scummvm/engines/scumm/player_nes.cpp
Eugene Sandulenko 9b0bf64448 Silence MSVC8 warnings.
svn-id: r26062
2007-03-10 15:02:39 +00:00

1067 lines
22 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2006 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* aint32 with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/stdafx.h"
#include "engines/engine.h"
#include "scumm/player_nes.h"
#include "scumm/scumm.h"
#include "sound/mixer.h"
namespace Scumm {
static const byte channelMask[4] = {1, 2, 4, 8};
static const uint16 freqTable[64] = {
0x07F0, 0x077E, 0x0712, 0x06AE, 0x064E, 0x05F3, 0x059E, 0x054D,
0x0501, 0x04B9, 0x0475, 0x0435, 0x03F8, 0x03BF, 0x0389, 0x0357,
0x0327, 0x02F9, 0x02CF, 0x02A6, 0x0280, 0x025C, 0x023A, 0x021A,
0x01FC, 0x01DF, 0x01C4, 0x01AB, 0x0193, 0x017C, 0x0167, 0x0152,
0x013F, 0x012D, 0x011C, 0x010C, 0x00FD, 0x00EE, 0x00E1, 0x00D4,
0x00C8, 0x00BD, 0x00B2, 0x00A8, 0x009F, 0x0096, 0x008D, 0x0085,
0x007E, 0x0076, 0x0070, 0x0069, 0x0063, 0x005E, 0x0058, 0x0053,
0x004F, 0x004A, 0x0046, 0x0042, 0x003E, 0x003A, 0x0037, 0x0034
};
static const byte instChannel[16] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 3, 3, 3
};
static const byte startCmd[16] = {
0x05, 0x03, 0x06, 0x08, 0x0B, 0x01, 0x01, 0x1A,
0x16, 0x06, 0x04, 0x17, 0x02, 0x10, 0x0E, 0x0D
};
static const byte releaseCmd[16] = {
0x0F, 0x00, 0x00, 0x09, 0x00, 0x14, 0x15, 0x00,
0x00, 0x00, 0x1B, 0x1B, 0x0F, 0x0F, 0x0F, 0x0F
};
static const byte nextCmd[28] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x17, 0xFF, 0x07, 0xFF,
0xFF, 0x0A, 0x09, 0x0C, 0x00, 0x00, 0x00, 0x00,
0x11, 0x12, 0x11, 0x03, 0xFF, 0xFF, 0x18, 0x00,
0x19, 0x00, 0x00, 0x00
};
static const byte nextDelay[28] = {
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00,
0x00, 0x05, 0x08, 0x03, 0x00, 0x00, 0x00, 0x00,
0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00,
0x03, 0x00, 0x00, 0x00
};
namespace APUe {
static const byte LengthCounts[32] = {
0x0A,0xFE,
0x14,0x02,
0x28,0x04,
0x50,0x06,
0xA0,0x08,
0x3C,0x0A,
0x0E,0x0C,
0x1A,0x0E,
0x0C,0x10,
0x18,0x12,
0x30,0x14,
0x60,0x16,
0xC0,0x18,
0x48,0x1A,
0x10,0x1C,
0x20,0x1E
};
class SoundGen {
protected:
byte wavehold;
uint32 freq; // short
uint32 CurD;
public:
byte Timer;
int32 Pos;
uint32 Cycles; // short
inline byte GetTimer() const { return Timer; };
};
class Square : public SoundGen {
protected:
byte volume, envelope, duty, swpspeed, swpdir, swpstep, swpenab;
byte Vol;
byte EnvCtr, Envelope, BendCtr;
bool Enabled, ValidFreq, Active;
bool EnvClk, SwpClk;
void CheckActive(void);
public:
void Reset(void);
void Write(int Reg, byte Val);
void Run(void);
void QuarterFrame(void);
void HalfFrame(void);
};
static const int8 Duties[4][8] = {
{-4,+4,-4,-4,-4,-4,-4,-4},
{-4,+4,+4,-4,-4,-4,-4,-4},
{-4,+4,+4,+4,+4,-4,-4,-4},
{+4,-4,-4,+4,+4,+4,+4,+4}
};
void Square::Reset(void) {
memset(this, 0, sizeof(*this));
Cycles = 1;
EnvCtr = 1;
BendCtr = 1;
}
void Square::CheckActive(void) {
ValidFreq = (freq >= 0x8) && ((swpdir) || !((freq + (freq >> swpstep)) & 0x800));
Active = Timer && ValidFreq;
Pos = Active ? (Duties[duty][CurD] * Vol) : 0;
}
void Square::Write(int Reg, byte Val) {
switch (Reg) {
case 0:
volume = Val & 0xF;
envelope = Val & 0x10;
wavehold = Val & 0x20;
duty = (Val >> 6) & 0x3;
Vol = envelope ? volume : Envelope;
break;
case 1:
swpstep = Val & 0x07;
swpdir = Val & 0x08;
swpspeed = (Val >> 4) & 0x7;
swpenab = Val & 0x80;
SwpClk = true;
break;
case 2:
freq &= 0x700;
freq |= Val;
break;
case 3:
freq &= 0xFF;
freq |= (Val & 0x7) << 8;
if (Enabled)
Timer = LengthCounts[(Val >> 3) & 0x1F];
CurD = 0;
EnvClk = true;
break;
case 4:
Enabled = (Val != 0);
if (!Enabled)
Timer = 0;
break;
}
CheckActive();
}
void Square::Run(void) {
Cycles = (freq + 1) << 1;
CurD = (CurD + 1) & 0x7;
if (Active)
Pos = Duties[duty][CurD] * Vol;
}
void Square::QuarterFrame(void) {
if (EnvClk) {
EnvClk = false;
Envelope = 0xF;
EnvCtr = volume + 1;
} else if (!--EnvCtr) {
EnvCtr = volume + 1;
if (Envelope)
Envelope--;
else
Envelope = wavehold ? 0xF : 0x0;
}
Vol = envelope ? volume : Envelope;
CheckActive();
}
void Square::HalfFrame(void) {
if (!--BendCtr) {
BendCtr = swpspeed + 1;
if (swpenab && swpstep && ValidFreq) {
int sweep = freq >> swpstep;
// FIXME: Is -sweep or ~sweep correct???
freq += swpdir ? -sweep : sweep;
}
}
if (SwpClk) {
SwpClk = false;
BendCtr = swpspeed + 1;
}
if (Timer && !wavehold)
Timer--;
CheckActive();
}
class Triangle : public SoundGen {
protected:
byte linear;
byte LinCtr;
bool Enabled, Active;
bool LinClk;
void CheckActive(void);
public:
void Reset(void);
void Write(int Reg, byte Val);
void Run(void);
void QuarterFrame(void);
void HalfFrame(void);
};
static const int8 TriDuty[32] = {
-8,-7,-6,-5,-4,-3,-2,-1,
+0,+1,+2,+3,+4,+5,+6,+7,
+7,+6,+5,+4,+3,+2,+1,+0,
-1,-2,-3,-4,-5,-6,-7,-8
};
void Triangle::Reset(void) {
memset(this, 0, sizeof(*this));
Cycles = 1;
}
void Triangle::CheckActive(void) {
Active = Timer && LinCtr;
if (freq < 4)
Pos = 0; // beyond hearing range
else
Pos = TriDuty[CurD] * 8;
}
void Triangle::Write(int Reg, byte Val) {
switch (Reg) {
case 0:
linear = Val & 0x7F;
wavehold = (Val >> 7) & 0x1;
break;
case 2:
freq &= 0x700;
freq |= Val;
break;
case 3:
freq &= 0xFF;
freq |= (Val & 0x7) << 8;
if (Enabled)
Timer = LengthCounts[(Val >> 3) & 0x1F];
LinClk = true;
break;
case 4:
Enabled = (Val != 0);
if (!Enabled)
Timer = 0;
break;
}
CheckActive();
}
void Triangle::Run(void) {
Cycles = freq + 1;
if (Active) {
CurD++;
CurD &= 0x1F;
if (freq < 4)
Pos = 0; // beyond hearing range
else
Pos = TriDuty[CurD] * 8;
}
}
void Triangle::QuarterFrame(void) {
if (LinClk)
LinCtr = linear;
else if (LinCtr)
LinCtr--;
if (!wavehold)
LinClk = false;
CheckActive();
}
void Triangle::HalfFrame(void) {
if (Timer && !wavehold)
Timer--;
CheckActive();
}
class Noise : public SoundGen {
protected:
byte volume, envelope, datatype;
byte Vol;
byte EnvCtr, Envelope;
bool Enabled;
bool EnvClk;
void CheckActive(void);
public:
void Reset(void);
void Write(int Reg, byte Val);
void Run(void);
void QuarterFrame(void);
void HalfFrame(void);
};
static const uint32 NoiseFreq[16] = {
0x004,0x008,0x010,0x020,0x040,0x060,0x080,0x0A0,
0x0CA,0x0FE,0x17C,0x1FC,0x2FA,0x3F8,0x7F2,0xFE4
};
void Noise::Reset(void) {
memset(this, 0, sizeof(*this));
CurD = 1;
Cycles = 1;
EnvCtr = 1;
}
void Noise::Write(int Reg, byte Val) {
switch (Reg) {
case 0:
volume = Val & 0x0F;
envelope = Val & 0x10;
wavehold = Val & 0x20;
Vol = envelope ? volume : Envelope;
if (Timer)
Pos = ((CurD & 0x4000) ? -2 : 2) * Vol;
break;
case 2:
freq = Val & 0xF;
datatype = Val & 0x80;
break;
case 3:
if (Enabled)
Timer = LengthCounts[(Val >> 3) & 0x1F];
EnvClk = true;
break;
case 4:
Enabled = (Val != 0);
if (!Enabled)
Timer = 0;
break;
}
}
void Noise::Run(void) {
Cycles = NoiseFreq[freq]; /* no + 1 here */
if (datatype)
CurD = (CurD << 1) | (((CurD >> 14) ^ (CurD >> 8)) & 0x1);
else
CurD = (CurD << 1) | (((CurD >> 14) ^ (CurD >> 13)) & 0x1);
if (Timer)
Pos = ((CurD & 0x4000) ? -2 : 2) * Vol;
}
void Noise::QuarterFrame(void) {
if (EnvClk) {
EnvClk = false;
Envelope = 0xF;
EnvCtr = volume + 1;
} else if (!--EnvCtr) {
EnvCtr = volume + 1;
if (Envelope)
Envelope--;
else
Envelope = wavehold ? 0xF : 0x0;
}
Vol = envelope ? volume : Envelope;
if (Timer)
Pos = ((CurD & 0x4000) ? -2 : 2) * Vol;
}
void Noise::HalfFrame(void) {
if (Timer && !wavehold)
Timer--;
}
class APU {
protected:
int BufPos;
int SampleRate;
Square _square0;
Square _square1;
Triangle _triangle;
Noise _noise;
struct {
uint32 Cycles;
int Num;
} Frame;
public:
APU(int rate) : SampleRate(rate) {
Reset();
}
void WriteReg(int Addr, byte Val);
byte Read4015(void);
void Reset (void);
int16 GetSample(void);
};
void APU::WriteReg(int Addr, byte Val) {
switch (Addr) {
case 0x000: _square0.Write(0,Val); break;
case 0x001: _square0.Write(1,Val); break;
case 0x002: _square0.Write(2,Val); break;
case 0x003: _square0.Write(3,Val); break;
case 0x004: _square1.Write(0,Val); break;
case 0x005: _square1.Write(1,Val); break;
case 0x006: _square1.Write(2,Val); break;
case 0x007: _square1.Write(3,Val); break;
case 0x008: _triangle.Write(0,Val); break;
case 0x009: _triangle.Write(1,Val); break;
case 0x00A: _triangle.Write(2,Val); break;
case 0x00B: _triangle.Write(3,Val); break;
case 0x00C: _noise.Write(0,Val); break;
case 0x00D: _noise.Write(1,Val); break;
case 0x00E: _noise.Write(2,Val); break;
case 0x00F: _noise.Write(3,Val); break;
case 0x015: _square0.Write(4,Val & 0x1);
_square1.Write(4,Val & 0x2);
_triangle.Write(4,Val & 0x4);
_noise.Write(4,Val & 0x8);
break;
}
}
byte APU::Read4015(void) {
byte result =
(( _square0.GetTimer()) ? 0x01 : 0) |
(( _square1.GetTimer()) ? 0x02 : 0) |
((_triangle.GetTimer()) ? 0x04 : 0) |
(( _noise.GetTimer()) ? 0x08 : 0);
return result;
}
void APU::Reset (void) {
BufPos = 0;
_square0.Reset();
_square1.Reset();
_triangle.Reset();
_noise.Reset();
Frame.Num = 0;
Frame.Cycles = 1;
}
template <class T>
int step(T &obj, int sampcycles, uint frame_Cycles, int frame_Num) {
int samppos = 0;
while (sampcycles) {
// Compute the maximal amount we can step ahead before triggering
// an action (i.e. compute the minimum of sampcycles, frame_Cycles
// and obj.Cycles).
uint max_step = sampcycles;
if (max_step > frame_Cycles)
max_step = frame_Cycles;
if (max_step > obj.Cycles)
max_step = obj.Cycles;
// During all but the last of these steps, we just add the value of obj.Pos
// to samppos -- so we can to that all at once with a simple multiplication:
samppos += obj.Pos * (max_step - 1);
// Now step ahead...
sampcycles -= max_step;
frame_Cycles -= max_step;
obj.Cycles -= max_step;
if (!frame_Cycles) {
frame_Cycles = 7457;
if (frame_Num < 4) {
obj.QuarterFrame();
if (frame_Num & 1)
frame_Cycles++;
else
obj.HalfFrame();
frame_Num++;
} else
frame_Num = 0;
}
if (!obj.Cycles)
obj.Run();
samppos += obj.Pos;
}
return samppos;
}
int16 APU::GetSample(void) {
int samppos = 0;
const int sampcycles = 1+(1789773-BufPos-1)/SampleRate;
BufPos = BufPos + sampcycles * SampleRate - 1789773;
samppos += step( _square0, sampcycles, Frame.Cycles, Frame.Num);
samppos += step( _square1, sampcycles, Frame.Cycles, Frame.Num);
samppos += step(_triangle, sampcycles, Frame.Cycles, Frame.Num);
samppos += step( _noise, sampcycles, Frame.Cycles, Frame.Num);
uint tmp = sampcycles;
while (tmp >= Frame.Cycles) {
tmp -= Frame.Cycles;
Frame.Cycles = 7457;
if (Frame.Num < 4) {
if (Frame.Num & 1)
Frame.Cycles++;
Frame.Num++;
} else
Frame.Num = 0;
}
Frame.Cycles -= tmp;
return (samppos << 6) / sampcycles;
}
} // End of namespace APUe
Player_NES::Player_NES(ScummEngine *scumm, Audio::Mixer *mixer) {
int i;
_vm = scumm;
_mixer = mixer;
_sample_rate = _mixer->getOutputRate();
_apu = new APUe::APU(_sample_rate);
_samples_per_frame = _sample_rate / 60;
_current_sample = 0;
for (i = 0; i < NUMSLOTS; i++) {
_slot[i].id = -1;
_slot[i].framesleft = 0;
_slot[i].type = 0;
_slot[i].offset = 0;
_slot[i].data = NULL;
}
for (i = 0; i < NUMCHANS; i++) {
_mchan[i].command = 0;
_mchan[i].framedelay = 0;
_mchan[i].pitch = 0;
_mchan[i].volume = 0;
_mchan[i].voldelta = 0;
_mchan[i].envflags = 0;
_mchan[i].cmdlock = 0;
}
isSFXplaying = wasSFXplaying = false;
auxData1 = auxData2 = NULL;
numNotes = 0;
APU_writeControl(0);
_mixer->playInputStream(Audio::Mixer::kPlainSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, false, true);
}
Player_NES::~Player_NES() {
_mixer->stopHandle(_soundHandle);
delete _apu;
}
void Player_NES::setMusicVolume (int vol) {
_maxvol = vol;
}
int Player_NES::readBuffer(int16 *buffer, const int numSamples) {
for (int n = 0; n < numSamples; n++) {
buffer[n] = _apu->GetSample() * _maxvol / 255;
_current_sample++;
if (_current_sample == _samples_per_frame) {
_current_sample = 0;
sound_play();
}
}
return numSamples;
}
void Player_NES::stopAllSounds() {
for (int i = 0; i < NUMSLOTS; i++) {
_slot[i].framesleft = 0;
_slot[i].type = 0;
_slot[i].id = -1;
}
isSFXplaying = 0;
checkSilenceChannels(0);
}
void Player_NES::stopSound(int nr) {
if (nr == -1)
return;
for (int i = 0; i < NUMSLOTS; i++) {
if (_slot[i].id != nr)
continue;
isSFXplaying = 0;
_slot[i].framesleft = 0;
_slot[i].type = 0;
_slot[i].id = -1;
checkSilenceChannels(i);
}
}
void Player_NES::startSound(int nr) {
byte *data = _vm->getResourceAddress(rtSound, nr) + 2;
assert(data);
int soundType = data[1];
int chan = data[0];
if (chan == 4) {
if (_slot[2].framesleft)
return;
chan = 0;
}
if (soundType < _slot[chan].type)
return;
_slot[chan].type = soundType;
_slot[chan].id = nr;
_slot[chan].data = data;
_slot[chan].offset = 2;
_slot[chan].framesleft = 1;
checkSilenceChannels(chan);
if (chan == 2) {
numNotes = _slot[chan].data[2];
auxData1 = _slot[chan].data + 3;
auxData2 = auxData1 + numNotes;
_slot[chan].data = auxData2 + numNotes;
_slot[chan].offset = 0;
for (int i = 0; i < NUMCHANS; i++)
_mchan[i].cmdlock = 0;
}
}
void Player_NES::checkSilenceChannels(int chan) {
for (chan--; chan >= 0; chan--) {
if (_slot[chan].framesleft)
return;
}
APU_writeControl(0);
}
void Player_NES::sound_play() {
if (_slot[0].framesleft)
playSFX(0);
else if (_slot[1].framesleft)
playSFX(1);
playMusic();
}
void Player_NES::playSFX (int nr) {
if (--_slot[nr].framesleft)
return;
while (1) {
int a = _slot[nr].data[_slot[nr].offset++];
if (a < 16) {
a >>= 2;
APU_writeControl(APU_readStatus() | channelMask[a]);
isSFXplaying = true;
APU_writeChannel(a, 0, _slot[nr].data[_slot[nr].offset++]);
APU_writeChannel(a, 1, _slot[nr].data[_slot[nr].offset++]);
APU_writeChannel(a, 2, _slot[nr].data[_slot[nr].offset++]);
APU_writeChannel(a, 3, _slot[nr].data[_slot[nr].offset++]);
} else if (a == 0xFE) {
_slot[nr].offset = 2;
} else if (a == 0xFF) {
_slot[nr].id = -1;
_slot[nr].type = 0;
isSFXplaying = false;
APU_writeControl(0);
if (!nr && _slot[1].framesleft) {
_slot[1].framesleft = 1;
isSFXplaying = true;
}
return;
} else {
_slot[nr].framesleft = _slot[nr].data[_slot[nr].offset++];
return;
}
}
}
void Player_NES::playMusic() {
if (!_slot[2].framesleft)
return;
if (wasSFXplaying && !isSFXplaying)
for (int x = 1; x >= 0; x--)
if (_mchan[x].cmdlock) {
_mchan[x].command = _mchan[x].cmdlock;
_mchan[x].framedelay = 1;
}
wasSFXplaying = isSFXplaying;
if (!--_slot[2].framesleft) {
top:
int b = _slot[2].data[_slot[2].offset++];
if (b == 0xFF) {
_slot[2].id = -1;
_slot[2].type = 0;
b = 0;
} else if (b == 0xFE) {
_slot[2].offset = 0;
goto top;
} else {
if (b < numNotes) {
int inst = auxData1[b];
int ch = instChannel[inst];
_mchan[ch].pitch = auxData2[b];
_mchan[ch].cmdlock = startCmd[inst];
_mchan[ch].command = startCmd[inst];
_mchan[ch].framedelay = 1;
goto top;
}
b -= numNotes;
if (b < 16) {
int inst = b;
int ch = instChannel[inst];
_mchan[ch].cmdlock = 0;
_mchan[ch].command = releaseCmd[inst];
_mchan[ch].framedelay = 1;
goto top;
}
b -= 16;
}
_slot[2].framesleft = b;
}
for (int x = NUMCHANS - 1; x >= 0; x--) {
if (_slot[0].framesleft || _slot[1].framesleft) {
_mchan[x].volume = 0;
_mchan[x].framedelay = 0;
continue;
}
if (_mchan[x].framedelay && !--_mchan[x].framedelay) {
switch (_mchan[x].command) {
case 0x00:
case 0x13:
_mchan[x].voldelta = -10;
break;
case 0x01:
case 0x03:
case 0x08:
case 0x16:
_mchan[x].envflags = 0x30;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x02:
_mchan[x].envflags = 0xB0;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x84);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x04:
_mchan[x].envflags = 0x80;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x05:
_mchan[x].envflags = 0xF0;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = -15;
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x06:
_mchan[x].pitch += 0x18;
_mchan[x].envflags = 0x80;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x07:
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch - 0x0C] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch - 0x0C] >> 8);
chainCommand(x);
break;
case 0x09:
_mchan[x].voldelta = -2;
APU_writeChannel(x, 1, 0x7F);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x0A:
APU_writeChannel(x, 1, 0x86);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x0B: case 0x1A:
_mchan[x].envflags = 0x70;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x0C:
_mchan[x].envflags = 0xB0;
chainCommand(x);
break;
case 0x0D:
_mchan[x].envflags = 0x30;
_mchan[x].volume = 0x5F;
_mchan[x].voldelta = -22;
APU_writeChannel(x, 0, 0x00);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, _mchan[x].pitch & 0xF);
APU_writeChannel(x, 3, 0xFF);
chainCommand(x);
break;
case 0x0E:
case 0x10:
_mchan[x].envflags = 0x30;
_mchan[x].volume = 0x5F;
_mchan[x].voldelta = -6;
APU_writeChannel(x, 0, 0x00);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, _mchan[x].pitch & 0xF);
APU_writeChannel(x, 3, 0xFF);
chainCommand(x);
break;
case 0x0F:
chainCommand(x);
break;
case 0x11:
APU_writeChannel(x, 2, _mchan[x].pitch & 0xF);
APU_writeChannel(x, 3, 0xFF);
chainCommand(x);
break;
case 0x12:
APU_writeChannel(x, 2, (_mchan[x].pitch + 3) & 0xF);
APU_writeChannel(x, 3, 0xFF);
chainCommand(x);
break;
case 0x14:
_mchan[x].voldelta = -12;
APU_writeChannel(x, 1, 0x8C);
chainCommand(x);
break;
case 0x15:
_mchan[x].voldelta = -12;
APU_writeChannel(x, 1, 0x84);
chainCommand(x);
break;
case 0x17:
_mchan[x].pitch += 0x0C;
_mchan[x].envflags = 0x80;
_mchan[x].volume = 0x6F;
_mchan[x].voldelta = 0;
APU_writeChannel(x, 0, 0x00);
APU_writeChannel(x, 1, 0x7F);
APU_writeControl(APU_readStatus() | channelMask[x]);
APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF);
APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8);
chainCommand(x);
break;
case 0x18:
_mchan[x].envflags = 0x70;
chainCommand(x);
break;
case 0x19:
_mchan[x].envflags = 0xB0;
chainCommand(x);
break;
case 0x1B:
_mchan[x].envflags = 0x00;
_mchan[x].voldelta = -10;
break;
}
}
_mchan[x].volume += _mchan[x].voldelta;
if (_mchan[x].volume < 0)
_mchan[x].volume = 0;
if (_mchan[x].volume > MAXVOLUME)
_mchan[x].volume = MAXVOLUME;
APU_writeChannel(x, 0, (_mchan[x].volume >> 3) | _mchan[x].envflags);
}
}
void Player_NES::chainCommand(int c) {
int i = _mchan[c].command;
_mchan[c].command = nextCmd[i];
_mchan[c].framedelay = nextDelay[i];
}
int Player_NES::getSoundStatus(int nr) const {
for (int i = 0; i < NUMSLOTS; i++)
if (_slot[i].id == nr)
return 1;
return 0;
}
void Player_NES::APU_writeChannel(int chan, int offset, byte value) {
_apu->WriteReg(0x000 + 4 * chan + offset, value);
}
void Player_NES::APU_writeControl(byte value) {
_apu->WriteReg(0x015, value);
}
byte Player_NES::APU_readStatus() {
return _apu->Read4015();
}
} // End of namespace Scumm