scummvm/common/stream.h
Bartosz Gentkowski ec24687ce4 DOXYGEN: Add doxygen groups to header files in the common folder
Adding @defgroup and @ingroup doxygen tags into all headers
in the common folder that contain doxygen blocks.

This improves the structure, readability, and findability
of information in the resulting output.

This commit targets purely structure and does not deal with
the content of the currently existing doxygen documentation.
2020-10-04 18:25:50 +02:00

731 lines
20 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef COMMON_STREAM_H
#define COMMON_STREAM_H
#include "common/endian.h"
#include "common/scummsys.h"
#include "common/str.h"
namespace Common {
/**
* @defgroup common_stream Streams
* @ingroup common
*
* @brief API for managing readable and writable data streams.
*
* @{
*/
class ReadStream;
class SeekableReadStream;
/**
* Virtual base class for both ReadStream and WriteStream.
*/
class Stream {
public:
virtual ~Stream() {}
/**
* Returns true if an I/O failure occurred.
* This flag is never cleared automatically. In order to clear it,
* client code has to call clearErr() explicitly.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C ferror().
*/
virtual bool err() const { return false; }
/**
* Reset the I/O error status as returned by err().
* For a ReadStream, also reset the end-of-stream status returned by eos().
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C clearerr().
*/
virtual void clearErr() {}
};
/**
* Generic interface for a writable data stream.
*/
class WriteStream : virtual public Stream {
public:
/**
* Write data into the stream. Subclasses must implement this
* method; all other write methods are implemented using it.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C fwrite().
*
* @param dataPtr pointer to the data to be written
* @param dataSize number of bytes to be written
* @return the number of bytes which were actually written.
*/
virtual uint32 write(const void *dataPtr, uint32 dataSize) = 0;
/**
* Commit any buffered data to the underlying channel or
* storage medium; unbuffered streams can use the default
* implementation.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C fflush().
*
* @return true on success, false in case of a failure
*/
virtual bool flush() { return true; }
/**
* Finalize and close this stream. To be called right before this
* stream instance is deleted. The goal here is to enable calling
* code to detect and handle I/O errors which might occur when
* closing (and this flushing, if buffered) the stream.
*
* After this method has been called, no further writes may be
* performed on the stream. Calling err() is allowed.
*
* By default, this just flushes the stream.
*/
virtual void finalize() {
flush();
}
/**
* Obtains the current value of the stream position indicator of the
* stream.
*
* @return the current position indicator, or -1 if an error occurred.
*/
virtual int32 pos() const = 0;
// The remaining methods all have default implementations; subclasses
// need not (and should not) overload them.
void writeByte(byte value) {
write(&value, 1);
}
void writeSByte(int8 value) {
write(&value, 1);
}
void writeUint16LE(uint16 value) {
value = TO_LE_16(value);
write(&value, 2);
}
void writeUint32LE(uint32 value) {
value = TO_LE_32(value);
write(&value, 4);
}
void writeUint64LE(uint64 value) {
value = TO_LE_64(value);
write(&value, 8);
}
void writeUint16BE(uint16 value) {
value = TO_BE_16(value);
write(&value, 2);
}
void writeUint32BE(uint32 value) {
value = TO_BE_32(value);
write(&value, 4);
}
void writeUint64BE(uint64 value) {
value = TO_BE_64(value);
write(&value, 8);
}
FORCEINLINE void writeSint16LE(int16 value) {
writeUint16LE((uint16)value);
}
FORCEINLINE void writeSint32LE(int32 value) {
writeUint32LE((uint32)value);
}
FORCEINLINE void writeSint64LE(int64 value) {
writeUint64LE((uint64)value);
}
FORCEINLINE void writeSint16BE(int16 value) {
writeUint16BE((uint16)value);
}
FORCEINLINE void writeSint32BE(int32 value) {
writeUint32BE((uint32)value);
}
FORCEINLINE void writeSint64BE(int64 value) {
writeUint64BE((uint64)value);
}
/**
* Write the given 32-bit floating point value stored
* in little endian(LSB first) order into the stream.
*/
FORCEINLINE void writeFloatLE(float value) {
uint32 n;
memcpy(&n, &value, 4);
writeUint32LE(n);
}
/**
* Write the given 32-bit floating point value stored
* in big endian order into the stream.
*/
FORCEINLINE void writeFloatBE(float value) {
uint32 n;
memcpy(&n, &value, 4);
writeUint32BE(n);
}
/**
* Write the given 64-bit floating point value stored
* in little endian(LSB first) order into the stream.
*/
FORCEINLINE void writeDoubleLE(double value) {
uint64 n;
memcpy(&n, &value, 8);
writeUint64LE(n);
}
/**
* Write the given 64-bit floating point value stored
* in big endian order into the stream.
*/
FORCEINLINE void writeDoubleBE(double value) {
uint64 n;
memcpy(&n, &value, 8);
writeUint64BE(n);
}
/**
* Write data from another stream to this one.
*/
uint32 writeStream(ReadStream *stream, uint32 dataSize);
uint32 writeStream(SeekableReadStream *stream);
/**
* Write the given string to the stream.
* This writes str.size() characters, but no terminating zero byte.
*/
void writeString(const String &str);
};
/**
* Derived abstract base class for write streams streams that are seekable
*/
class SeekableWriteStream : public WriteStream {
public:
/**
* Sets the stream position indicator for the stream. The new position,
* measured in bytes, is obtained by adding offset bytes to the position
* specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
* SEEK_END, the offset is relative to the start of the file, the current
* position indicator, or end-of-file, respectively. A successful call
* to the seek() method clears the end-of-file indicator for the stream.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C fseek().
*
* @param offset the relative offset in bytes
* @param whence the seek reference: SEEK_SET, SEEK_CUR, or SEEK_END
* @return true on success, false in case of a failure
*/
virtual bool seek(int32 offset, int whence = SEEK_SET) = 0;
/**
* Obtains the current size of the stream, measured in bytes.
* If this value is unknown or can not be computed, -1 is returned.
*
* @return the size of the stream, or -1 if an error occurred
*/
virtual int32 size() const = 0;
};
/**
* Generic interface for a readable data stream.
*/
class ReadStream : virtual public Stream {
public:
ReadStream() {}
/**
* Returns true if a read failed because the stream end has been reached.
* This flag is cleared by clearErr().
* For a SeekableReadStream, it is also cleared by a successful seek.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C feof(). In particular, in a stream
* with N bytes, reading exactly N bytes from the start should *not*
* set eos; only reading *beyond* the available data should set it.
*/
virtual bool eos() const = 0;
/**
* Read data from the stream. Subclasses must implement this
* method; all other read methods are implemented using it.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C fread(), in particular where
* it concerns setting error and end of file/stream flags.
*
* @param dataPtr pointer to a buffer into which the data is read
* @param dataSize number of bytes to be read
* @return the number of bytes which were actually read.
*/
virtual uint32 read(void *dataPtr, uint32 dataSize) = 0;
// The remaining methods all have default implementations; subclasses
// in general should not overload them.
/**
* Read an unsigned byte from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
byte readByte() {
byte b = 0; // FIXME: remove initialisation
read(&b, 1);
return b;
}
/**
* Read a signed byte from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int8 readSByte() {
return (int8)readByte();
}
/**
* Read an unsigned 16-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint16 readUint16LE() {
uint16 val;
read(&val, 2);
return FROM_LE_16(val);
}
/**
* Read an unsigned 32-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint32 readUint32LE() {
uint32 val;
read(&val, 4);
return FROM_LE_32(val);
}
/**
* Read an unsigned 64-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint64 readUint64LE() {
uint64 val;
read(&val, 8);
return FROM_LE_64(val);
}
/**
* Read an unsigned 16-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint16 readUint16BE() {
uint16 val;
read(&val, 2);
return FROM_BE_16(val);
}
/**
* Read an unsigned 32-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint32 readUint32BE() {
uint32 val;
read(&val, 4);
return FROM_BE_32(val);
}
/**
* Read an unsigned 64-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
uint64 readUint64BE() {
uint64 val;
read(&val, 8);
return FROM_BE_64(val);
}
/**
* Read a signed 16-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int16 readSint16LE() {
return (int16)readUint16LE();
}
/**
* Read a signed 32-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int32 readSint32LE() {
return (int32)readUint32LE();
}
/**
* Read a signed 64-bit word stored in little endian (LSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int64 readSint64LE() {
return (int64)readUint64LE();
}
/**
* Read a signed 16-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int16 readSint16BE() {
return (int16)readUint16BE();
}
/**
* Read a signed 32-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int32 readSint32BE() {
return (int32)readUint32BE();
}
/**
* Read a signed 64-bit word stored in big endian (MSB first) order
* from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE int64 readSint64BE() {
return (int64)readUint64BE();
}
/**
* Read a 32-bit floating point value stored in little endian (LSB first)
* order from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE float readFloatLE() {
uint32 n = readUint32LE();
float f;
memcpy(&f, &n, 4);
return f;
}
/**
* Read a 32-bit floating point value stored in big endian
* order from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE float readFloatBE() {
uint32 n = readUint32BE();
float f;
memcpy(&f, &n, 4);
return f;
}
/**
* Read a 64-bit floating point value stored in little endian (LSB first)
* order from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE double readDoubleLE() {
uint64 n = readUint64LE();
double d;
memcpy(&d, &n, 8);
return d;
}
/**
* Read a 64-bit floating point value stored in big endian
* order from the stream and return it.
* Performs no error checking. The return value is undefined
* if a read error occurred (for which client code can check by
* calling err() and eos() ).
*/
FORCEINLINE double readDoubleBE() {
uint64 n = readUint64BE();
double d;
memcpy(&d, &n, 8);
return d;
}
/**
* Read the specified amount of data into a malloc'ed buffer
* which then is wrapped into a MemoryReadStream.
* The returned stream might contain less data than requested,
* if reading more failed, because of an I/O error or because
* the end of the stream was reached. Which can be determined by
* calling err() and eos().
*/
SeekableReadStream *readStream(uint32 dataSize);
/**
* Read stream in Pascal format, that is, one byte is
* string length, followed by string data
*
* @param transformCR if set (default), then transform \r into \n
*/
Common::String readPascalString(bool transformCR = true);
};
/**
* Interface for a seekable & readable data stream.
*
* @todo Get rid of SEEK_SET, SEEK_CUR, or SEEK_END, use our own constants
*/
class SeekableReadStream : virtual public ReadStream {
public:
/**
* Obtains the current value of the stream position indicator of the
* stream.
*
* @return the current position indicator, or -1 if an error occurred.
*/
virtual int32 pos() const = 0;
/**
* Obtains the total size of the stream, measured in bytes.
* If this value is unknown or can not be computed, -1 is returned.
*
* @return the size of the stream, or -1 if an error occurred
*/
virtual int32 size() const = 0;
/**
* Sets the stream position indicator for the stream. The new position,
* measured in bytes, is obtained by adding offset bytes to the position
* specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
* SEEK_END, the offset is relative to the start of the file, the current
* position indicator, or end-of-file, respectively. A successful call
* to the seek() method clears the end-of-file indicator for the stream.
*
* @note The semantics of any implementation of this method are
* supposed to match those of ISO C fseek().
*
* @param offset the relative offset in bytes
* @param whence the seek reference: SEEK_SET, SEEK_CUR, or SEEK_END
* @return true on success, false in case of a failure
*/
virtual bool seek(int32 offset, int whence = SEEK_SET) = 0;
/**
* TODO: Get rid of this??? Or keep it and document it
* @return true on success, false in case of a failure
*/
virtual bool skip(uint32 offset) { return seek(offset, SEEK_CUR); }
/**
* Reads at most one less than the number of characters specified
* by bufSize from the and stores them in the string buf. Reading
* stops when the end of a line is reached (CR, CR/LF or LF), and
* at end-of-file or error. The newline, if any, is retained (CR
* and CR/LF are translated to LF = 0xA = '\n'). If any characters
* are read and there is no error, a `\0' character is appended
* to end the string.
*
* Upon successful completion, return a pointer to the string. If
* end-of-file occurs before any characters are read, returns NULL
* and the buffer contents remain unchanged. If an error occurs,
* returns NULL and the buffer contents are indeterminate.
* This method does not distinguish between end-of-file and error;
* callers must use err() or eos() to determine which occurred.
*
* @note This methods is closely modeled after the standard fgets()
* function from stdio.h.
*
* @param s the buffer to store into
* @param bufSize the size of the buffer
* @param handleCR if set (default), then CR and CR/LF are handled as well as LF
* @return a pointer to the read string, or NULL if an error occurred
*/
virtual char *readLine(char *s, size_t bufSize, bool handleCR = true);
/**
* Reads a full line and returns it as a Common::String. Reading
* stops when the end of a line is reached (CR, CR/LF or LF), and
* at end-of-file or error.
*
* Upon successful completion, return a string with the content
* of the line, *without* the end of a line marker. This method
* does not indicate whether an error occurred. Callers must use
* err() or eos() to determine whether an exception occurred.
*
* @param handleCR if set (default), then CR and CR/LF are handled as well as LF
*/
virtual String readLine(bool handleCR = true);
/**
* Print a hexdump of the stream while maintaing position. The number
* of bytes per line is customizable.
* @param len the length of that data
* @param bytesPerLine number of bytes to print per line (default: 16)
* @param startOffset shift the shown offsets by the starting offset (default: 0)
*/
void hexdump(int len, int bytesPerLine = 16, int startOffset = 0);
};
/**
* This is a ReadStream mixin subclass which adds non-endian read
* methods whose endianness is set during the stream creation.
*/
class ReadStreamEndian : virtual public ReadStream {
private:
const bool _bigEndian;
public:
ReadStreamEndian(bool bigEndian) : _bigEndian(bigEndian) {}
bool isBE() const { return _bigEndian; }
uint16 readUint16() {
uint16 val;
read(&val, 2);
return (_bigEndian) ? TO_BE_16(val) : TO_LE_16(val);
}
uint32 readUint32() {
uint32 val;
read(&val, 4);
return (_bigEndian) ? TO_BE_32(val) : TO_LE_32(val);
}
uint64 readUint64() {
uint64 val;
read(&val, 8);
return (_bigEndian) ? TO_BE_64(val) : TO_LE_64(val);
}
FORCEINLINE int16 readSint16() {
return (int16)readUint16();
}
FORCEINLINE int32 readSint32() {
return (int32)readUint32();
}
FORCEINLINE int64 readSint64() {
return (int64)readUint64();
}
};
/**
* This is a SeekableReadStream subclass which adds non-endian read
* methods whose endianness is set during the stream creation.
*/
class SeekableReadStreamEndian : virtual public SeekableReadStream, virtual public ReadStreamEndian {
public:
SeekableReadStreamEndian(bool bigEndian) : ReadStreamEndian(bigEndian) {}
};
/** @} */
} // End of namespace Common
#endif