scummvm/engines/hugo/object_v1d.cpp
2012-06-13 21:18:37 +02:00

388 lines
13 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/*
* This code is based on original Hugo Trilogy source code
*
* Copyright (c) 1989-1995 David P. Gray
*
*/
#include "common/debug.h"
#include "common/system.h"
#include "common/random.h"
#include "hugo/hugo.h"
#include "hugo/game.h"
#include "hugo/object.h"
#include "hugo/display.h"
#include "hugo/file.h"
#include "hugo/route.h"
#include "hugo/util.h"
#include "hugo/parser.h"
#include "hugo/schedule.h"
namespace Hugo {
ObjectHandler_v1d::ObjectHandler_v1d(HugoEngine *vm) : ObjectHandler(vm) {
}
ObjectHandler_v1d::~ObjectHandler_v1d() {
}
/**
* Draw all objects on screen as follows:
* 1. Sort 'FLOATING' objects in order of y2 (base of object)
* 2. Display new object frames/positions in dib
* Finally, cycle any animating objects to next frame
*/
void ObjectHandler_v1d::updateImages() {
debugC(5, kDebugObject, "updateImages");
// Initialize the index array to visible objects in current screen
int objNumb = 0;
byte objindex[kMaxObjNumb]; // Array of indeces to objects
for (int i = 0; i < _numObj; i++) {
Object *obj = &_objects[i];
if ((obj->_screenIndex == *_vm->_screenPtr) && (obj->_cycling >= kCycleAlmostInvisible))
objindex[objNumb++] = i;
}
// Sort the objects into increasing y+y2 (painter's algorithm)
qsort(objindex, objNumb, sizeof(objindex[0]), y2comp);
// Add each visible object to display list
for (int i = 0; i < objNumb; i++) {
Object *obj = &_objects[objindex[i]];
// Count down inter-frame timer
if (obj->_frameTimer)
obj->_frameTimer--;
if (obj->_cycling > kCycleAlmostInvisible) { // Only if visible
switch (obj->_cycling) {
case kCycleNotCycling:
_vm->_screen->displayFrame(obj->_x, obj->_y, obj->_currImagePtr, false);
break;
case kCycleForward:
if (obj->_frameTimer) // Not time to see next frame yet
_vm->_screen->displayFrame(obj->_x, obj->_y, obj->_currImagePtr, false);
else
_vm->_screen->displayFrame(obj->_x, obj->_y, obj->_currImagePtr->_nextSeqPtr, false);
break;
case kCycleBackward: {
Seq *seqPtr = obj->_currImagePtr;
if (!obj->_frameTimer) { // Show next frame
while (seqPtr->_nextSeqPtr != obj->_currImagePtr)
seqPtr = seqPtr->_nextSeqPtr;
}
_vm->_screen->displayFrame(obj->_x, obj->_y, seqPtr, false);
break;
}
default:
break;
}
}
}
_vm->_scheduler->waitForRefresh();
// Cycle any animating objects
for (int i = 0; i < objNumb; i++) {
Object *obj = &_objects[objindex[i]];
if (obj->_cycling != kCycleInvisible) {
// Only if it's visible
if (obj->_cycling == kCycleAlmostInvisible)
obj->_cycling = kCycleInvisible;
// Now Rotate to next picture in sequence
switch (obj->_cycling) {
case kCycleNotCycling:
break;
case kCycleForward:
if (!obj->_frameTimer) {
// Time to step to next frame
obj->_currImagePtr = obj->_currImagePtr->_nextSeqPtr;
// Find out if this is last frame of sequence
// If so, reset frame_timer and decrement n_cycle
if (obj->_frameInterval || obj->_cycleNumb) {
obj->_frameTimer = obj->_frameInterval;
for (int j = 0; j < obj->_seqNumb; j++) {
if (obj->_currImagePtr->_nextSeqPtr == obj->_seqList[j]._seqPtr) {
if (obj->_cycleNumb) { // Decr cycleNumb if Non-continous
if (!--obj->_cycleNumb)
obj->_cycling = kCycleNotCycling;
}
}
}
}
}
break;
case kCycleBackward: {
if (!obj->_frameTimer) {
// Time to step to prev frame
Seq *seqPtr = obj->_currImagePtr;
while (obj->_currImagePtr->_nextSeqPtr != seqPtr)
obj->_currImagePtr = obj->_currImagePtr->_nextSeqPtr;
// Find out if this is first frame of sequence
// If so, reset frame_timer and decrement n_cycle
if (obj->_frameInterval || obj->_cycleNumb) {
obj->_frameTimer = obj->_frameInterval;
for (int j = 0; j < obj->_seqNumb; j++) {
if (obj->_currImagePtr == obj->_seqList[j]._seqPtr) {
if (obj->_cycleNumb){ // Decr cycleNumb if Non-continous
if (!--obj->_cycleNumb)
obj->_cycling = kCycleNotCycling;
}
}
}
}
}
break;
}
default:
break;
}
obj->_oldx = obj->_x;
obj->_oldy = obj->_y;
}
}
}
/**
* Update all object positions. Process object 'local' events
* including boundary events and collisions
*/
void ObjectHandler_v1d::moveObjects() {
debugC(4, kDebugObject, "moveObjects");
// Added to DOS version in order to handle mouse properly
// Do special route processing
_vm->_route->processRoute();
// Perform any adjustments to velocity based on special path types
// and store all (visible) object baselines into the boundary file.
// Don't store foreground or background objects
for (int i = 0; i < _numObj; i++) {
Object *obj = &_objects[i]; // Get pointer to object
Seq *currImage = obj->_currImagePtr; // Get ptr to current image
if (obj->_screenIndex == *_vm->_screenPtr) {
switch (obj->_pathType) {
case kPathChase: {
// Allowable motion wrt boundary
int dx = _vm->_hero->_x + _vm->_hero->_currImagePtr->_x1 - obj->_x - currImage->_x1;
int dy = _vm->_hero->_y + _vm->_hero->_currImagePtr->_y2 - obj->_y - currImage->_y2 - 1;
if (abs(dx) <= 1)
obj->_vx = 0;
else
obj->_vx = (dx > 0) ? MIN(dx, obj->_vxPath) : MAX(dx, -obj->_vxPath);
if (abs(dy) <= 1)
obj->_vy = 0;
else
obj->_vy = (dy > 0) ? MIN(dy, obj->_vyPath) : MAX(dy, -obj->_vyPath);
// Set first image in sequence (if multi-seq object)
if (obj->_seqNumb == 4) {
if (!obj->_vx) { // Got 4 directions
if (obj->_vx != obj->_oldvx) {// vx just stopped
if (dy > 0)
obj->_currImagePtr = obj->_seqList[SEQ_DOWN]._seqPtr;
else
obj->_currImagePtr = obj->_seqList[SEQ_UP]._seqPtr;
}
} else if (obj->_vx != obj->_oldvx) {
if (dx > 0)
obj->_currImagePtr = obj->_seqList[SEQ_RIGHT]._seqPtr;
else
obj->_currImagePtr = obj->_seqList[SEQ_LEFT]._seqPtr;
}
}
if (obj->_vx || obj->_vy) {
if (obj->_seqNumb > 1)
obj->_cycling = kCycleForward;
} else {
obj->_cycling = kCycleNotCycling;
boundaryCollision(obj); // Must have got hero!
}
obj->_oldvx = obj->_vx;
obj->_oldvy = obj->_vy;
currImage = obj->_currImagePtr; // Get (new) ptr to current image
break;
}
case kPathWander:
if (!_vm->_rnd->getRandomNumber(3 * _vm->_normalTPS)) { // Kick on random interval
obj->_vx = _vm->_rnd->getRandomNumber(obj->_vxPath << 1) - obj->_vxPath;
obj->_vy = _vm->_rnd->getRandomNumber(obj->_vyPath << 1) - obj->_vyPath;
// Set first image in sequence (if multi-seq object)
if (obj->_seqNumb > 1) {
if (!obj->_vx && (obj->_seqNumb > 2)) {
if (obj->_vx != obj->_oldvx) { // vx just stopped
if (obj->_vy > 0)
obj->_currImagePtr = obj->_seqList[SEQ_DOWN]._seqPtr;
else
obj->_currImagePtr = obj->_seqList[SEQ_UP]._seqPtr;
}
} else if (obj->_vx != obj->_oldvx) {
if (obj->_vx > 0)
obj->_currImagePtr = obj->_seqList[SEQ_RIGHT]._seqPtr;
else
obj->_currImagePtr = obj->_seqList[SEQ_LEFT]._seqPtr;
}
if (obj->_vx || obj->_vy)
obj->_cycling = kCycleForward;
else
obj->_cycling = kCycleNotCycling;
}
obj->_oldvx = obj->_vx;
obj->_oldvy = obj->_vy;
currImage = obj->_currImagePtr; // Get (new) ptr to current image
}
break;
default:
; // Really, nothing
}
// Store boundaries
if ((obj->_cycling > kCycleAlmostInvisible) && (obj->_priority == kPriorityFloating))
storeBoundary(obj->_x + currImage->_x1, obj->_x + currImage->_x2, obj->_y + currImage->_y2);
}
}
// Move objects, allowing for boundaries
for (int i = 0; i < _numObj; i++) {
Object *obj = &_objects[i]; // Get pointer to object
if ((obj->_screenIndex == *_vm->_screenPtr) && (obj->_vx || obj->_vy)) {
// Only process if it's moving
// Do object movement. Delta_x,y return allowed movement in x,y
// to move as close to a boundary as possible without crossing it.
Seq *currImage = obj->_currImagePtr; // Get ptr to current image
// object coordinates
int x1 = obj->_x + currImage->_x1; // Left edge of object
int x2 = obj->_x + currImage->_x2; // Right edge
int y1 = obj->_y + currImage->_y1; // Top edge
int y2 = obj->_y + currImage->_y2; // Bottom edge
if ((obj->_cycling > kCycleAlmostInvisible) && (obj->_priority == kPriorityFloating))
clearBoundary(x1, x2, y2); // Clear our own boundary
// Allowable motion wrt boundary
int dx = deltaX(x1, x2, obj->_vx, y2);
if (dx != obj->_vx) {
// An object boundary collision!
boundaryCollision(obj);
obj->_vx = 0;
}
int dy = deltaY(x1, x2, obj->_vy, y2);
if (dy != obj->_vy) {
// An object boundary collision!
boundaryCollision(obj);
obj->_vy = 0;
}
if ((obj->_cycling > kCycleAlmostInvisible) && (obj->_priority == kPriorityFloating))
storeBoundary(x1, x2, y2); // Re-store our own boundary
obj->_x += dx; // Update object position
obj->_y += dy;
// Don't let object go outside screen
if (x1 < kEdge)
obj->_x = kEdge2;
if (x2 > (kXPix - kEdge))
obj->_x = kXPix - kEdge2 - (x2 - x1);
if (y1 < kEdge)
obj->_y = kEdge2;
if (y2 > (kYPix - kEdge))
obj->_y = kYPix - kEdge2 - (y2 - y1);
if ((obj->_vx == 0) && (obj->_vy == 0))
obj->_cycling = kCycleNotCycling;
}
}
// Clear all object baselines from the boundary file.
for (int i = 0; i < _numObj; i++) {
Object *obj = &_objects[i]; // Get pointer to object
Seq *currImage = obj->_currImagePtr; // Get ptr to current image
if ((obj->_screenIndex == *_vm->_screenPtr) && (obj->_cycling > kCycleAlmostInvisible) && (obj->_priority == kPriorityFloating))
clearBoundary(obj->_oldx + currImage->_x1, obj->_oldx + currImage->_x2, obj->_oldy + currImage->_y2);
}
// If maze mode is enabled, do special maze processing
if (_vm->_maze._enabledFl) {
Seq *currImage = _vm->_hero->_currImagePtr;// Get ptr to current image
// hero coordinates
int x1 = _vm->_hero->_x + currImage->_x1; // Left edge of object
int x2 = _vm->_hero->_x + currImage->_x2; // Right edge
int y1 = _vm->_hero->_y + currImage->_y1; // Top edge
int y2 = _vm->_hero->_y + currImage->_y2; // Bottom edge
_vm->_scheduler->processMaze(x1, x2, y1, y2);
}
}
/**
* Swap all the images of one object with another. Set hero_image (we make
* the assumption for now that the first obj is always the HERO) to the object
* number of the swapped image
*/
void ObjectHandler_v1d::swapImages(int objIndex1, int objIndex2) {
debugC(1, kDebugObject, "swapImages(%d, %d)", objIndex1, objIndex2);
SeqList tmpSeqList[kMaxSeqNumb];
int seqListSize = sizeof(SeqList) * kMaxSeqNumb;
memmove(tmpSeqList, _objects[objIndex1]._seqList, seqListSize);
memmove(_objects[objIndex1]._seqList, _objects[objIndex2]._seqList, seqListSize);
memmove(_objects[objIndex2]._seqList, tmpSeqList, seqListSize);
_objects[objIndex1]._currImagePtr = _objects[objIndex1]._seqList[0]._seqPtr;
_objects[objIndex2]._currImagePtr = _objects[objIndex2]._seqList[0]._seqPtr;
_vm->_heroImage = (_vm->_heroImage == kHeroIndex) ? objIndex2 : kHeroIndex;
}
void ObjectHandler_v1d::homeIn(int objIndex1, const int objIndex2, const int8 objDx, const int8 objDy) {
// object obj1 will home in on object obj2
Object *obj1 = &_objects[objIndex1];
Object *obj2 = &_objects[objIndex2];
obj1->_pathType = kPathAuto;
int dx = obj1->_x + obj1->_currImagePtr->_x1 - obj2->_x - obj2->_currImagePtr->_x1;
int dy = obj1->_y + obj1->_currImagePtr->_y1 - obj2->_y - obj2->_currImagePtr->_y1;
if (dx == 0) // Don't EVER divide by zero!
dx = 1;
if (dy == 0)
dy = 1;
if (abs(dx) > abs(dy)) {
obj1->_vx = objDx * -sign<int8>(dx);
obj1->_vy = abs((objDy * dy) / dx) * -sign<int8>(dy);
} else {
obj1->_vy = objDy * sign<int8>(dy);
obj1->_vx = abs((objDx * dx) / dy) * sign<int8>(dx);
}
}
} // End of namespace Hugo