scummvm/sword2/driver/sprite.cpp
Torbjörn Andersson 8a91ae3257 Adapted LavosSpawn's idea for more efficient screen updating. It still
renders the entire screen every frame, but it tries to update (i.e. copy to
the backend) only the parts of the screen that actually changed. At least
approximately so.

svn-id: r12142
2004-01-04 15:11:30 +00:00

666 lines
16 KiB
C++

/* Copyright (C) 1994-2003 Revolution Software Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*/
#include "common/stdafx.h"
#include "sword2/sword2.h"
namespace Sword2 {
/**
* This function takes a sprite and creates a mirror image of it.
* @param dst destination buffer
* @param src source buffer
* @param w width of the sprite
* @param h height of the sprite
*/
void Graphics::mirrorSprite(uint8 *dst, uint8 *src, int16 w, int16 h) {
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
*dst++ = *(src + w - x - 1);
}
src += w;
}
}
/**
* This function takes a compressed frame of a sprite with up to 256 colours
* and decompresses it.
* @param dest destination buffer
* @param source source buffer
* @param decompSize the expected size of the decompressed sprite
*/
int32 Graphics::decompressRLE256(uint8 *dest, uint8 *source, int32 decompSize) {
// PARAMETERS:
// source points to the start of the sprite data for input
// decompSize gives size of decompressed data in bytes
// dest points to start of destination buffer for decompressed
// data
uint8 headerByte; // block header byte
uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer
int32 rv;
while(1) {
// FLAT block
// read FLAT block header & increment 'scan' to first pixel
// of block
headerByte = *source++;
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
rv = 1;
break;
}
// set the next 'headerByte' pixels to the next colour
// at 'source'
memset(dest, *source, headerByte);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this colour
source++;
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
break;
}
}
// RAW block
// read RAW block header & increment 'scan' to first pixel of
// block
headerByte = *source++;
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
rv = 1;
break;
}
// copy the next 'headerByte' pixels from source to
// destination
memcpy(dest,source,headerByte);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this block
source += headerByte;
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
break;
}
}
}
return rv;
}
/**
* Unwinds a run of 16-colour data into 256-colour palette data.
*/
void Graphics::unwindRaw16(uint8 *dest, uint8 *source, uint8 blockSize, uint8 *colTable) {
// for each pair of pixels
while (blockSize > 1) {
// 1st colour = number in table at position given by upper
// nibble of source byte
*dest++ = colTable[(*source) >> 4];
// 2nd colour = number in table at position given by lower
// nibble of source byte
*dest++ = colTable[(*source) & 0x0f];
// point to next source byte
source++;
// decrement count of how many pixels left to read
blockSize -= 2;
}
// if there's a final odd pixel
if (blockSize) {
// colour = number in table at position given by upper nibble
// of source byte
*dest++ = colTable[(*source) >> 4];
}
}
/**
* This function takes a compressed frame of a sprite (with up to 16 colours)
* and decompresses it.
* @param dest destination buffer
* @param source source buffer
* @param decompSize the expected size of the uncompressed sprite
* @param colTable mapping from the 16 encoded colours to the current palette
*/
int32 Graphics::decompressRLE16(uint8 *dest, uint8 *source, int32 decompSize, uint8 *colTable) {
uint8 headerByte; // block header byte
uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer
int32 rv;
while(1) {
// FLAT block
// read FLAT block header & increment 'scan' to first pixel
// of block
headerByte = *source++;
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
rv = 1;
break;
}
// set the next 'headerByte' pixels to the next
// colour at 'source'
memset(dest, *source, headerByte);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this colour
source++;
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
break;
}
}
// RAW block
// read RAW block header & increment 'scan' to first pixel of
// block
headerByte = *source++;
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
rv = 1;
break;
}
// copy the next 'headerByte' pixels from source to
// destination (NB. 2 pixels per byte)
unwindRaw16(dest, source, headerByte, colTable);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this block
// (NB. headerByte gives pixels, so /2 for bytes)
source += (headerByte + 1) / 2;
// if we've decompressed all of the data
if (dest >= endDest) {
rv = 0; // return "OK"
break;
}
}
}
return rv;
}
/**
* Creates a sprite surface. Sprite surfaces are used by the in-game dialogs
* and for displaying cutscene subtitles, which makes them much easier to draw
* than standard sprites.
* @param s information about how to decode the sprite
* @param sprite the buffer that will be created to store the surface
* @return RD_OK, or an error code
*/
int32 Graphics::createSurface(SpriteInfo *s, uint8 **sprite) {
*sprite = (uint8 *) malloc(s->w * s->h);
if (!*sprite)
return RDERR_OUTOFMEMORY;
// Surfaces are either uncompressed or RLE256-compressed. No need to
// test for anything else.
if (s->type & RDSPR_NOCOMPRESSION) {
memcpy(*sprite, s->data, s->w * s->h);
} else if (decompressRLE256(*sprite, s->data, s->w * s->h)) {
free(*sprite);
return RDERR_DECOMPRESSION;
}
return RD_OK;
}
/**
* Draws the sprite surface created earlier.
* @param s information about how to place the sprite
* @param surface pointer to the surface created earlier
* @param clipRect the clipping rectangle
*/
void Graphics::drawSurface(SpriteInfo *s, uint8 *surface, Common::Rect *clipRect) {
Common::Rect rd, rs;
uint16 x, y;
uint8 *src, *dst;
rs.left = 0;
rs.right = s->w;
rs.top = 0;
rs.bottom = s->h;
rd.left = s->x;
rd.right = rd.left + rs.right;
rd.top = s->y;
rd.bottom = rd.top + rs.bottom;
if (clipRect) {
if (clipRect->left > rd.left) {
rs.left += (clipRect->left - rd.left);
rd.left = clipRect->left;
}
if (clipRect->top > rd.top) {
rs.top += (clipRect->top - rd.top);
rd.top = clipRect->top;
}
if (clipRect->right < rd.right) {
rd.right = clipRect->right;
}
if (clipRect->bottom < rd.bottom) {
rd.bottom = clipRect->bottom;
}
if (rd.width() <= 0 || rd.height() <= 0)
return;
}
src = surface + rs.top * s->w + rs.left;
dst = _buffer + _screenWide * rd.top + rd.left;
// Surfaces are always transparent.
for (y = 0; y < rd.height(); y++) {
for (x = 0; x < rd.width(); x++) {
if (src[x])
dst[x] = src[x];
}
src += s->w;
dst += _screenWide;
}
updateRect(&rd);
}
/**
* Destroys a surface.
*/
void Graphics::deleteSurface(uint8 *surface) {
free(surface);
}
/**
* Draws a sprite onto the screen. The type of the sprite can be a combination
* of the following flags, some of which are mutually exclusive:
* RDSPR_DISPLAYALIGN The sprite is drawn relative to the top left corner
* of the screen
* RDSPR_FLIP The sprite is mirrored
* RDSPR_TRANS The sprite has a transparent colour zero
* RDSPR_BLEND The sprite is translucent
* RDSPR_SHADOW The sprite is affected by the light mask. (Scaled
* sprites always are.)
* RDSPR_NOCOMPRESSION The sprite data is not compressed
* RDSPR_RLE16 The sprite data is a 16-colour compressed sprite
* RDSPR_RLE256 The sprite data is a 256-colour compressed sprite
* @param s all the information needed to draw the sprite
* @warning Sprites will only be drawn onto the background, not over menubar
* areas.
*/
// FIXME: I'm sure this could be optimized. There's plenty of data copying and
// mallocing here.
int32 Graphics::drawSprite(SpriteInfo *s) {
uint8 *src, *dst;
uint8 *sprite, *newSprite;
uint8 *backbuf = NULL;
uint16 scale;
int16 i, j;
uint16 srcPitch;
bool freeSprite = false;
bool clipped = false;
Common::Rect rd, rs;
// -----------------------------------------------------------------
// Decompression and mirroring
// -----------------------------------------------------------------
if (s->type & RDSPR_NOCOMPRESSION)
sprite = s->data;
else {
sprite = (uint8 *) malloc(s->w * s->h);
freeSprite = true;
if (!sprite)
return RDERR_OUTOFMEMORY;
if ((s->type & 0xff00) == RDSPR_RLE16) {
if (decompressRLE16(sprite, s->data, s->w * s->h, s->colourTable)) {
free(sprite);
return RDERR_DECOMPRESSION;
}
} else {
if (decompressRLE256(sprite, s->data, s->w * s->h)) {
free(sprite);
return RDERR_DECOMPRESSION;
}
}
}
if (s->type & RDSPR_FLIP) {
newSprite = (uint8 *) malloc(s->w * s->h);
if (newSprite == NULL) {
if (freeSprite)
free(sprite);
return RDERR_OUTOFMEMORY;
}
mirrorSprite(newSprite, sprite, s->w, s->h);
if (freeSprite)
free(sprite);
sprite = newSprite;
freeSprite = true;
}
// -----------------------------------------------------------------
// Positioning and clipping.
// -----------------------------------------------------------------
if (!(s->type & RDSPR_DISPLAYALIGN)) {
s->x += _parallaxScrollX;
s->y += _parallaxScrollY;
}
s->y += 40;
// A scale factor 0 or 256 means don't scale. Why do they use two
// different values to mean the same thing? Normalize it here for
// convenience.
scale = (s->scale == 0) ? 256 : s->scale;
rs.top = 0;
rs.left = 0;
if (scale != 256) {
rs.right = s->scaledWidth;
rs.bottom = s->scaledHeight;
srcPitch = s->scaledWidth;
} else {
rs.right = s->w;
rs.bottom = s->h;
srcPitch = s->w;
}
rd.top = s->y;
rd.left = s->x;
if (!(s->type & RDSPR_DISPLAYALIGN)) {
rd.top -= _scrollY;
rd.left -= _scrollX;
}
rd.right = rd.left + rs.right;
rd.bottom = rd.top + rs.bottom;
// Check if the sprite would end up completely outside the screen.
if (rd.left > 640 || rd.top > 440 || rd.right < 0 || rd.bottom < 40) {
if (freeSprite)
free(sprite);
return RD_OK;
}
if (rd.top < 40) {
rs.top = 40 - rd.top;
rd.top = 40;
clipped = true;
}
if (rd.bottom > 440) {
rd.bottom = 440;
rs.bottom = rs.top + (rd.bottom - rd.top);
clipped = true;
}
if (rd.left < 0) {
rs.left = -rd.left;
rd.left = 0;
clipped = true;
}
if (rd.right > 640) {
rd.right = 640;
rs.right = rs.left + (rd.right - rd.left);
clipped = true;
}
// -----------------------------------------------------------------
// Scaling
// -----------------------------------------------------------------
if (scale != 256) {
if ((_renderCaps & RDBLTFX_EDGEBLEND) && !clipped)
backbuf = _buffer + _screenWide * rd.top + rd.left;
if (s->scaledWidth > SCALE_MAXWIDTH || s->scaledHeight > SCALE_MAXHEIGHT) {
if (freeSprite)
free(sprite);
return RDERR_NOTIMPLEMENTED;
}
newSprite = (uint8 *) malloc(s->scaledWidth * s->scaledHeight);
if (newSprite == NULL) {
if (freeSprite)
free(sprite);
return RDERR_OUTOFMEMORY;
}
if (scale < 256) {
squashImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf);
} else {
if (s->scale > 512) {
if (freeSprite)
free(sprite);
return RDERR_INVALIDSCALING;
}
stretchImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf);
}
if (freeSprite)
free(sprite);
sprite = newSprite;
freeSprite = true;
}
// -----------------------------------------------------------------
// Light masking
// -----------------------------------------------------------------
// The light mask is an optional layer that covers the entire room
// and which is used to simulate light and shadows. Scaled sprites
// (actors, presumably) are always affected.
if ((_renderCaps & RDBLTFX_SHADOWBLEND) && _lightMask && (scale != 256 || (s->type & RDSPR_SHADOW))) {
uint8 *lightMap;
if (!freeSprite) {
newSprite = (uint8 *) malloc(s->w * s->h);
memcpy(newSprite, sprite, s->w * s->h);
sprite = newSprite;
freeSprite = true;
}
src = sprite + rs.top * srcPitch + rs.left;
lightMap = _lightMask + (rd.top + _scrollY - 40) * _locationWide + rd.left + _scrollX;
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j] && lightMap[j]) {
uint8 r = ((32 - lightMap[j]) * _palCopy[src[j]][0]) >> 5;
uint8 g = ((32 - lightMap[j]) * _palCopy[src[j]][1]) >> 5;
uint8 b = ((32 - lightMap[j]) * _palCopy[src[j]][2]) >> 5;
src[j] = quickMatch(r, g, b);
}
}
src += srcPitch;
lightMap += _locationWide;
}
}
// -----------------------------------------------------------------
// Drawing
// -----------------------------------------------------------------
src = sprite + rs.top * srcPitch + rs.left;
dst = _buffer + _screenWide * rd.top + rd.left;
if (s->type & RDSPR_BLEND) {
// The original code had two different blending cases. One for
// s->blend & 0x01 and one for s->blend & 0x02. However, the
// only values that actually appear in the cluster files are
// 0, 513 and 1025 so the s->blend & 0x02 case was never used.
// Which is just as well since that code made no sense to me.
if (!(_renderCaps & RDBLTFX_SPRITEBLEND)) {
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j] && ((i & 1) == (j & 1)))
dst[j] = src[j];
}
src += srcPitch;
dst += _screenWide;
}
} else {
uint8 n = s->blend >> 8;
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j]) {
uint8 r1 = _palCopy[src[j]][0];
uint8 g1 = _palCopy[src[j]][1];
uint8 b1 = _palCopy[src[j]][2];
uint8 r2 = _palCopy[dst[j]][0];
uint8 g2 = _palCopy[dst[j]][1];
uint8 b2 = _palCopy[dst[j]][2];
uint8 r = (r1 * n + r2 * (8 - n)) >> 3;
uint8 g = (g1 * n + g2 * (8 - n)) >> 3;
uint8 b = (b1 * n + b2 * (8 - n)) >> 3;
dst[j] = quickMatch(r, g, b);
}
}
src += srcPitch;
dst += _screenWide;
}
}
} else {
if (s->type & RDSPR_TRANS) {
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j])
dst[j] = src[j];
}
src += srcPitch;
dst += _screenWide;
}
} else {
for (i = 0; i < rs.height(); i++) {
memcpy(dst, src, rs.width());
src += srcPitch;
dst += _screenWide;
}
}
}
if (freeSprite)
free(sprite);
// Mark the approximate area of the sprite as "dirty", first generation
int16 gridX1 = rd.left / CELLWIDE;
int16 gridY1 = rd.top / CELLDEEP;
int16 gridX2 = (rd.right - 1) / CELLWIDE;
int16 gridY2 = (rd.bottom - 1) / CELLDEEP;
for (i = gridY1; i <= gridY2; i++)
for (j = gridX1; j <= gridX2; j++)
_dirtyGrid[i * _gridWide + j] = 2;
return RD_OK;
}
/**
* Opens the light masking sprite for a room.
*/
int32 Graphics::openLightMask(SpriteInfo *s) {
// FIXME: The light mask is only needed on higher graphics detail
// settings, so to save memory we could simply ignore it on lower
// settings. But then we need to figure out how to ensure that it
// is properly loaded if the user changes the settings in mid-game.
if (_lightMask)
return RDERR_NOTCLOSED;
_lightMask = (uint8 *) malloc(s->w * s->h);
if (!_lightMask)
return RDERR_OUTOFMEMORY;
if (decompressRLE256(_lightMask, s->data, s->w * s->h))
return RDERR_DECOMPRESSION;
return RD_OK;
}
/**
* Closes the light masking sprite for a room.
*/
int32 Graphics::closeLightMask(void) {
if (!_lightMask)
return RDERR_NOTOPEN;
free(_lightMask);
_lightMask = NULL;
return RD_OK;
}
} // End of namespace Sword2