mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-09 11:20:56 +00:00
ec24687ce4
Adding @defgroup and @ingroup doxygen tags into all headers in the common folder that contain doxygen blocks. This improves the structure, readability, and findability of information in the resulting output. This commit targets purely structure and does not deal with the content of the currently existing doxygen documentation.
345 lines
9.4 KiB
C++
345 lines
9.4 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#ifndef COMMON_PTR_H
|
|
#define COMMON_PTR_H
|
|
|
|
#include "common/scummsys.h"
|
|
#include "common/noncopyable.h"
|
|
#include "common/safe-bool.h"
|
|
#include "common/types.h"
|
|
|
|
namespace Common {
|
|
|
|
/**
|
|
* @defgroup common_ptr Pointers
|
|
* @ingroup common
|
|
*
|
|
* @brief API and templates for pointers.
|
|
* @{
|
|
*/
|
|
|
|
class SharedPtrDeletionInternal {
|
|
public:
|
|
virtual ~SharedPtrDeletionInternal() {}
|
|
};
|
|
|
|
template<class T>
|
|
class SharedPtrDeletionImpl : public SharedPtrDeletionInternal {
|
|
public:
|
|
SharedPtrDeletionImpl(T *ptr) : _ptr(ptr) {}
|
|
~SharedPtrDeletionImpl() {
|
|
STATIC_ASSERT(sizeof(T) > 0, SharedPtr_cannot_delete_incomplete_type);
|
|
delete _ptr;
|
|
}
|
|
private:
|
|
T *_ptr;
|
|
};
|
|
|
|
template<class T, class D>
|
|
class SharedPtrDeletionDeleterImpl : public SharedPtrDeletionInternal {
|
|
public:
|
|
SharedPtrDeletionDeleterImpl(T *ptr, D d) : _ptr(ptr), _deleter(d) {}
|
|
~SharedPtrDeletionDeleterImpl() { _deleter(_ptr); }
|
|
private:
|
|
T *_ptr;
|
|
D _deleter;
|
|
};
|
|
|
|
/**
|
|
* A simple shared pointer implementation modelled after boost.
|
|
*
|
|
* This object keeps track of the assigned pointer and automatically
|
|
* frees it when no more SharedPtr references to it exist.
|
|
*
|
|
* To achieve that the object implements an internal reference counting.
|
|
* Thus you should try to avoid using the plain pointer after assigning
|
|
* it to a SharedPtr object for the first time. If you still use the
|
|
* plain pointer be sure you do not delete it on your own. You may also
|
|
* not use the plain pointer to create a new SharedPtr object, since that
|
|
* would result in a double deletion of the pointer sooner or later.
|
|
*
|
|
* Example creation:
|
|
* Common::SharedPtr<int> pointer(new int(1));
|
|
* would create a pointer to int. Later on usage via *pointer is the same
|
|
* as for a normal pointer. If you need to access the plain pointer value
|
|
* itself later on use the get method. The class also supplies a operator
|
|
* ->, which does the same as the -> operator on a normal pointer.
|
|
*
|
|
* Be sure you are using new to initialize the pointer you want to manage.
|
|
* If you do not use new for allocating, you have to supply a deleter as
|
|
* second parameter when creating a SharedPtr object. The deleter has to
|
|
* implement operator() which takes the pointer it should free as argument.
|
|
*
|
|
* Note that you have to specify the type itself not the pointer type as
|
|
* template parameter.
|
|
*
|
|
* When creating a SharedPtr object from a normal pointer you need a real
|
|
* definition of the type you want SharedPtr to manage, a simple forward
|
|
* definition is not enough.
|
|
*
|
|
* The class has implicit upcast support, so if you got a class B derived
|
|
* from class A, you can assign a pointer to B without any problems to a
|
|
* SharedPtr object with template parameter A. The very same applies to
|
|
* assignment of a SharedPtr<B> object to a SharedPtr<A> object.
|
|
*
|
|
* There are also operators != and == to compare two SharedPtr objects
|
|
* with compatible pointers. Comparison between a SharedPtr object and
|
|
* a plain pointer is only possible via SharedPtr::get.
|
|
*/
|
|
template<class T>
|
|
class SharedPtr : public SafeBool<SharedPtr<T> > {
|
|
#if !defined(__GNUC__) || GCC_ATLEAST(3, 0)
|
|
template<class T2> friend class SharedPtr;
|
|
#endif
|
|
public:
|
|
typedef int RefValue;
|
|
typedef T ValueType;
|
|
typedef T *PointerType;
|
|
typedef T &ReferenceType;
|
|
|
|
SharedPtr() : _refCount(nullptr), _deletion(nullptr), _pointer(nullptr) {}
|
|
|
|
template<class T2>
|
|
explicit SharedPtr(T2 *p) : _refCount(new RefValue(1)), _deletion(new SharedPtrDeletionImpl<T2>(p)), _pointer(p) {}
|
|
|
|
template<class T2, class D>
|
|
SharedPtr(T2 *p, D d) : _refCount(new RefValue(1)), _deletion(new SharedPtrDeletionDeleterImpl<T2, D>(p, d)), _pointer(p) {}
|
|
|
|
SharedPtr(const SharedPtr &r) : _refCount(r._refCount), _deletion(r._deletion), _pointer(r._pointer) { if (_refCount) ++(*_refCount); }
|
|
template<class T2>
|
|
SharedPtr(const SharedPtr<T2> &r) : _refCount(r._refCount), _deletion(r._deletion), _pointer(r._pointer) { if (_refCount) ++(*_refCount); }
|
|
|
|
~SharedPtr() { decRef(); }
|
|
|
|
SharedPtr &operator=(const SharedPtr &r) {
|
|
if (r._refCount)
|
|
++(*r._refCount);
|
|
decRef();
|
|
|
|
_refCount = r._refCount;
|
|
_deletion = r._deletion;
|
|
_pointer = r._pointer;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template<class T2>
|
|
SharedPtr &operator=(const SharedPtr<T2> &r) {
|
|
if (r._refCount)
|
|
++(*r._refCount);
|
|
decRef();
|
|
|
|
_refCount = r._refCount;
|
|
_deletion = r._deletion;
|
|
_pointer = r._pointer;
|
|
|
|
return *this;
|
|
}
|
|
|
|
ReferenceType operator*() const { assert(_pointer); return *_pointer; }
|
|
PointerType operator->() const { assert(_pointer); return _pointer; }
|
|
|
|
/**
|
|
* Returns the plain pointer value. Be sure you know what you
|
|
* do if you are continuing to use that pointer.
|
|
*
|
|
* @return the pointer the SharedPtr object manages
|
|
*/
|
|
PointerType get() const { return _pointer; }
|
|
|
|
/**
|
|
* Implicit conversion operator to bool for convenience, to make
|
|
* checks like "if (sharedPtr) ..." possible.
|
|
*/
|
|
bool operator_bool() const { return _pointer != nullptr; }
|
|
|
|
/**
|
|
* Checks if the SharedPtr object is the only object refering
|
|
* to the assigned pointer. This should just be used for
|
|
* debugging purposes.
|
|
*/
|
|
bool unique() const { return refCount() == 1; }
|
|
|
|
/**
|
|
* Resets the SharedPtr object to a NULL pointer.
|
|
*/
|
|
void reset() {
|
|
decRef();
|
|
_deletion = nullptr;
|
|
_refCount = nullptr;
|
|
_pointer = nullptr;
|
|
}
|
|
|
|
template<class T2>
|
|
bool operator==(const SharedPtr<T2> &r) const {
|
|
return _pointer == r.get();
|
|
}
|
|
|
|
template<class T2>
|
|
bool operator!=(const SharedPtr<T2> &r) const {
|
|
return _pointer != r.get();
|
|
}
|
|
|
|
/**
|
|
* Returns the number of references to the assigned pointer.
|
|
* This should just be used for debugging purposes.
|
|
*/
|
|
RefValue refCount() const { return _refCount ? *_refCount : 0; }
|
|
#if !defined(__GNUC__) || GCC_ATLEAST(3, 0)
|
|
private:
|
|
#endif
|
|
void decRef() {
|
|
if (_refCount) {
|
|
--(*_refCount);
|
|
if (!*_refCount) {
|
|
delete _refCount;
|
|
delete _deletion;
|
|
_deletion = nullptr;
|
|
_refCount = nullptr;
|
|
_pointer = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
RefValue *_refCount;
|
|
SharedPtrDeletionInternal *_deletion;
|
|
PointerType _pointer;
|
|
};
|
|
|
|
template <typename T>
|
|
struct DefaultDeleter {
|
|
inline void operator()(T *object) {
|
|
STATIC_ASSERT(sizeof(T) > 0, cannot_delete_incomplete_type);
|
|
delete object;
|
|
}
|
|
};
|
|
|
|
template<typename T, class D = DefaultDeleter<T> >
|
|
class ScopedPtr : private NonCopyable, public SafeBool<ScopedPtr<T, D> > {
|
|
public:
|
|
typedef T ValueType;
|
|
typedef T *PointerType;
|
|
typedef T &ReferenceType;
|
|
|
|
explicit ScopedPtr(PointerType o = nullptr) : _pointer(o) {}
|
|
|
|
ReferenceType operator*() const { return *_pointer; }
|
|
PointerType operator->() const { return _pointer; }
|
|
|
|
/**
|
|
* Implicit conversion operator to bool for convenience, to make
|
|
* checks like "if (scopedPtr) ..." possible.
|
|
*/
|
|
bool operator_bool() const { return _pointer != nullptr; }
|
|
|
|
~ScopedPtr() {
|
|
D()(_pointer);
|
|
}
|
|
|
|
/**
|
|
* Resets the pointer with the new value. Old object will be destroyed
|
|
*/
|
|
void reset(PointerType o = nullptr) {
|
|
D()(_pointer);
|
|
_pointer = o;
|
|
}
|
|
|
|
/**
|
|
* Returns the plain pointer value.
|
|
*
|
|
* @return the pointer the ScopedPtr manages
|
|
*/
|
|
PointerType get() const { return _pointer; }
|
|
|
|
/**
|
|
* Returns the plain pointer value and releases ScopedPtr.
|
|
* After release() call you need to delete object yourself
|
|
*
|
|
* @return the pointer the ScopedPtr manages
|
|
*/
|
|
PointerType release() {
|
|
PointerType r = _pointer;
|
|
_pointer = nullptr;
|
|
return r;
|
|
}
|
|
|
|
private:
|
|
PointerType _pointer;
|
|
};
|
|
|
|
template<typename T, class D = DefaultDeleter<T> >
|
|
class DisposablePtr : private NonCopyable, public SafeBool<DisposablePtr<T, D> > {
|
|
public:
|
|
typedef T ValueType;
|
|
typedef T *PointerType;
|
|
typedef T &ReferenceType;
|
|
|
|
explicit DisposablePtr(PointerType o, DisposeAfterUse::Flag dispose) : _pointer(o), _dispose(dispose) {}
|
|
|
|
~DisposablePtr() {
|
|
if (_dispose) D()(_pointer);
|
|
}
|
|
|
|
ReferenceType operator*() const { return *_pointer; }
|
|
PointerType operator->() const { return _pointer; }
|
|
|
|
/**
|
|
* Implicit conversion operator to bool for convenience, to make
|
|
* checks like "if (scopedPtr) ..." possible.
|
|
*/
|
|
bool operator_bool() const { return _pointer != nullptr; }
|
|
|
|
/**
|
|
* Resets the pointer with the new value. Old object will be destroyed
|
|
*/
|
|
void reset(PointerType o, DisposeAfterUse::Flag dispose) {
|
|
if (_dispose) D()(_pointer);
|
|
_pointer = o;
|
|
_dispose = dispose;
|
|
}
|
|
|
|
/**
|
|
* Clears the pointer. Old object will be destroyed
|
|
*/
|
|
void reset() {
|
|
reset(nullptr, DisposeAfterUse::NO);
|
|
}
|
|
|
|
/**
|
|
* Returns the plain pointer value.
|
|
*
|
|
* @return the pointer the DisposablePtr manages
|
|
*/
|
|
PointerType get() const { return _pointer; }
|
|
|
|
private:
|
|
PointerType _pointer;
|
|
DisposeAfterUse::Flag _dispose;
|
|
};
|
|
|
|
/** @} */
|
|
|
|
} // End of namespace Common
|
|
|
|
#endif
|