scummvm/engines/zvision/render_table.cpp

241 lines
7.8 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "graphics/colormasks.h"
#include "zvision/render_table.h"
#include "zvision/vector2.h"
namespace ZVision {
RenderTable::RenderTable(uint numColumns, uint numRows)
: _numRows(numRows),
_numColumns(numColumns),
_renderState(FLAT) {
assert(numRows != 0 && numColumns != 0);
_internalBuffer = new Vector2[numRows * numColumns];
}
RenderTable::~RenderTable() {
delete[] _internalBuffer;
}
void RenderTable::setRenderState(RenderState newState) {
_renderState = newState;
switch (newState) {
case PANORAMA:
_panoramaOptions.fieldOfView = 27.0f;
_panoramaOptions.linearScale = 0.55f;
_panoramaOptions.reverse = false;
break;
case TILT:
break;
case FLAT:
// Intentionally left empty
break;
}
}
const Common::Point RenderTable::convertWarpedCoordToFlatCoord(const Common::Point &point) {
// If we're outside the range of the RenderTable, no warping is happening. Return the maximum image coords
if (point.x >= _numColumns || point.y >= _numRows) {
int16 x = CLIP<int16>(point.x, 0, _numColumns);
int16 y = CLIP<int16>(point.y, 0, _numRows);
return Common::Point(x, y);
}
uint32 index = point.y * _numColumns + point.x;
Common::Point newPoint(point);
newPoint.x += _internalBuffer[index].x;
newPoint.y += _internalBuffer[index].y;
return newPoint;
}
uint16 mixTwoRGB(uint16 colorOne, uint16 colorTwo, float percentColorOne) {
assert(percentColorOne < 1.0f);
float rOne = float((colorOne & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
float rTwo = float((colorTwo & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
float gOne = float((colorOne & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
float gTwo = float((colorTwo & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
float bOne = float((colorOne & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
float bTwo = float((colorTwo & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
float rFinal = rOne * percentColorOne + rTwo * (1.0f - percentColorOne);
float gFinal = gOne * percentColorOne + gTwo * (1.0f - percentColorOne);
float bFinal = bOne * percentColorOne + bTwo * (1.0f - percentColorOne);
uint16 returnColor = (byte(rFinal + 0.5f) << Graphics::ColorMasks<555>::kRedShift) |
(byte(gFinal + 0.5f) << Graphics::ColorMasks<555>::kGreenShift) |
(byte(bFinal + 0.5f) << Graphics::ColorMasks<555>::kBlueShift);
return returnColor;
}
void RenderTable::mutateImage(uint16 *sourceBuffer, uint16* destBuffer, int16 imageWidth, int16 imageHeight, int16 destinationX, int16 destinationY, const Common::Rect &subRect, bool wrap, bool isTransposed) {
for (int16 y = subRect.top; y < subRect.bottom; y++) {
int16 normalizedY = y - subRect.top;
int32 internalColumnIndex = (normalizedY + destinationY) * _numColumns;
int32 destColumnIndex = normalizedY * _numColumns;
for (int16 x = subRect.left; x < subRect.right; x++) {
int16 normalizedX = x - subRect.left;
int32 index = internalColumnIndex + normalizedX + destinationX;
// RenderTable only stores offsets from the original coordinates
int16 sourceYIndex = y + _internalBuffer[index].y;
int16 sourceXIndex = x + _internalBuffer[index].x;
if (wrap) {
while (sourceXIndex >= imageWidth) {
sourceXIndex -= imageWidth;
}
while (sourceXIndex < 0) {
sourceXIndex += imageWidth;
}
while (sourceYIndex >= imageHeight) {
sourceYIndex -= imageHeight;
}
while (sourceYIndex < 0) {
sourceYIndex += imageHeight;
}
} else {
// Clamp the yIndex to the size of the image
sourceYIndex = CLIP<int16>(sourceYIndex, 0, imageHeight - 1);
// Clamp the xIndex to the size of the image
sourceXIndex = CLIP<int16>(sourceXIndex, 0, imageWidth - 1);
}
if (isTransposed) {
destBuffer[destColumnIndex + normalizedX] = sourceBuffer[sourceXIndex * imageHeight + sourceYIndex];
} else {
destBuffer[destColumnIndex + normalizedX] = sourceBuffer[sourceYIndex * imageWidth + sourceXIndex];
}
}
}
}
void RenderTable::generateRenderTable() {
switch (_renderState) {
case ZVision::RenderTable::PANORAMA:
generatePanoramaLookupTable();
break;
case ZVision::RenderTable::TILT:
generateTiltLookupTable();
break;
case ZVision::RenderTable::FLAT:
// Intentionally left empty
break;
}
}
void RenderTable::generatePanoramaLookupTable() {
memset(_internalBuffer, 0, _numRows * _numColumns * sizeof(uint16));
float halfWidth = (float)_numColumns / 2.0f;
float halfHeight = (float)_numRows / 2.0f;
float fovInRadians = (_panoramaOptions.fieldOfView * M_PI / 180.0f);
float cylinderRadius = halfHeight / tan(fovInRadians);
// TODO: Change the algorithm to write a whole row at a time instead of a whole column at a time. AKA: for(y) { for(x) {}} instead of for(x) { for(y) {}}
for (uint x = 0; x < _numColumns; x++) {
// Add an offset of 0.01 to overcome zero tan/atan issue (vertical line on half of screen)
// Alpha represents the horizontal angle between the viewer at the center of a cylinder and x
float alpha = atan(((float)x - halfWidth + 0.01f) / cylinderRadius);
// To get x in cylinder coordinates, we just need to calculate the arc length
// We also scale it by _panoramaOptions.linearScale
int32 xInCylinderCoords = int32(floor((cylinderRadius * _panoramaOptions.linearScale * alpha) + halfWidth));
float cosAlpha = cos(alpha);
for (uint y = 0; y < _numRows; y++) {
// To calculate y in cylinder coordinates, we can do similar triangles comparison,
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
int32 yInCylinderCoords = int32(floor(halfHeight + ((float)y - halfHeight) * cosAlpha));
uint32 index = y * _numColumns + x;
// Only store the (x,y) offsets instead of the absolute positions
_internalBuffer[index].x = xInCylinderCoords - x;
_internalBuffer[index].y = yInCylinderCoords - y;
}
}
}
void RenderTable::generateTiltLookupTable() {
for (uint x = 0; x < _numColumns; x++) {
for (uint y = 0; y < _numRows; y++) {
uint32 index = y * _numColumns + x;
_internalBuffer[index].x = 0;
_internalBuffer[index].y = 0;
}
}
}
void RenderTable::setPanoramaFoV(float fov) {
assert(fov > 0.0f);
_panoramaOptions.fieldOfView = fov;
}
void RenderTable::setPanoramaScale(float scale) {
assert(scale > 0.0f);
_panoramaOptions.linearScale = scale;
}
void RenderTable::setPanoramaReverse(bool reverse) {
_panoramaOptions.reverse = reverse;
}
void RenderTable::setTiltFoV(float fov) {
assert(fov > 0.0f);
_tiltOptions.fieldOfView = fov;
}
void RenderTable::setTiltScale(float scale) {
assert(scale > 0.0f);
_tiltOptions.linearScale = scale;
}
void RenderTable::setTiltReverse(bool reverse) {
_tiltOptions.reverse = reverse;
}
} // End of namespace ZVision