scummvm/sound/mixer.cpp
2003-08-05 01:41:29 +00:00

1228 lines
32 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2003 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "mixer.h"
#include "common/engine.h" // for warning/error/debug
#include "common/file.h"
#include "common/util.h"
#define NEW_MIXER_CODE
#ifdef NEW_MIXER_CODE
#include "rate.h"
#endif
class Channel {
protected:
SoundMixer *_mixer;
PlayingSoundHandle *_handle;
#ifdef NEW_MIXER_CODE
RateConverter *_converter;
AudioInputStream *_input;
#endif
public:
int _id;
Channel(SoundMixer *mixer, PlayingSoundHandle *handle)
: _mixer(mixer), _handle(handle),
#ifdef NEW_MIXER_CODE
_converter(0), _input(0),
#endif
_id(-1) {
assert(mixer);
}
virtual ~Channel() {
#ifdef NEW_MIXER_CODE
delete _converter;
delete _input;
#endif
if (_handle)
*_handle = 0;
}
/* len indicates the number of sample *pairs*. So a value of
10 means that the buffer contains twice 10 sample, each
16 bits, for a total of 40 bytes.
*/
#ifdef NEW_MIXER_CODE
virtual void mix(int16 *data, uint len) {
assert(_input);
assert(_converter);
if (_input->eos()) {
// TODO: call drain method
destroy();
return;
}
const int volume = isMusicChannel() ? _mixer->getMusicVolume() : _mixer->getVolume();
_converter->flow(*_input, data, len, volume);
}
#else
virtual void mix(int16 *data, uint len) = 0;
#endif
void destroy() {
for (int i = 0; i != SoundMixer::NUM_CHANNELS; i++)
if (_mixer->_channels[i] == this)
_mixer->_channels[i] = 0;
delete this;
}
virtual bool isMusicChannel() const = 0;
};
class ChannelRaw : public Channel {
byte *_ptr;
byte _flags;
#ifndef NEW_MIXER_CODE
uint32 _pos;
uint32 _size;
uint32 _fpSpeed;
uint32 _fpPos;
uint32 _realSize, _rate;
byte *_loop_ptr;
uint32 _loop_size;
#endif
public:
ChannelRaw(SoundMixer *mixer, PlayingSoundHandle *handle, void *sound, uint32 size, uint rate, byte flags, int id, uint32 loopStart, uint32 loopEnd);
~ChannelRaw();
#ifndef NEW_MIXER_CODE
void mix(int16 *data, uint len);
#endif
bool isMusicChannel() const { return false; }
};
class ChannelStream : public Channel {
#ifndef NEW_MIXER_CODE
byte *_ptr;
byte *_endOfData;
byte *_endOfBuffer;
byte *_pos;
uint32 _fpSpeed;
uint32 _fpPos;
uint32 _bufferSize;
uint32 _rate;
byte _flags;
#endif
bool _finished;
public:
ChannelStream(SoundMixer *mixer, PlayingSoundHandle *handle, void *sound, uint32 size, uint rate, byte flags, uint32 buffer_size);
~ChannelStream();
void mix(int16 *data, uint len);
void append(void *sound, uint32 size);
bool isMusicChannel() const { return true; }
void finish() { _finished = true; }
};
#ifdef USE_MAD
#ifdef NEW_MIXER_CODE
class ChannelMP3 : public Channel {
public:
ChannelMP3(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, uint size);
bool isMusicChannel() const { return false; }
};
class ChannelMP3CDMusic : public Channel {
public:
ChannelMP3CDMusic(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, mad_timer_t duration);
bool isMusicChannel() const { return true; }
};
#else // NEW_MIXER_CODE
class ChannelMP3Common : public Channel {
protected:
byte *_ptr;
struct mad_stream _stream;
struct mad_frame _frame;
struct mad_synth _synth;
uint32 _posInFrame;
uint32 _size;
bool _initialized;
public:
ChannelMP3Common(SoundMixer *mixer, PlayingSoundHandle *handle);
~ChannelMP3Common();
};
class ChannelMP3 : public ChannelMP3Common {
uint32 _position;
public:
ChannelMP3(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, uint size);
void mix(int16 *data, uint len);
bool isMusicChannel() const { return false; }
};
class ChannelMP3CDMusic : public ChannelMP3Common {
uint32 _bufferSize;
mad_timer_t _duration;
File *_file;
public:
ChannelMP3CDMusic(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, mad_timer_t duration);
void mix(int16 *data, uint len);
bool isMusicChannel() const { return true; }
};
#endif // NEW_MIXER_CODE
#endif // USE_MAD
#ifdef USE_VORBIS
class ChannelVorbis : public Channel {
#ifndef NEW_MIXER_CODE
OggVorbis_File *_ov_file;
int _end_pos;
#endif
bool _is_cd_track;
public:
ChannelVorbis(SoundMixer *mixer, PlayingSoundHandle *handle, OggVorbis_File *ov_file, int duration, bool is_cd_track);
#ifndef NEW_MIXER_CODE
void mix(int16 *data, uint len);
#endif
bool isMusicChannel() const { return _is_cd_track; }
};
#endif
SoundMixer::SoundMixer() {
_syst = 0;
_mutex = 0;
_premixParam = 0;
_premixProc = 0;
int i = 0;
_outputRate = 0;
_globalVolume = 0;
_musicVolume = 0;
_paused = false;
for (i = 0; i != NUM_CHANNELS; i++)
_channels[i] = NULL;
}
SoundMixer::~SoundMixer() {
_syst->clear_sound_proc();
for (int i = 0; i != NUM_CHANNELS; i++) {
delete _channels[i];
}
_syst->delete_mutex(_mutex);
}
int SoundMixer::newStream(void *sound, uint32 size, uint rate, byte flags, uint32 buffer_size) {
StackLock lock(_mutex);
return insertChannel(NULL, new ChannelStream(this, 0, sound, size, rate, flags, buffer_size));
}
void SoundMixer::appendStream(int index, void *sound, uint32 size) {
StackLock lock(_mutex);
ChannelStream *chan;
#if !defined(_WIN32_WCE) && !defined(__PALM_OS__)
chan = dynamic_cast<ChannelStream *>(_channels[index]);
#else
chan = (ChannelStream*)_channels[index];
#endif
if (!chan) {
error("Trying to append to a nonexistant stream %d", index);
} else {
chan->append(sound, size);
}
}
void SoundMixer::endStream(int index) {
StackLock lock(_mutex);
ChannelStream *chan;
#if !defined(_WIN32_WCE) && !defined(__PALM_OS__)
chan = dynamic_cast<ChannelStream *>(_channels[index]);
#else
chan = (ChannelStream*)_channels[index];
#endif
if (!chan) {
error("Trying to end a nonexistant streamer : %d", index);
} else {
chan->finish();
}
}
int SoundMixer::insertChannel(PlayingSoundHandle *handle, Channel *chan) {
int index = -1;
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] == NULL) {
index = i;
break;
}
}
if(index == -1) {
warning("SoundMixer::out of mixer slots");
delete chan;
return -1;
}
_channels[index] = chan;
if (handle)
*handle = index + 1;
return index;
}
int SoundMixer::playRaw(PlayingSoundHandle *handle, void *sound, uint32 size, uint rate, byte flags, int id, uint32 loopStart, uint32 loopEnd) {
StackLock lock(_mutex);
// Prevent duplicate sounds
if (id != -1) {
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i] != NULL && _channels[i]->_id == id)
return -1;
}
return insertChannel(handle, new ChannelRaw(this, handle, sound, size, rate, flags, id, loopStart, loopEnd));
}
#ifdef USE_MAD
int SoundMixer::playMP3(PlayingSoundHandle *handle, File *file, uint32 size) {
StackLock lock(_mutex);
return insertChannel(handle, new ChannelMP3(this, handle, file, size));
}
int SoundMixer::playMP3CDTrack(PlayingSoundHandle *handle, File *file, mad_timer_t duration) {
StackLock lock(_mutex);
return insertChannel(handle, new ChannelMP3CDMusic(this, handle, file, duration));
}
#endif
#ifdef USE_VORBIS
int SoundMixer::playVorbis(PlayingSoundHandle *handle, OggVorbis_File *ov_file, int duration, bool is_cd_track) {
StackLock lock(_mutex);
return insertChannel(handle, new ChannelVorbis(this, handle, ov_file, duration, is_cd_track));
}
#endif
void SoundMixer::mix(int16 *buf, uint len) {
StackLock lock(_mutex);
if (_premixProc && !_paused) {
int i;
_premixProc(_premixParam, buf, len);
for (i = (len - 1); i >= 0; i--) {
buf[2 * i] = buf[2 * i + 1] = buf[i];
}
} else {
// zero the buf out
memset(buf, 0, 2 * len * sizeof(int16));
}
if (!_paused) {
// now mix all channels
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i])
_channels[i]->mix(buf, len);
}
}
void SoundMixer::mixCallback(void *s, byte *samples, int len) {
assert(s);
assert(samples);
// Len is the number of bytes in the buffer; we divide it by
// four to get the number of samples (stereo 16 bit).
((SoundMixer *)s)->mix((int16 *)samples, len >> 2);
}
bool SoundMixer::bindToSystem(OSystem *syst) {
uint rate = (uint) syst->property(OSystem::PROP_GET_SAMPLE_RATE, 0);
_outputRate = rate;
_syst = syst;
_mutex = _syst->create_mutex();
if (rate == 0)
error("OSystem returned invalid sample rate");
return syst->set_sound_proc(mixCallback, this, OSystem::SOUND_16BIT);
}
void SoundMixer::stopAll() {
StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i])
_channels[i]->destroy();
}
void SoundMixer::stop(int index) {
if ((index < 0) || (index >= NUM_CHANNELS)) {
warning("soundMixer::stop has invalid index %d", index);
return;
}
StackLock lock(_mutex);
if (_channels[index])
_channels[index]->destroy();
}
void SoundMixer::stopID(int id) {
StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] != NULL && _channels[i]->_id == id) {
_channels[i]->destroy();
return;
}
}
}
void SoundMixer::stopHandle(PlayingSoundHandle handle) {
StackLock lock(_mutex);
// Simply ignore stop requests for handles of sounds that already terminated
if (handle == 0)
return;
int index = handle - 1;
if ((index < 0) || (index >= NUM_CHANNELS)) {
warning("soundMixer::stopHandle has invalid index %d", index);
return;
}
if (_channels[index])
_channels[index]->destroy();
}
void SoundMixer::pause(bool paused) {
_paused = paused;
}
bool SoundMixer::hasActiveSFXChannel() {
// FIXME/TODO: We need to distinguish between SFX and music channels
// (and maybe also voice) here to work properly in iMuseDigital
// games. In the past that was achieve using the _beginSlots hack.
// Since we don't have that anymore, it's not that simple anymore.
StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i] && !_channels[i]->isMusicChannel())
return true;
return false;
}
void SoundMixer::setupPremix(void *param, PremixProc *proc) {
StackLock lock(_mutex);
_premixParam = param;
_premixProc = proc;
}
void SoundMixer::setVolume(int volume) {
// Check range
if (volume > 256)
volume = 256;
else if (volume < 0)
volume = 0;
_globalVolume = volume;
}
void SoundMixer::setMusicVolume(int volume) {
// Check range
if (volume > 256)
volume = 256;
else if (volume < 0)
volume = 0;
_musicVolume = volume;
}
#ifdef NEW_MIXER_CODE
#define clamped_add_16(a, b) clampedAdd(a, b)
#else
/*
* Class that performs cubic interpolation on integer data.
* It is expected that the data is equidistant, i.e. all have the same
* horizontal distance. This is obviously the case for sampled audio.
*/
class CubicInterpolator {
protected:
int x0, x1, x2, x3;
int a, b, c, d;
public:
CubicInterpolator(int8 a0, int8 b0, int8 c0) : x0(2 * a0 - b0), x1(a0), x2(b0), x3(c0) {
// We use a simple linear interpolation for x0
updateCoefficients();
}
inline void feedData() {
x0 = x1;
x1 = x2;
x2 = x3;
x3 = 2 * x2 - x1; // Simple linear interpolation
updateCoefficients();
}
inline void feedData(int8 xNew) {
x0 = x1;
x1 = x2;
x2 = x3;
x3 = xNew;
updateCoefficients();
}
/* t must be a 16.16 fixed point number between 0 and 1 */
inline int interpolate(uint32 fpPos) {
int result = 0;
int t = fpPos >> 8;
result = (a * t + b) >> 8;
result = (result * t + c) >> 8;
result = (result * t + d) >> 8;
result = (result / 3 + 1) >> 1;
return result;
}
protected:
inline void updateCoefficients() {
a = ((-x0 * 2) + (x1 * 5) - (x2 * 4) + x3);
b = ((x0 + x2 - (2 * x1)) * 6) << 8;
c = ((-4 * x0) + x1 + (x2 * 4) - x3) << 8;
d = (x1 * 6) << 8;
}
};
static inline void clamped_add_16(int16& a, int b) {
int val = a + b;
if (val > 32767)
a = 32767;
else if (val < -32768)
a = -32768;
else
a = val;
}
static void mix_signed_mono_8(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
int inc = 1, result;
CubicInterpolator interp(*s, *(s + 1), *(s + 2));
do {
do {
result = interp.interpolate(fp_pos) * volume;
clamped_add_16(*data++, result);
clamped_add_16(*data++, result);
fp_pos += fp_speed;
inc = fp_pos >> 16;
s += inc;
len--;
fp_pos &= 0x0000FFFF;
} while (!inc && len && (s < s_end));
if (s + 2 < s_end)
interp.feedData(*(s + 2));
else
interp.feedData();
} while (len && (s < s_end));
}
static void mix_unsigned_mono_8(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
int inc = 1, result;
CubicInterpolator interp(*s ^ 0x80, *(s + 1) ^ 0x80, *(s + 2) ^ 0x80);
do {
do {
result = interp.interpolate(fp_pos) * volume;
clamped_add_16(*data++, result);
clamped_add_16(*data++, result);
fp_pos += fp_speed;
inc = fp_pos >> 16;
s += inc;
len--;
fp_pos &= 0x0000FFFF;
} while (!inc && len && (s < s_end));
if (s + 2 < s_end)
interp.feedData(*(s + 2) ^ 0x80);
else
interp.feedData();
} while (len && (s < s_end));
}
static void mix_signed_stereo_8(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
warning("Mixing stereo signed 8 bit is not supported yet ");
}
static void mix_unsigned_stereo_8(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
int inc = 1;
CubicInterpolator left(*s ^ 0x80, *(s + 2) ^ 0x80, *(s + 4) ^ 0x80);
CubicInterpolator right(*(s + 1) ^ 0x80, *(s + 3) ^ 0x80, *(s + 5) ^ 0x80);
do {
do {
if (!reverse_stereo) {
clamped_add_16(*data++, left.interpolate(fp_pos) * volume);
clamped_add_16(*data++, right.interpolate(fp_pos) * volume);
} else {
clamped_add_16(*data++, right.interpolate(fp_pos) * volume);
clamped_add_16(*data++, left.interpolate(fp_pos) * volume);
}
fp_pos += fp_speed;
inc = (fp_pos >> 16) << 1;
s += inc;
len--;
fp_pos &= 0x0000FFFF;
} while (!inc && len && (s < s_end));
if (s + 5 < s_end) {
left.feedData(*(s + 4) ^ 0x80);
right.feedData(*(s + 5) ^ 0x80);
} else {
left.feedData();
right.feedData();
}
} while (len && (s < s_end));
}
static void mix_signed_mono_16(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
do {
int16 sample = ((int16)READ_BE_UINT16(s) * volume) / 256;
fp_pos += fp_speed;
clamped_add_16(*data++, sample);
clamped_add_16(*data++, sample);
s += (fp_pos >> 16) << 1;
fp_pos &= 0x0000FFFF;
} while ((--len) && (s < s_end));
}
static void mix_unsigned_mono_16(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
warning("Mixing mono unsigned 16 bit is not supported yet ");
}
static void mix_signed_stereo_16(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
do {
int16 leftS = ((int16)READ_BE_UINT16(s) * volume) / 256;
int16 rightS = ((int16)READ_BE_UINT16(s+2) * volume) / 256;
fp_pos += fp_speed;
if (!reverse_stereo) {
clamped_add_16(*data++, leftS);
clamped_add_16(*data++, rightS);
} else {
clamped_add_16(*data++, rightS);
clamped_add_16(*data++, leftS);
}
s += (fp_pos >> 16) << 2;
fp_pos &= 0x0000FFFF;
} while ((--len) && (s < s_end));
}
static void mix_unsigned_stereo_16(int16 *data, uint &len, byte *&s, uint32 &fp_pos,
int fp_speed, int volume, byte *s_end, bool reverse_stereo) {
warning("Mixing stereo unsigned 16 bit is not supported yet ");
}
typedef void MixProc(int16 *data, uint &len, byte *&s,
uint32 &fp_pos, int fp_speed, int volume,
byte *s_end, bool reverse_stereo);
static MixProc *mixer_helper_table[8] = {
mix_signed_mono_8, mix_unsigned_mono_8,
mix_signed_stereo_8, mix_unsigned_stereo_8,
mix_signed_mono_16, mix_unsigned_mono_16,
mix_signed_stereo_16, mix_unsigned_stereo_16
};
static int16 mixer_element_size[] = {
1, 1,
2, 2,
2, 2,
4, 4
};
#endif
/* RAW mixer */
ChannelRaw::ChannelRaw(SoundMixer *mixer, PlayingSoundHandle *handle, void *sound, uint32 size, uint rate, byte flags, int id, uint32 loopStart, uint32 loopEnd)
: Channel(mixer, handle) {
_id = id;
_ptr = (byte *)sound;
_flags = flags;
#ifdef NEW_MIXER_CODE
// Create the input stream
if (flags & SoundMixer::FLAG_LOOP) {
if (loopEnd == 0) {
_input = makeLinearInputStream(flags, _ptr, size, 0, size);
} else {
assert(loopStart < loopEnd && loopEnd <= size);
_input = makeLinearInputStream(flags, _ptr, size, loopStart, loopEnd - loopStart);
}
} else {
_input = makeLinearInputStream(flags, _ptr, size, 0, 0);
}
// TODO: add support for SoundMixer::FLAG_REVERSE_STEREO
// Get a rate converter instance
_converter = makeRateConverter(rate, mixer->getOutputRate(), _input->isStereo(), (flags & SoundMixer::FLAG_REVERSE_STEREO) != 0);
// printf("inrate %d, outrate %d, %d bits, %s\n",
// rate, mixer->getOutputRate(),
// ((flags & SoundMixer::FLAG_16BITS) ? 16 : 8),
// ((flags & SoundMixer::FLAG_UNSIGNED) ? "unsigned" : "signed"));
#else
_pos = 0;
_fpPos = 0;
_fpSpeed = (1 << 16) * rate / mixer->getOutputRate();
_realSize = size;
// adjust the magnitude to prevent division error
while (size & 0xFFFF0000)
size >>= 1, rate = (rate >> 1) + 1;
_rate = rate;
_size = size * mixer->getOutputRate() / rate;
if (_flags & SoundMixer::FLAG_16BITS)
_size = _size >> 1;
if (_flags & SoundMixer::FLAG_STEREO)
_size = _size >> 1;
if (flags & SoundMixer::FLAG_LOOP) {
_loop_ptr = _ptr;
_loop_size = _size;
}
#endif
}
ChannelRaw::~ChannelRaw() {
if (_flags & SoundMixer::FLAG_AUTOFREE)
free(_ptr);
}
#ifndef NEW_MIXER_CODE
void ChannelRaw::mix(int16 *data, uint len) {
byte *s, *end;
if (len > _size)
len = _size;
_size -= len;
s = _ptr + _pos;
end = _ptr + _realSize;
mixer_helper_table[_flags & 0x07] (data, len, s, _fpPos, _fpSpeed, _mixer->getVolume(), end, (_flags & SoundMixer::FLAG_REVERSE_STEREO) ? true : false);
_pos = s - _ptr;
if (_size <= 0) {
if (_flags & SoundMixer::FLAG_LOOP) {
_ptr = _loop_ptr;
_size = _loop_size;
_pos = 0;
_fpPos = 0;
} else {
destroy();
}
}
}
#endif
#define WARP_WORKAROUND 50000
ChannelStream::ChannelStream(SoundMixer *mixer, PlayingSoundHandle *handle, void *sound, uint32 size, uint rate,
byte flags, uint32 buffer_size)
: Channel(mixer, handle) {
assert(size <= buffer_size);
#ifdef NEW_MIXER_CODE
// Create the input stream
_input = makeWrappedInputStream(flags, buffer_size);
((WrappedAudioInputStream *)_input)->append((const byte *)sound, size);
// TODO: add support for SoundMixer::FLAG_REVERSE_STEREO
// Get a rate converter instance
_converter = makeRateConverter(rate, mixer->getOutputRate(), _input->isStereo(), (flags & SoundMixer::FLAG_REVERSE_STEREO) != 0);
// printf(" data has %d bits and is %s\n",
// ((flags & SoundMixer::FLAG_16BITS) ? 16 : 8),
// ((flags & SoundMixer::FLAG_UNSIGNED) ? "unsigned" : "signed"));
#else
_flags = flags;
_bufferSize = buffer_size;
_ptr = (byte *)malloc(_bufferSize + WARP_WORKAROUND);
memcpy(_ptr, sound, size);
_endOfData = _ptr + size;
_endOfBuffer = _ptr + _bufferSize;
_pos = _ptr;
_fpPos = 0;
_fpSpeed = (1 << 16) * rate / mixer->getOutputRate();
// adjust the magnitude to prevent division error
while (size & 0xFFFF0000)
size >>= 1, rate = (rate >> 1) + 1;
_rate = rate;
#endif
_finished = false;
}
ChannelStream::~ChannelStream() {
#ifndef NEW_MIXER_CODE
free(_ptr);
#endif
}
void ChannelStream::append(void *data, uint32 len) {
#ifdef NEW_MIXER_CODE
((WrappedAudioInputStream *)_input)->append((const byte *)data, len);
#else
if (_endOfData + len > _endOfBuffer) {
/* Wrap-around case */
uint32 size_to_end_of_buffer = _endOfBuffer - _endOfData;
uint32 new_size = len - size_to_end_of_buffer;
if ((_endOfData < _pos) || (_ptr + new_size >= _pos)) {
debug(2, "Mixer full... Trying to not break too much (A)");
return;
}
memcpy(_endOfData, (byte*)data, size_to_end_of_buffer);
memcpy(_ptr, (byte *)data + size_to_end_of_buffer, new_size);
_endOfData = _ptr + new_size;
} else {
if ((_endOfData < _pos) && (_endOfData + len >= _pos)) {
debug(2, "Mixer full... Trying to not break too much (B)");
return;
}
memcpy(_endOfData, data, len);
_endOfData += len;
}
#endif
}
void ChannelStream::mix(int16 *data, uint len) {
#ifdef NEW_MIXER_CODE
assert(_input);
assert(_converter);
if (_input->eos()) {
// TODO: call drain method
// Normally, the stream stays around even if all its data is used up.
// This is in case more data is streamed into it. To make the stream
// go away, one can either stop() it (which takes effect immediately,
// ignoring any remaining sound data), or finish() it, which means
// it will finish playing before it terminates itself.
if (_finished) {
destroy();
}
return;
}
const int volume = _mixer->getVolume(); // FIXME: Shouldn't this be music volume instead??
// const int volume = isMusicChannel() ? _mixer->getMusicVolume() : _mixer->getVolume();
_converter->flow(*_input, data, len, volume);
#else
if (_pos == _endOfData) {
// Normally, the stream stays around even if all its data is used up.
// This is in case more data is streamed into it. To make the stream
// go away, one can either stop() it (which takes effect immediately,
// ignoring any remaining sound data), or finish() it, which means
// it will finish playing before it terminates itself.
if (_finished) {
destroy();
} else {
// Since the buffer is empty now, reset the position to the start
_pos = _endOfData = _ptr;
_fpPos = 0;
}
return;
}
MixProc *mixProc = mixer_helper_table[_flags & 0x07];
if (_pos < _endOfData) {
mixProc(data, len, _pos, _fpPos, _fpSpeed, _mixer->getVolume(), _endOfData, (_flags & SoundMixer::FLAG_REVERSE_STEREO) ? true : false);
} else {
int wrapOffset = 0;
const uint32 outLen = mixer_element_size[_flags & 0x07] * len;
// see if we will wrap
if (_pos + outLen > _endOfBuffer) {
wrapOffset = _pos + outLen - _endOfBuffer;
debug(2, "using wrap workaround for %d bytes", wrapOffset);
assert(wrapOffset <= WARP_WORKAROUND);
memcpy(_endOfBuffer, _ptr, wrapOffset);
}
mixProc(data, len, _pos, _fpPos, _fpSpeed, _mixer->getVolume(), _endOfBuffer + wrapOffset, (_flags & SoundMixer::FLAG_REVERSE_STEREO) ? true : false);
// recover from wrap
if (wrapOffset)
_pos = _ptr + wrapOffset;
// shouldn't happen anymore
if (len != 0) {
//FIXME: what is wrong ?
warning("bad play sound in stream (wrap around)");
_pos = _ptr;
mixProc(data, len, _pos, _fpPos, _fpSpeed, _mixer->getVolume(), _endOfData, (_flags & SoundMixer::FLAG_REVERSE_STEREO) ? true : false);
}
}
#endif
}
#ifdef USE_MAD
#ifdef NEW_MIXER_CODE
ChannelMP3::ChannelMP3(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, uint size)
: Channel(mixer, handle) {
// Create the input stream
_input = makeMP3Stream(file, mad_timer_zero, size);
// Get a rate converter instance
_converter = makeRateConverter(_input->getRate(), mixer->getOutputRate(), _input->isStereo());
}
ChannelMP3CDMusic::ChannelMP3CDMusic(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, mad_timer_t duration)
: Channel(mixer, handle) {
// Create the input stream
_input = makeMP3Stream(file, duration, 0);
// Get a rate converter instance
_converter = makeRateConverter(_input->getRate(), mixer->getOutputRate(), _input->isStereo());
}
#else // NEW_MIXER_CODE
ChannelMP3Common::ChannelMP3Common(SoundMixer *mixer, PlayingSoundHandle *handle)
: Channel(mixer, handle) {
mad_stream_init(&_stream);
#ifdef _WIN32_WCE
// Lower sample rate to 11 kHz on WinCE if necessary
if (_syst->property(OSystem::PROP_GET_SAMPLE_RATE, 0) != 22050)
mad_stream_options(&_stream, MAD_OPTION_HALFSAMPLERATE);
#endif
mad_frame_init(&_frame);
mad_synth_init(&_synth);
_initialized = false;
}
ChannelMP3Common::~ChannelMP3Common() {
free(_ptr);
mad_synth_finish(&_synth);
mad_frame_finish(&_frame);
mad_stream_finish(&_stream);
}
static inline int scale_sample(mad_fixed_t sample) {
/* round */
sample += (1L << (MAD_F_FRACBITS - 16));
/* clip */
if (sample > MAD_F_ONE - 1)
sample = MAD_F_ONE - 1;
else if (sample < -MAD_F_ONE)
sample = -MAD_F_ONE;
/* quantize and scale to not saturate when mixing a lot of channels */
return sample >> (MAD_F_FRACBITS + 1 - 16);
}
ChannelMP3::ChannelMP3(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, uint size)
: ChannelMP3Common(mixer, handle) {
_posInFrame = 0xFFFFFFFF;
_position = 0;
_ptr = (byte *)malloc(size + MAD_BUFFER_GUARD);
_size = file->read(_ptr, size);
}
void ChannelMP3::mix(int16 *data, uint len) {
const int volume = _mixer->getVolume();
// Exit if all data is used up (this also covers the case were reading from the file failed).
if (_position >= _size) {
destroy();
return;
}
while (1) {
int16 sample;
while ((_posInFrame < _synth.pcm.length) && (len > 0)) {
sample = (int16)((scale_sample(_synth.pcm.samples[0][_posInFrame]) * volume) / 256);
clamped_add_16(*data++, sample);
if (_synth.pcm.channels > 1)
sample = (int16)((scale_sample(_synth.pcm.samples[1][_posInFrame]) * volume) / 256);
clamped_add_16(*data++, sample);
len--;
_posInFrame++;
}
if (len == 0)
return;
if (_position >= _size) {
destroy();
return;
}
mad_stream_buffer(&_stream, _ptr + _position,
_size + MAD_BUFFER_GUARD - _position);
if (mad_frame_decode(&_frame, &_stream) == -1) {
/* End of audio... */
if (_stream.error == MAD_ERROR_BUFLEN) {
destroy();
return;
} else if (!MAD_RECOVERABLE(_stream.error)) {
error("MAD frame decode error !");
}
}
mad_synth_frame(&_synth, &_frame);
_posInFrame = 0;
_position = _stream.next_frame - _ptr;
}
}
#define MP3CD_BUFFERING_SIZE 131072
ChannelMP3CDMusic::ChannelMP3CDMusic(SoundMixer *mixer, PlayingSoundHandle *handle, File *file, mad_timer_t duration)
: ChannelMP3Common(mixer, handle) {
_file = file;
_duration = duration;
_bufferSize = MP3CD_BUFFERING_SIZE;
_ptr = (byte *)malloc(MP3CD_BUFFERING_SIZE);
}
void ChannelMP3CDMusic::mix(int16 *data, uint len) {
mad_timer_t frame_duration;
const int volume = _mixer->getMusicVolume();
if (!_initialized) {
// just skipped
memset(_ptr, 0, _bufferSize);
_size = _file->read(_ptr, _bufferSize);
if (_size <= 0) {
debug(1, "Failed to read MP3 data during channel initialisation !");
destroy();
return;
}
// Resync
mad_stream_buffer(&_stream, _ptr, _size);
// Skip the first two frames (see ChannelMP3::ChannelMP3 for an explanation)
int skip_loop = 2;
while (skip_loop != 0) {
if (mad_frame_decode(&_frame, &_stream) == 0) {
/* Do not decrease duration - see if it's a problem */
skip_loop--;
} else {
if (!MAD_RECOVERABLE(_stream.error)) {
debug(1, "Unrecoverable error while skipping !");
destroy();
return;
}
}
}
// FIXME: Fingolfin asks: why is this call to mad_synth_frame
// necessary? Or rather, *is* it actually necessary?
mad_synth_frame(&_synth, &_frame);
// We are supposed to be in synch
mad_frame_mute(&_frame);
mad_synth_mute(&_synth);
// Resume decoding
if (mad_frame_decode(&_frame, &_stream) == 0) {
_posInFrame = 0;
_initialized = true;
} else {
debug(1, "Cannot resume decoding");
destroy();
return;
}
}
while (1) {
// TODO: Check _synth.pcm.samplerate and perform rate conversion of appropriate
// TODO: Check _synth.pcm.channels to support stereo
// Get samples, play samples ...
int16 sample;
while ((_posInFrame < _synth.pcm.length) && (len > 0)) {
sample = (int16)((scale_sample(_synth.pcm.samples[0][_posInFrame]) * volume) / 256);
clamped_add_16(*data++, sample);
if (_synth.pcm.channels > 1)
sample = (int16)((scale_sample(_synth.pcm.samples[1][_posInFrame]) * volume) / 256);
clamped_add_16(*data++, sample);
len--;
_posInFrame++;
}
if (len == 0)
return;
// See if we have finished
// May be incorrect to check the size at the end of a frame but I suppose
// they are short enough :)
frame_duration = _frame.header.duration;
mad_timer_negate(&frame_duration);
mad_timer_add(&_duration, frame_duration);
if (mad_timer_compare(_duration, mad_timer_zero) <= 0) {
destroy();
return;
}
if (mad_frame_decode(&_frame, &_stream) == -1) {
if (_stream.error == MAD_ERROR_BUFLEN) {
int not_decoded;
if (!_stream.next_frame) {
not_decoded = 0;
memset(_ptr, 0, _bufferSize + MAD_BUFFER_GUARD);
} else {
not_decoded = _stream.bufend - _stream.next_frame;
memcpy(_ptr, _stream.next_frame, not_decoded);
}
_size = _file->read(_ptr + not_decoded, _bufferSize - not_decoded);
if (_size <= 0) {
return;
}
_stream.error = (enum mad_error)0;
// Restream
mad_stream_buffer(&_stream, _ptr, _size + not_decoded);
if (mad_frame_decode(&_frame, &_stream) == -1) {
debug(1, "Error %d decoding after restream !", _stream.error);
}
} else if (!MAD_RECOVERABLE(_stream.error)) {
error("MAD frame decode error in MP3 CDMUSIC !");
}
}
mad_synth_frame(&_synth, &_frame);
_posInFrame = 0;
}
}
#endif // NEW_MIXER_CODE
#endif // USE_MAD
#ifdef USE_VORBIS
#ifdef NEW_MIXER_CODE
ChannelVorbis::ChannelVorbis(SoundMixer *mixer, PlayingSoundHandle *handle, OggVorbis_File *ov_file, int duration, bool is_cd_track)
: Channel(mixer, handle) {
// Create the input stream
_input = makeVorbisStream(ov_file, duration);
// Get a rate converter instance
_converter = makeRateConverter(_input->getRate(), mixer->getOutputRate(), _input->isStereo());
_is_cd_track = is_cd_track;
}
#else // NEW_MIXER_CODE
ChannelVorbis::ChannelVorbis(SoundMixer *mixer, PlayingSoundHandle *handle, OggVorbis_File *ov_file, int duration, bool is_cd_track)
: Channel(mixer, handle) {
_ov_file = ov_file;
if (duration)
_end_pos = ov_pcm_tell(ov_file) + duration;
else
_end_pos = 0;
_is_cd_track = is_cd_track;
}
void ChannelVorbis::mix(int16 *data, uint len) {
if (_end_pos > 0 && ov_pcm_tell(_ov_file) >= _end_pos) {
destroy();
return;
}
int channels = ov_info(_ov_file, -1)->channels;
uint len_left = len * channels * 2;
int16 *samples = new int16[len_left / 2];
char *read_pos = (char *) samples;
bool eof_flag = false;
const int volume = isMusicChannel() ? _mixer->getMusicVolume() : _mixer->getVolume();
// Read the samples
while (len_left > 0) {
long result = ov_read(_ov_file, read_pos, len_left,
#ifndef VORBIS_TREMOR
#ifdef SCUMM_BIG_ENDIAN
1,
#else
0,
#endif
2, 1,
#endif
NULL);
if (result == 0) {
eof_flag = true;
memset(read_pos, 0, len_left);
break;
} else if (result == OV_HOLE) {
// Possibly recoverable, just warn about it
warning("Corrupted data in Vorbis file");
} else if (result < 0) {
debug(1, "Decode error %d in Vorbis file", result);
eof_flag = true;
memset(read_pos, 0, len_left);
break;
} else {
len_left -= result;
read_pos += result;
}
}
// Mix the samples in
for (uint i = 0; i < len; i++) {
int16 sample = (int16)(samples[i * channels] * volume / 256);
clamped_add_16(*data++, sample);
if (channels > 1)
sample = (int16)(samples[i * channels + 1] * volume / 256);
clamped_add_16(*data++, sample);
}
delete [] samples;
if (eof_flag)
destroy();
}
#endif // NEW_MIXER_CODE
#endif // USE_VORBIS