mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-13 12:39:56 +00:00
335 lines
11 KiB
C++
335 lines
11 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* The low-pass filter code is based on UAE's audio filter code
|
|
* found in audio.c. UAE is licensed under the terms of the GPLv2.
|
|
*
|
|
* audio.c in UAE states the following:
|
|
* Copyright 1995, 1996, 1997 Bernd Schmidt
|
|
* Copyright 1996 Marcus Sundberg
|
|
* Copyright 1996 Manfred Thole
|
|
* Copyright 2006 Toni Wilen
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include "common/scummsys.h"
|
|
#include "common/translation.h"
|
|
|
|
#include "audio/mixer.h"
|
|
#include "audio/mods/paula.h"
|
|
#include "audio/null.h"
|
|
|
|
namespace Audio {
|
|
|
|
Paula::Paula(bool stereo, int rate, uint interruptFreq, FilterMode filterMode, int periodScaleDivisor) :
|
|
_stereo(stereo), _rate(rate), _periodScale((double)kPalPaulaClock / (rate * periodScaleDivisor)), _intFreq(interruptFreq), _mutex(g_system->getMixer()->mutex()) {
|
|
|
|
_filterState.mode = filterMode;
|
|
_filterState.ledFilter = false;
|
|
filterResetState();
|
|
|
|
_filterState.a0[0] = filterCalculateA0(rate, 6200);
|
|
_filterState.a0[1] = filterCalculateA0(rate, 20000);
|
|
_filterState.a0[2] = filterCalculateA0(rate, 7000);
|
|
|
|
clearVoices();
|
|
_voice[0].panning = PANNING_RIGHT;
|
|
_voice[1].panning = PANNING_LEFT;
|
|
_voice[2].panning = PANNING_LEFT;
|
|
_voice[3].panning = PANNING_RIGHT;
|
|
|
|
if (_intFreq == 0)
|
|
_intFreq = _rate;
|
|
|
|
_curInt = 0;
|
|
_timerBase = 1;
|
|
_playing = false;
|
|
_end = true;
|
|
}
|
|
|
|
Paula::~Paula() {
|
|
}
|
|
|
|
void Paula::clearVoice(byte voice) {
|
|
assert(voice < NUM_VOICES);
|
|
|
|
_voice[voice].data = nullptr;
|
|
_voice[voice].dataRepeat = nullptr;
|
|
_voice[voice].length = 0;
|
|
_voice[voice].lengthRepeat = 0;
|
|
_voice[voice].period = 0;
|
|
_voice[voice].volume = 0;
|
|
_voice[voice].offset = Offset(0);
|
|
_voice[voice].dmaCount = 0;
|
|
_voice[voice].interrupt = false;
|
|
}
|
|
|
|
int Paula::readBuffer(int16 *buffer, const int numSamples) {
|
|
Common::StackLock lock(_mutex);
|
|
|
|
memset(buffer, 0, numSamples * 2);
|
|
if (!_playing) {
|
|
return numSamples;
|
|
}
|
|
|
|
if (_stereo)
|
|
return readBufferIntern<true>(buffer, numSamples);
|
|
else
|
|
return readBufferIntern<false>(buffer, numSamples);
|
|
}
|
|
|
|
/* Denormals are very small floating point numbers that force FPUs into slow
|
|
* mode. All lowpass filters using floats are suspectible to denormals unless
|
|
* a small offset is added to avoid very small floating point numbers.
|
|
*/
|
|
#define DENORMAL_OFFSET (1E-10)
|
|
|
|
/* Based on UAE.
|
|
* Original comment in UAE:
|
|
*
|
|
* Amiga has two separate filtering circuits per channel, a static RC filter
|
|
* on A500 and the LED filter. This code emulates both.
|
|
*
|
|
* The Amiga filtering circuitry depends on Amiga model. Older Amigas seem
|
|
* to have a 6 dB/oct RC filter with cutoff frequency such that the -6 dB
|
|
* point for filter is reached at 6 kHz, while newer Amigas have no filtering.
|
|
*
|
|
* The LED filter is complicated, and we are modelling it with a pair of
|
|
* RC filters, the other providing a highboost. The LED starts to cut
|
|
* into signal somewhere around 5-6 kHz, and there's some kind of highboost
|
|
* in effect above 12 kHz. Better measurements are required.
|
|
*
|
|
* The current filtering should be accurate to 2 dB with the filter on,
|
|
* and to 1 dB with the filter off.
|
|
*/
|
|
inline int32 filter(int32 input, Paula::FilterState &state, int voice) {
|
|
float normalOutput, ledOutput;
|
|
|
|
switch (state.mode) {
|
|
case Paula::kFilterModeA500:
|
|
state.rc[voice][0] = state.a0[0] * input + (1 - state.a0[0]) * state.rc[voice][0] + DENORMAL_OFFSET;
|
|
state.rc[voice][1] = state.a0[1] * state.rc[voice][0] + (1-state.a0[1]) * state.rc[voice][1];
|
|
normalOutput = state.rc[voice][1];
|
|
|
|
state.rc[voice][2] = state.a0[2] * normalOutput + (1 - state.a0[2]) * state.rc[voice][2];
|
|
state.rc[voice][3] = state.a0[2] * state.rc[voice][2] + (1 - state.a0[2]) * state.rc[voice][3];
|
|
state.rc[voice][4] = state.a0[2] * state.rc[voice][3] + (1 - state.a0[2]) * state.rc[voice][4];
|
|
|
|
ledOutput = state.rc[voice][4];
|
|
break;
|
|
|
|
case Paula::kFilterModeA1200:
|
|
normalOutput = input;
|
|
|
|
state.rc[voice][1] = state.a0[2] * normalOutput + (1 - state.a0[2]) * state.rc[voice][1] + DENORMAL_OFFSET;
|
|
state.rc[voice][2] = state.a0[2] * state.rc[voice][1] + (1 - state.a0[2]) * state.rc[voice][2];
|
|
state.rc[voice][3] = state.a0[2] * state.rc[voice][2] + (1 - state.a0[2]) * state.rc[voice][3];
|
|
|
|
ledOutput = state.rc[voice][3];
|
|
break;
|
|
|
|
case Paula::kFilterModeNone:
|
|
default:
|
|
return input;
|
|
|
|
}
|
|
|
|
return CLIP<int32>(state.ledFilter ? ledOutput : normalOutput, -32768, 32767);
|
|
}
|
|
|
|
template<bool stereo>
|
|
inline int mixBuffer(int16 *&buf, const int8 *data, Paula::Offset &offset, frac_t rate, int neededSamples, uint bufSize, byte volume, byte panning, Paula::FilterState &filterState, int voice) {
|
|
int samples;
|
|
for (samples = 0; samples < neededSamples && offset.int_off < bufSize; ++samples) {
|
|
const int32 tmp = filter(((int32) data[offset.int_off]) * volume, filterState, voice);
|
|
if (stereo) {
|
|
*buf++ += (tmp * (255 - panning)) >> 7;
|
|
*buf++ += (tmp * (panning)) >> 7;
|
|
} else
|
|
*buf++ += tmp;
|
|
|
|
// Step to next source sample
|
|
offset.rem_off += rate;
|
|
if (offset.rem_off >= (frac_t)FRAC_ONE) {
|
|
offset.int_off += fracToInt(offset.rem_off);
|
|
offset.rem_off &= FRAC_LO_MASK;
|
|
}
|
|
}
|
|
|
|
return samples;
|
|
}
|
|
|
|
template<bool stereo>
|
|
int Paula::readBufferIntern(int16 *buffer, const int numSamples) {
|
|
int samples = stereo ? numSamples / 2 : numSamples;
|
|
while (samples > 0) {
|
|
|
|
// Handle 'interrupts'. This gives subclasses the chance to adjust the channel data
|
|
// (e.g. insert new samples, do pitch bending, whatever).
|
|
if (_curInt == 0) {
|
|
_curInt = _intFreq;
|
|
interrupt();
|
|
}
|
|
|
|
// Compute how many samples to generate: at most the requested number of samples,
|
|
// of course, but we may stop earlier when an 'interrupt' is expected.
|
|
const uint nSamples = MIN((uint)samples, _curInt);
|
|
|
|
// Loop over the four channels of the emulated Paula chip
|
|
for (int voice = 0; voice < NUM_VOICES; voice++) {
|
|
// No data, or paused -> skip channel
|
|
if (!_voice[voice].data || (_voice[voice].period <= 0))
|
|
continue;
|
|
|
|
// The Paula chip apparently run at 7.0937892 MHz in the PAL
|
|
// version and at 7.1590905 MHz in the NTSC version. We divide this
|
|
// by the requested the requested output sampling rate _rate
|
|
// (typically 44.1 kHz or 22.05 kHz) obtaining the value _periodScale.
|
|
// This is then divided by the "period" of the channel we are
|
|
// processing, to obtain the correct output 'rate'.
|
|
frac_t rate = doubleToFrac(_periodScale / _voice[voice].period);
|
|
// Cap the volume
|
|
_voice[voice].volume = MIN((byte) 0x40, _voice[voice].volume);
|
|
|
|
|
|
Channel &ch = _voice[voice];
|
|
int16 *p = buffer;
|
|
int neededSamples = nSamples;
|
|
|
|
// NOTE: A Protracker (or other module format) player might actually
|
|
// push the offset past the sample length in its interrupt(), in which
|
|
// case the first mixBuffer() call should not mix anything, and the loop
|
|
// should be triggered.
|
|
// Thus, doing an assert(ch.offset.int_off < ch.length) here is wrong.
|
|
// An example where this happens is a certain Protracker module played
|
|
// by the OS/2 version of Hopkins FBI.
|
|
|
|
// Mix the generated samples into the output buffer
|
|
neededSamples -= mixBuffer<stereo>(p, ch.data, ch.offset, rate, neededSamples, ch.length, ch.volume, ch.panning, _filterState, voice);
|
|
|
|
// Wrap around if necessary
|
|
if (ch.offset.int_off >= ch.length) {
|
|
// Important: Wrap around the offset *before* updating the voice length.
|
|
// Otherwise, if length != lengthRepeat we would wrap incorrectly.
|
|
// Note: If offset >= 2*len ever occurs, the following would be wrong;
|
|
// instead of subtracting, we then should compute the modulus using "%=".
|
|
// Since that requires a division and is slow, and shouldn't be necessary
|
|
// in practice anyway, we only use subtraction.
|
|
ch.offset.int_off -= ch.length;
|
|
ch.dmaCount++;
|
|
|
|
ch.data = ch.dataRepeat;
|
|
ch.length = ch.lengthRepeat;
|
|
|
|
// The Paula chip can generate an interrupt after it copies a channel's
|
|
// location and length values to its internal registers, signaling that
|
|
// it's safe to modify them. Some sound engines use this feature in order
|
|
// to control sound looping.
|
|
// NOTE: the real Paula would also do this during enableChannel() and in
|
|
// the middle of setChannelData(); for simplicity, we only do it here.
|
|
if (ch.interrupt)
|
|
interruptChannel(voice);
|
|
}
|
|
|
|
// If we have not yet generated enough samples, and looping is active: loop!
|
|
if (neededSamples > 0 && ch.length > 2) {
|
|
// Repeat as long as necessary.
|
|
while (neededSamples > 0) {
|
|
// Mix the generated samples into the output buffer
|
|
neededSamples -= mixBuffer<stereo>(p, ch.data, ch.offset, rate, neededSamples, ch.length, ch.volume, ch.panning, _filterState, voice);
|
|
|
|
if (ch.offset.int_off >= ch.length) {
|
|
// Wrap around. See also the note above.
|
|
ch.offset.int_off -= ch.length;
|
|
ch.dmaCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
buffer += stereo ? nSamples * 2 : nSamples;
|
|
_curInt -= nSamples;
|
|
samples -= nSamples;
|
|
}
|
|
return numSamples;
|
|
}
|
|
|
|
void Paula::filterResetState() {
|
|
for (int i = 0; i < NUM_VOICES; i++)
|
|
for (int j = 0; j < 5; j++)
|
|
_filterState.rc[i][j] = 0.0f;
|
|
}
|
|
|
|
/* Based on UAE.
|
|
* Original comment in UAE:
|
|
*
|
|
* This computes the 1st order low-pass filter term b0.
|
|
* The a1 term is 1.0 - b0. The center frequency marks the -3 dB point.
|
|
*/
|
|
float Paula::filterCalculateA0(int rate, int cutoff) {
|
|
float omega;
|
|
/* The BLT correction formula below blows up if the cutoff is above nyquist. */
|
|
if (cutoff >= rate / 2)
|
|
return 1.0;
|
|
|
|
omega = 2 * M_PI * cutoff / rate;
|
|
/* Compensate for the bilinear transformation. This allows us to specify the
|
|
* stop frequency more exactly, but the filter becomes less steep further
|
|
* from stopband. */
|
|
omega = tan(omega / 2) * 2;
|
|
return 1 / (1 + 1 / omega);
|
|
}
|
|
|
|
} // End of namespace Audio
|
|
|
|
|
|
// Plugin interface
|
|
// (This can only create a null driver since apple II gs support seeems not to be implemented
|
|
// and also is not part of the midi driver architecture. But we need the plugin for the options
|
|
// menu in the launcher and for MidiDriver::detectDevice() which is more or less used by all engines.)
|
|
|
|
class AmigaMusicPlugin : public NullMusicPlugin {
|
|
public:
|
|
const char *getName() const override {
|
|
return _s("Amiga Audio emulator");
|
|
}
|
|
|
|
const char *getId() const override {
|
|
return "amiga";
|
|
}
|
|
|
|
MusicDevices getDevices() const override;
|
|
};
|
|
|
|
MusicDevices AmigaMusicPlugin::getDevices() const {
|
|
MusicDevices devices;
|
|
devices.push_back(MusicDevice(this, "", MT_AMIGA));
|
|
return devices;
|
|
}
|
|
|
|
//#if PLUGIN_ENABLED_DYNAMIC(AMIGA)
|
|
//REGISTER_PLUGIN_DYNAMIC(AMIGA, PLUGIN_TYPE_MUSIC, AmigaMusicPlugin);
|
|
//#else
|
|
REGISTER_PLUGIN_STATIC(AMIGA, PLUGIN_TYPE_MUSIC, AmigaMusicPlugin);
|
|
//#endif
|