if (size)
*size = count;
return base + pointer.offset;
}
byte *DynMem::dereference(reg_t pointer, int *size) {
int count = _size;
byte *base = (byte *)_buf;
if (size)
*size = count;
return base + pointer.offset;
}
byte *SystemStrings::dereference(reg_t pointer, int *size) {
if (size)
*size = strings[pointer.offset].max_size;
if (pointer.offset < SYS_STRINGS_MAX && strings[pointer.offset].name)
return (byte *)(strings[pointer.offset].value);
error("Attempt to dereference invalid pointer "PREG"", PRINT_REG(pointer));
return NULL;
}
byte *SegManager::dereference(reg_t pointer, int *size) {
if (!pointer.segment || (pointer.segment >= _heap.size()) || !_heap[pointer.segment]) {
error("Attempt to dereference invalid pointer "PREG"", PRINT_REG(pointer));
return NULL; /* Invalid */
}
MemObject *mobj = _heap[pointer.segment];
return mobj->dereference(pointer, size);
}
unsigned char *SegManager::allocDynmem(int size, const char *descr, reg_t *addr) {
SegmentId seg;
MemObject *mobj = allocNonscriptSegment(MEM_OBJ_DYNMEM, &seg);
*addr = make_reg(seg, 0);
DynMem &d = *(DynMem *)mobj;
d._size = size;
if (size == 0)
d._buf = NULL;
else
d._buf = (byte *)malloc(size);
d._description = strdup(descr);
return (unsigned char *)(d._buf);
}
const char *SegManager::getDescription(reg_t addr) {
MemObject *mobj = _heap[addr.segment];
if (addr.segment >= _heap.size())
return "";
switch (mobj->getType()) {
case MEM_OBJ_DYNMEM:
return (*(DynMem *)mobj)._description;
default:
return "";
}
}
int SegManager::freeDynmem(reg_t addr) {
if (addr.segment <= 0 || addr.segment >= _heap.size() || !_heap[addr.segment] || _heap[addr.segment]->getType() != MEM_OBJ_DYNMEM)
return 1; // error
deallocate(addr.segment, true);
return 0; // OK
}
void SegManager::dbgPrint(const char* msg, void *i) {
#ifdef DEBUG_SEG_MANAGER
char buf[1000];
sprintf(buf, "%s = [0x%x], dec:[%d]", msg, i, i);
perror(buf);
#endif
}
//-------------------- script --------------------
reg_t Script::findCanonicAddress(SegManager *segmgr, reg_t addr) {
addr.offset = 0;
return addr;
}
void Script::freeAtAddress(SegManager *segmgr, reg_t addr) {
/*
sciprintf("[GC] Freeing script "PREG"\n", PRINT_REG(addr));
if (locals_segment)
sciprintf("[GC] Freeing locals %04x:0000\n", locals_segment);
*/
if (marked_as_deleted)
segmgr->deallocateScript(nr);
}
void Script::listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) {
(*note)(param, make_reg(segId, 0));
}
void Script::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
Script *script = this;
if (addr.offset <= script->buf_size && addr.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET && RAW_IS_OBJECT(script->buf + addr.offset)) {
int idx = RAW_GET_CLASS_INDEX(script, addr);
if (idx >= 0 && (uint)idx < script->_objects.size()) {
// Note all local variables, if we have a local variable environment
if (script->locals_segment)
(*note)(param, make_reg(script->locals_segment, 0));
Object &obj = script->_objects[idx];
for (uint i = 0; i < obj._variables.size(); i++)
(*note)(param, obj._variables[i]);
} else {
warning("Request for outgoing script-object reference at "PREG" yielded invalid index %d", PRINT_REG(addr), idx);
}
} else {
/* fprintf(stderr, "Unexpected request for outgoing script-object references at "PREG"\n", PRINT_REG(addr));*/
/* Happens e.g. when we're looking into strings */
}
}
//-------------------- clones --------------------
template<typename T>
void Table<T>::listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) {
for (uint i = 0; i < _table.size(); i++)
if (isValidEntry(i))
(*note)(param, make_reg(segId, i));
}
void CloneTable::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
CloneTable *clone_table = this;
Clone *clone;
// assert(addr.segment == _segId);
if (!(ENTRY_IS_VALID(clone_table, addr.offset))) {
fprintf(stderr, "Unexpected request for outgoing references from clone at "PREG"\n", PRINT_REG(addr));
// BREAKPOINT();
return;
}
clone = &(clone_table->_table[addr.offset]);
// Emit all member variables (including references to the 'super' delegate)
for (uint i = 0; i < clone->_variables.size(); i++)
(*note)(param, clone->_variables[i]);
// Note that this also includes the 'base' object, which is part of the script and therefore also emits the locals.
(*note)(param, clone->pos);
//sciprintf("[GC] Reporting clone-pos "PREG"\n", PRINT_REG(clone->pos));
}
void CloneTable::freeAtAddress(SegManager *segmgr, reg_t addr) {
CloneTable *clone_table = this;
Object *victim_obj;
// assert(addr.segment == _segId);
victim_obj = &(clone_table->_table[addr.offset]);
#ifdef GC_DEBUG
if (!(victim_obj->flags & OBJECT_FLAG_FREED))
sciprintf("[GC] Warning: Clone "PREG" not reachable and not freed (freeing now)\n", PRINT_REG(addr));
#ifdef GC_DEBUG_VERBOSE
else
sciprintf("[GC-DEBUG] Clone "PREG": Freeing\n", PRINT_REG(addr));
#endif
#endif
/*
sciprintf("[GC] Clone "PREG": Freeing\n", PRINT_REG(addr));
sciprintf("[GC] Clone had pos "PREG"\n", PRINT_REG(victim_obj->pos));
*/
clone_table->freeEntry(addr.offset);
}
//-------------------- locals --------------------
reg_t LocalVariables::findCanonicAddress(SegManager *segmgr, reg_t addr) {
// Reference the owning script
SegmentId owner_seg = segmgr->segGet(script_id);
assert(owner_seg >= 0);
return make_reg(owner_seg, 0);
}
void LocalVariables::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
// assert(addr.segment == _segId);
for (uint i = 0; i < _locals.size(); i++)
(*note)(param, _locals[i]);
}
//-------------------- stack --------------------
reg_t DataStack::findCanonicAddress(SegManager *segmgr, reg_t addr) {
addr.offset = 0;
return addr;
}
void DataStack::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
fprintf(stderr, "Emitting %d stack entries\n", nr);
for (int i = 0; i < nr; i++)
(*note)(param, entries[i]);
fprintf(stderr, "DONE");
}
//-------------------- lists --------------------
void ListTable::freeAtAddress(SegManager *segmgr, reg_t sub_addr) {
freeEntry(sub_addr.offset);
}
void ListTable::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
if (!isValidEntry(addr.offset)) {
warning("Invalid list referenced for outgoing references: "PREG"", PRINT_REG(addr));
return;
}
List *list = &(_table[addr.offset]);
note(param, list->first);
note(param, list->last);
// We could probably get away with just one of them, but
// let's be conservative here.
}
//-------------------- nodes --------------------
void NodeTable::freeAtAddress(SegManager *segmgr, reg_t sub_addr) {
freeEntry(sub_addr.offset);
}
void NodeTable::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
if (!isValidEntry(addr.offset)) {
warning("Invalid node referenced for outgoing references: "PREG"", PRINT_REG(addr));
return;
}
Node *node = &(_table[addr.offset]);
// We need all four here. Can't just stick with 'pred' OR 'succ' because node operations allow us
// to walk around from any given node
note(param, node->pred);
note(param, node->succ);
note(param, node->key);
note(param, node->value);
}
//-------------------- hunk --------------------
//-------------------- dynamic memory --------------------
reg_t DynMem::findCanonicAddress(SegManager *segmgr, reg_t addr) {
addr.offset = 0;
return addr;
}
void DynMem::listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) {
(*note)(param, make_reg(segId, 0));
}
} // End of namespace Sci