scummvm/engines/grim/model.cpp
2021-12-26 21:19:38 +01:00

799 lines
21 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "common/algorithm.h"
#include "common/endian.h"
#include "common/func.h"
#include "engines/grim/debug.h"
#include "engines/grim/grim.h"
#include "engines/grim/model.h"
#include "engines/grim/material.h"
#include "engines/grim/textsplit.h"
#include "engines/grim/gfx_base.h"
#include "engines/grim/resource.h"
#include "engines/grim/colormap.h"
#include "engines/grim/sprite.h"
namespace Grim {
/**
* @class Model
*/
Model::Model(const Common::String &filename, Common::SeekableReadStream *data, CMap *cmap, Model *parent) :
Object(), _parent(parent), _numMaterials(0), _numGeosets(0), _cmap(cmap), _fname(filename) {
if (data->readUint32BE() == MKTAG('L','D','O','M'))
loadBinary(data);
else {
data->seek(0, SEEK_SET);
TextSplitter ts(_fname, data);
loadText(&ts);
}
Math::Vector3d max;
_rootHierNode->update();
bool first = true;
for (int i = 0; i < _numHierNodes; ++i) {
ModelNode &node = _rootHierNode[i];
if (node._mesh) {
g_driver->createMesh(node._mesh);
Mesh &mesh = *node._mesh;
Math::Vector3d p = mesh._matrix.getPosition();
float x = p.x();
float y = p.y();
float z = p.z();
for (int k = 0; k < mesh._numVertices * 3; k += 3) {
if (first || mesh._vertices[k] + x < _bboxPos.x())
_bboxPos.x() = mesh._vertices[k] + x;
if (first || mesh._vertices[k + 1] + y < _bboxPos.y())
_bboxPos.y() = mesh._vertices[k + 1] + y;
if (first || mesh._vertices[k + 2] + z < _bboxPos.z())
_bboxPos.z() = mesh._vertices[k + 2] + z;
if (first || mesh._vertices[k] + x > max.x())
max.x() = mesh._vertices[k] + x;
if (first || mesh._vertices[k + 1] + y > max.y())
max.y() = mesh._vertices[k + 1] + y;
if (first || mesh._vertices[k + 2] + z > max.z())
max.z() = mesh._vertices[k + 2] + z;
first = false;
}
}
}
_bboxSize = max - _bboxPos;
}
Model::~Model() {
for (int i = 0; i < _numMaterials; ++i) {
if (!_materialsShared[i]) {
delete _materials[i];
}
}
delete[] _materials;
delete[] _materialNames;
delete[] _materialsShared;
delete[] _geosets;
delete[] _rootHierNode;
g_resourceloader->uncacheModel(this);
}
void Model::loadBinary(Common::SeekableReadStream *data) {
_numMaterials = data->readUint32LE();
_materials = new Material*[_numMaterials];
_materialNames = new char[_numMaterials][32];
_materialsShared = new bool[_numMaterials];
for (int i = 0; i < _numMaterials; i++) {
data->read(_materialNames[i], 32);
_materialsShared[i] = false;
_materials[i] = nullptr;
loadMaterial(i, _cmap);
}
data->seek(32, SEEK_CUR); // skip name
data->seek(4, SEEK_CUR);
_numGeosets = data->readUint32LE();
_geosets = new Geoset[_numGeosets];
for (int i = 0; i < _numGeosets; i++)
_geosets[i].loadBinary(data, _materials);
data->seek(4, SEEK_CUR);
_numHierNodes = data->readUint32LE();
_rootHierNode = new ModelNode[_numHierNodes];
for (int i = 0; i < _numHierNodes; i++) {
_rootHierNode[i].loadBinary(data, _rootHierNode, &_geosets[0]);
}
_radius = data->readFloatLE();
data->seek(36, SEEK_CUR);
_insertOffset.readFromStream(data);
}
void Model::loadText(TextSplitter *ts) {
ts->expectString("section: header");
int major, minor;
ts->scanString("3do %d.%d", 2, &major, &minor);
ts->expectString("section: modelresource");
ts->scanString("materials %d", 1, &_numMaterials);
_materials = new Material*[_numMaterials];
_materialNames = new char[_numMaterials][32];
_materialsShared = new bool[_numMaterials];
for (int i = 0; i < _numMaterials; i++) {
char materialName[32];
int num;
_materialsShared[i] = false;
_materials[i] = nullptr;
ts->scanString("%d: %32s", 2, &num, materialName);
strcpy(_materialNames[num], materialName);
loadMaterial(num, _cmap);
}
ts->expectString("section: geometrydef");
ts->scanString("radius %f", 1, &_radius);
ts->scanString("insert offset %f %f %f", 3, &_insertOffset.x(), &_insertOffset.y(), &_insertOffset.z());
ts->scanString("geosets %d", 1, &_numGeosets);
_geosets = new Geoset[_numGeosets];
for (int i = 0; i < _numGeosets; i++) {
int num;
ts->scanString("geoset %d", 1, &num);
_geosets[num].loadText(ts, _materials);
}
ts->expectString("section: hierarchydef");
ts->scanString("hierarchy nodes %d", 1, &_numHierNodes);
_rootHierNode = new ModelNode[_numHierNodes];
for (int i = 0; i < _numHierNodes; i++) {
int num, mesh, parent, child, sibling, numChildren;
unsigned int flags, type;
float x, y, z, pitch, yaw, roll, pivotx, pivoty, pivotz;
char name[64];
ts->scanString(" %d: %x %x %d %d %d %d %d %f %f %f %f %f %f %f %f %f %64s",
18, &num, &flags, &type, &mesh, &parent, &child, &sibling,
&numChildren, &x, &y, &z, &pitch, &yaw, &roll, &pivotx, &pivoty, &pivotz, name);
_rootHierNode[num]._flags = (int)flags;
_rootHierNode[num]._type = (int)type;
if (mesh < 0)
_rootHierNode[num]._mesh = nullptr;
else
_rootHierNode[num]._mesh = &_geosets[0]._meshes[mesh];
if (parent >= 0) {
_rootHierNode[num]._parent = &_rootHierNode[parent];
_rootHierNode[num]._depth = _rootHierNode[parent]._depth + 1;
} else {
_rootHierNode[num]._parent = nullptr;
_rootHierNode[num]._depth = 0;
}
if (child >= 0)
_rootHierNode[num]._child = &_rootHierNode[child];
else
_rootHierNode[num]._child = nullptr;
if (sibling >= 0)
_rootHierNode[num]._sibling = &_rootHierNode[sibling];
else
_rootHierNode[num]._sibling = nullptr;
_rootHierNode[num]._numChildren = numChildren;
_rootHierNode[num]._pos = Math::Vector3d(x, y, z);
_rootHierNode[num]._rot = Math::Quaternion::fromEuler(yaw, pitch, roll, Math::EO_ZXY);
_rootHierNode[num]._animRot = _rootHierNode[num]._rot;
_rootHierNode[num]._animPos = _rootHierNode[num]._pos;
_rootHierNode[num]._pivot = Math::Vector3d(pivotx, pivoty, pivotz);
_rootHierNode[num]._meshVisible = true;
_rootHierNode[num]._hierVisible = true;
_rootHierNode[num]._sprite = nullptr;
_rootHierNode[num]._initialized = true;
}
if (!ts->isEof())
Debug::warning(Debug::Models, "Unexpected junk at end of model text");
}
void Model::draw() const {
_rootHierNode->draw();
}
ModelNode *Model::getHierarchy() const {
return _rootHierNode;
}
void Model::reload(CMap *cmap) {
// Load the new colormap
for (int i = 0; i < _numMaterials; i++) {
loadMaterial(i, cmap);
}
for (int i = 0; i < _numGeosets; i++)
_geosets[i].changeMaterials(_materials);
_cmap = cmap;
}
void Model::loadMaterial(int index, CMap *cmap) {
Material *mat = nullptr;
if (!_materialsShared[index]) {
mat = _materials[index];
}
_materials[index] = nullptr;
if (_parent) {
_materials[index] = _parent->findMaterial(_materialNames[index], cmap);
if (_materials[index]) {
_materialsShared[index] = true;
}
}
if (!_materials[index]) {
if (mat && cmap->getFilename() == _cmap->getFilename()) {
_materials[index] = mat;
} else {
_materials[index] = g_resourceloader->loadMaterial(_materialNames[index], cmap, false);
}
_materialsShared[index] = false;
}
if (mat != _materials[index]) {
delete mat;
}
}
Material *Model::findMaterial(const char *name, CMap *cmap) const {
for (int i = 0; i < _numMaterials; ++i) {
if (scumm_stricmp(name, _materialNames[i]) == 0) {
if (cmap->getFilename() != _cmap->getFilename())
_materials[i]->reload(cmap);
return _materials[i];
}
}
return nullptr;
}
/**
* @class Model::Geoset
*/
Model::Geoset::~Geoset() {
delete[] _meshes;
}
void Model::Geoset::loadBinary(Common::SeekableReadStream *data, Material *materials[]) {
_numMeshes = data->readUint32LE();
_meshes = new Mesh[_numMeshes];
for (int i = 0; i < _numMeshes; i++)
_meshes[i].loadBinary(data, materials);
}
void Model::Geoset::loadText(TextSplitter *ts, Material *materials[]) {
ts->scanString("meshes %d", 1, &_numMeshes);
_meshes = new Mesh[_numMeshes];
for (int i = 0; i < _numMeshes; i++) {
int num;
ts->scanString("mesh %d", 1, &num);
_meshes[num].loadText(ts, materials);
}
}
void Model::Geoset::changeMaterials(Material *materials[]) {
for (int i = 0; i < _numMeshes; i++)
_meshes[i].changeMaterials(materials);
}
/**
* @class MeshFace
*/
MeshFace::MeshFace() :
_material(nullptr), _type(0), _geo(0), _light(0), _tex(0),
_extraLight(0), _numVertices(0), _vertices(nullptr),
_texVertices(nullptr), _userData(nullptr) {
}
MeshFace::~MeshFace() {
delete[] _vertices;
delete[] _texVertices;
}
void MeshFace::stealData(MeshFace &other) {
*this = other;
other._vertices = nullptr;
other._texVertices = nullptr;
}
int MeshFace::loadBinary(Common::SeekableReadStream *data, Material *materials[]) {
data->seek(4, SEEK_CUR);
_type = data->readUint32LE();
_geo = data->readUint32LE();
_light = data->readUint32LE();
_tex = data->readUint32LE();
_numVertices = data->readUint32LE();
data->seek(4, SEEK_CUR);
int texPtr = data->readUint32LE();
int materialPtr = data->readUint32LE();
data->seek(12, SEEK_CUR);
_extraLight = data->readFloatLE();
data->seek(12, SEEK_CUR);
_normal.readFromStream(data);
_vertices = new int[_numVertices];
for (int i = 0; i < _numVertices; i++) {
_vertices[i] = data->readUint32LE();
}
if (texPtr != 0) {
_texVertices = new int[_numVertices];
for (int i = 0; i < _numVertices; i++) {
_texVertices[i] = data->readUint32LE();
}
}
if (materialPtr != 0) {
materialPtr = data->readUint32LE();
_material = materials[materialPtr];
}
return materialPtr;
}
int MeshFace::loadText(TextSplitter *ts, Material *materials[], int offset) {
int readlen, materialid;
if (ts->isEof())
error("Expected face data, got EOF");
ts->scanStringAtOffsetNoNewLine(offset, "%d %x %d %d %d %f %d%n", 7, &materialid, &_type, &_geo, &_light, &_tex, &_extraLight, &_numVertices, &readlen);
readlen += offset;
assert(materialid != -1);
_material = materials[materialid];
_vertices = new int[_numVertices];
_texVertices = new int[_numVertices];
for (int i = 0; i < _numVertices; ++i) {
int readlen2;
ts->scanStringAtOffsetNoNewLine(readlen, " %d, %d%n", 2, &_vertices[i], &_texVertices[i], &readlen2);
readlen += readlen2;
}
ts->nextLine();
return materialid;
}
void MeshFace::changeMaterial(Material *material) {
_material = material;
}
void MeshFace::draw(const Mesh *mesh) const {
if (_light == 0 && !g_driver->isShadowModeActive())
g_driver->disableLights();
_material->select();
g_driver->drawModelFace(mesh, this);
if (_light == 0 && !g_driver->isShadowModeActive())
g_driver->enableLights();
}
/**
* @class Mesh
*/
Mesh::Mesh() :
_numFaces(0), _radius(0.0f), _shadow(0), _geometryMode(0),
_lightingMode(0), _textureMode(0), _numVertices(0), _materialid(nullptr),
_vertices(nullptr), _verticesI(nullptr), _vertNormals(nullptr),
_numTextureVerts(0), _textureVerts(nullptr), _faces(nullptr), _userData(nullptr) {
_name[0] = '\0';
}
Mesh::~Mesh() {
g_driver->destroyMesh(this);
delete[] _vertices;
delete[] _verticesI;
delete[] _vertNormals;
delete[] _textureVerts;
delete[] _faces;
delete[] _materialid;
}
void Mesh::loadBinary(Common::SeekableReadStream *data, Material *materials[]) {
data->read(_name, 32);
data->seek(4, SEEK_CUR);
_geometryMode = data->readUint32LE();
_lightingMode = data->readUint32LE();
_textureMode = data->readUint32LE();
_numVertices = data->readUint32LE();
_numTextureVerts = data->readUint32LE();
_numFaces = data->readUint32LE();
_vertices = new float[3 * _numVertices];
_verticesI = new float[_numVertices];
_vertNormals = new float[3 * _numVertices];
_textureVerts = new float[2 * _numTextureVerts];
_faces = new MeshFace[_numFaces];
_materialid = new int[_numFaces];
for (int i = 0; i < 3 * _numVertices; i++) {
_vertices[i] = data->readFloatLE();
}
for (int i = 0; i < 2 * _numTextureVerts; i++) {
_textureVerts[i] = data->readFloatLE();
}
for (int i = 0; i < _numVertices; i++) {
_verticesI[i] = data->readFloatLE();
}
data->seek(_numVertices * 4, SEEK_CUR);
for (int i = 0; i < _numFaces; i++)
_materialid[i] = _faces[i].loadBinary(data, materials);
for (int i = 0; i < 3 * _numVertices; i++) {
_vertNormals[i] = data->readFloatLE();
}
_shadow = data->readUint32LE();
data->seek(4, SEEK_CUR);
_radius = data->readFloatLE();
data->seek(24, SEEK_CUR);
sortFaces();
}
void Mesh::loadText(TextSplitter *ts, Material *materials[]) {
ts->scanString("name %32s", 1, _name);
ts->scanString("radius %f", 1, &_radius);
// In data001/rope_scale.3do, the shadow line is missing
if (sscanf(ts->getCurrentLine(), "shadow %d", &_shadow) < 1) {
_shadow = 0;
} else
ts->nextLine();
ts->scanString("geometrymode %d", 1, &_geometryMode);
ts->scanString("lightingmode %d", 1, &_lightingMode);
ts->scanString("texturemode %d", 1, &_textureMode);
ts->scanString("vertices %d", 1, &_numVertices);
_vertices = new float[3 * _numVertices];
_verticesI = new float[_numVertices];
_vertNormals = new float[3 * _numVertices];
for (int i = 0; i < _numVertices; i++) {
int num;
float x, y, z, ival;
ts->scanString(" %d: %f %f %f %f", 5, &num, &x, &y, &z, &ival);
_vertices[3 * num] = x;
_vertices[3 * num + 1] = y;
_vertices[3 * num + 2] = z;
_verticesI[num] = ival;
}
ts->scanString("texture vertices %d", 1, &_numTextureVerts);
_textureVerts = new float[2 * _numTextureVerts];
for (int i = 0; i < _numTextureVerts; i++) {
int num;
float x, y;
ts->scanString(" %d: %f %f", 3, &num, &x, &y);
_textureVerts[2 * num] = x;
_textureVerts[2 * num + 1] = y;
}
ts->expectString("vertex normals");
for (int i = 0; i < _numVertices; i++) {
int num;
float x, y, z;
ts->scanString(" %d: %f %f %f", 4, &num, &x, &y, &z);
_vertNormals[3 * num] = x;
_vertNormals[3 * num + 1] = y;
_vertNormals[3 * num + 2] = z;
}
ts->scanString("faces %d", 1, &_numFaces);
_faces = new MeshFace[_numFaces];
_materialid = new int[_numFaces];
for (int i = 0; i < _numFaces; i++) {
int num, readlen;
ts->scanStringNoNewLine(" %d:%n ", 1, &num, &readlen);
_materialid[num] = _faces[num].loadText(ts, materials, readlen);
}
ts->expectString("face normals");
for (int i = 0; i < _numFaces; i++) {
int num;
float x, y, z;
ts->scanString(" %d: %f %f %f", 4, &num, &x, &y, &z);
_faces[num].setNormal(Math::Vector3d(x, y, z));
}
sortFaces();
}
void Mesh::sortFaces() {
if (_numFaces < 2)
return;
MeshFace *newFaces = new MeshFace[_numFaces];
int *newMaterialid = new int[_numFaces];
bool *copied = new bool[_numFaces];
for (int i = 0; i < _numFaces; ++i)
copied[i] = false;
for (int cur = 0, writeIdx = 0; cur < _numFaces; ++cur) {
if (copied[cur])
continue;
for (int other = cur; other < _numFaces; ++other) {
if (_faces[cur].getMaterial() == _faces[other].getMaterial() && !copied[other]) {
copied[other] = true;
newFaces[writeIdx].stealData(_faces[other]);
newMaterialid[writeIdx] = _materialid[other];
writeIdx++;
}
}
}
delete[] _faces;
_faces = newFaces;
delete[] _materialid;
_materialid = newMaterialid;
delete[] copied;
}
void Mesh::update() {
}
void Mesh::changeMaterials(Material *materials[]) {
for (int i = 0; i < _numFaces; i++)
_faces[i].changeMaterial(materials[_materialid[i]]);
}
void Mesh::draw() const {
if (_lightingMode == 0)
g_driver->disableLights();
g_driver->drawMesh(this);
if (_lightingMode == 0)
g_driver->enableLights();
}
void Mesh::getBoundingBox(int *x1, int *y1, int *x2, int *y2) const {
int winX1, winY1, winX2, winY2;
g_driver->getScreenBoundingBox(this, &winX1, &winY1, &winX2, &winY2);
if (winX1 != -1 && winY1 != -1 && winX2 != -1 && winY2 != -1) {
*x1 = MIN(*x1, winX1);
*y1 = MIN(*y1, winY1);
*x2 = MAX(*x2, winX2);
*y2 = MAX(*y2, winY2);
}
}
/**
* @class ModelNode
*/
ModelNode::ModelNode() :
_initialized(false), _needsUpdate(true), _mesh(nullptr), _flags(0), _type(0),
_depth(0), _numChildren(0), _parent(nullptr), _child(nullptr), _sprite(nullptr),
_sibling(nullptr), _meshVisible(false), _hierVisible(false) {
_name[0] = '\0';
}
ModelNode::~ModelNode() {
ModelNode *child = _child;
while (child) {
child->_parent = nullptr;
child = child->_sibling;
}
}
void ModelNode::loadBinary(Common::SeekableReadStream *data, ModelNode *hierNodes, const Model::Geoset *g) {
data->read(_name, 64);
_flags = data->readUint32LE();
data->seek(4, SEEK_CUR);
_type = data->readUint32LE();
int meshNum = data->readUint32LE();
if (meshNum < 0)
_mesh = nullptr;
else
_mesh = g->_meshes + meshNum;
_depth = data->readUint32LE();
int parentPtr = data->readUint32LE();
_numChildren = data->readUint32LE();
int childPtr = data->readUint32LE();
int siblingPtr = data->readUint32LE();
_pivot.readFromStream(data);
_pos.readFromStream(data);
float pitch = data->readFloatLE();
float yaw = data->readFloatLE();
float roll = data->readFloatLE();
_rot = Math::Quaternion::fromEuler(yaw, pitch, roll, Math::EO_ZXY);
_animRot = _rot;
_animPos = _pos;
_sprite = nullptr;
data->seek(48, SEEK_CUR);
if (parentPtr != 0)
_parent = hierNodes + data->readUint32LE();
else
_parent = nullptr;
if (childPtr != 0)
_child = hierNodes + data->readUint32LE();
else
_child = nullptr;
if (siblingPtr != 0)
_sibling = hierNodes + data->readUint32LE();
else
_sibling = nullptr;
_meshVisible = true;
_hierVisible = true;
_initialized = true;
}
void ModelNode::draw() const {
if (_sibling || _child) {
translateViewpointStart();
}
translateViewpoint();
if (_hierVisible) {
if (_child) {
translateViewpointStart();
}
g_driver->translateViewpoint(_pivot);
if (!g_driver->isShadowModeActive()) {
Sprite *sprite = _sprite;
while (sprite) {
sprite->draw();
sprite = sprite->_next;
}
}
if (_mesh && _meshVisible) {
_mesh->draw();
}
if (_child) {
translateViewpointFinish();
_child->draw();
}
}
if (_sibling || _child) {
translateViewpointFinish();
}
if (_sibling) {
_sibling->draw();
}
}
void ModelNode::getBoundingBox(int *x1, int *y1, int *x2, int *y2) const {
if (_sibling || _child) {
translateViewpointStart();
}
translateViewpoint();
if (_hierVisible) {
if (_child) {
translateViewpointStart();
}
g_driver->translateViewpoint(_pivot);
if (_mesh && _meshVisible) {
_mesh->getBoundingBox(x1, y1, x2, y2);
}
if (_child) {
translateViewpointFinish();
_child->getBoundingBox(x1, y1, x2, y2);
}
}
if (_sibling || _child) {
translateViewpointFinish();
}
if (_sibling) {
_sibling->getBoundingBox(x1, y1, x2, y2);
}
}
void ModelNode::addChild(ModelNode *child) {
ModelNode **childPos = &_child;
while (*childPos)
childPos = &(*childPos)->_sibling;
*childPos = child;
child->_parent = this;
}
void ModelNode::removeChild(ModelNode *child) {
ModelNode **childPos = &_child;
while (*childPos && *childPos != child)
childPos = &(*childPos)->_sibling;
if (*childPos) {
*childPos = child->_sibling;
child->_parent = nullptr;
}
}
void ModelNode::setMatrix(const Math::Matrix4 &matrix) {
_matrix = matrix;
if (_sibling)
_sibling->setMatrix(matrix);
}
void ModelNode::update() {
if (!_initialized)
return;
if (_hierVisible && _needsUpdate) {
_localMatrix = _animRot.toMatrix();
_localMatrix.setPosition(_animPos);
_matrix = _matrix * _localMatrix;
_pivotMatrix = _matrix;
_pivotMatrix.translate(_pivot);
if (_mesh) {
_mesh->_matrix = _pivotMatrix;
}
if (_child) {
_child->setMatrix(_matrix);
_child->update();
}
_needsUpdate = false;
}
if (_sibling) {
_sibling->update();
}
}
void ModelNode::addSprite(Sprite *sprite) {
sprite->_next = _sprite;
_sprite = sprite;
}
void ModelNode::removeSprite(const Sprite *sprite) {
Sprite *curr = _sprite;
Sprite *prev = nullptr;
while (curr) {
if (curr == sprite) {
if (prev)
prev->_next = curr->_next;
else
_sprite = curr->_next;
}
prev = curr;
curr = curr->_next;
}
}
void ModelNode::translateViewpoint() const {
g_driver->translateViewpoint(_animPos);
Math::Matrix4 rot = _animRot.toMatrix();
rot.transpose();
g_driver->rotateViewpoint(rot);
}
void ModelNode::translateViewpointStart() const {
g_driver->translateViewpointStart();
}
void ModelNode::translateViewpointFinish() const {
g_driver->translateViewpointFinish();
}
} // end of namespace Grim