scummvm/sound/flac.cpp
2005-05-11 00:01:44 +00:00

852 lines
30 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2003-2005 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "sound/flac.h"
#ifdef USE_FLAC
#include "common/file.h"
#include "common/util.h"
#include "sound/audiostream.h"
#include "sound/audiocd.h"
#define FLAC__NO_DLL // that MS-magic gave me headaches - just link the library you like
#include <FLAC/seekable_stream_decoder.h>
using Common::File;
#pragma mark -
#pragma mark --- Flac stream ---
#pragma mark -
static const uint MAX_OUTPUT_CHANNELS = 2;
class FlacInputStream : public AudioStream {
public:
FlacInputStream(File *sourceFile, const uint32 fileStart, const uint32 fileStop);
FlacInputStream(File *sourceFile, const uint32 fileStart = 0);
virtual ~FlacInputStream();
int readBuffer(int16 *buffer, const int numSamples);
bool isStereo() const { return _streaminfo.channels >= 2; }
int getRate() const { return _streaminfo.sample_rate; }
bool endOfStream() const { return _streaminfo.channels == 0 || (_lastSampleWritten && getBufferedSamples() == 0); }
/** the mixer aint supporting it right now.. */
//bool endOfData() const { return getBufferedSamples() == 0; }
bool endOfData() const { return endOfStream(); }
uint getChannels() const { return MIN(_streaminfo.channels, MAX_OUTPUT_CHANNELS); }
uint getBufferedSamples() const { return _preBuffer.bufFill; };
const FLAC__StreamMetadata_StreamInfo& getStreamInfo() const {return _streaminfo;}
inline FLAC__SeekableStreamDecoderState getState() const;
inline FLAC__StreamDecoderState getStreamDecoderState() const;
bool isStreamDecoderReady() const { return getStreamDecoderState() == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC ; }
bool init();
bool finish();
bool flush();
inline bool processSingleBlock();
inline bool processUntilEndOfMetadata();
bool seekAbsolute(FLAC__uint64 sample);
inline void setLastSample(FLAC__uint64 absoluteSample);
protected:
inline ::FLAC__SeekableStreamDecoderReadStatus callbackRead(FLAC__byte buffer[], uint *bytes);
inline ::FLAC__SeekableStreamDecoderSeekStatus callbackSeek(FLAC__uint64 absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderTellStatus callbackTell(FLAC__uint64 *absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderLengthStatus callbackLength(FLAC__uint64 *streamLength);
inline bool callbackEOF();
inline ::FLAC__StreamDecoderWriteStatus callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]);
inline void callbackMetadata(const ::FLAC__StreamMetadata *metadata);
inline void callbackError(::FLAC__StreamDecoderErrorStatus status);
::FLAC__SeekableStreamDecoder *_decoder;
private:
static ::FLAC__SeekableStreamDecoderReadStatus callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], uint *bytes, void *clientData);
static ::FLAC__SeekableStreamDecoderSeekStatus callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderTellStatus callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderLengthStatus callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData);
static FLAC__bool callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData);
static ::FLAC__StreamDecoderWriteStatus callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData);
static void callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData);
static void callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData);
// Private and undefined so you can't use them:
FlacInputStream(const FlacInputStream &);
void operator=(const FlacInputStream &);
bool isValid() const { return _decoder != NULL; }
bool allocateBuffer(uint minSamples);
inline void flushBuffer();
inline void deleteBuffer();
/** Header of the Stream */
FLAC__StreamMetadata_StreamInfo _streaminfo;
struct {
/** Handle to the File */
File *fileHandle;
/** Index of next Byte to read */
uint32 filePos;
/** start of stream - not necessary start of file */
uint32 fileStartPos;
/** last index of Stream + 1(!) - not necessary end of file */
uint32 fileEndPos;
} _fileInfo;
/** index of the first Sample to be played */
FLAC__uint64 _firstSample;
/** index + 1(!) of the last Sample to be played - 0 is end of Stream*/
FLAC__uint64 _lastSample;
/** true if the last Sample was decoded from the FLAC-API - there might still be data in the buffer */
bool _lastSampleWritten;
typedef int16 bufType;
enum { BUFTYPE_BITS = 16 };
struct {
bufType *bufData;
bufType *bufReadPos;
uint bufSize;
uint bufFill;
} _preBuffer;
bufType *_outBuffer;
uint _requestedSamples;
void setBestConvertBufferMethod();
typedef void (*PFCONVERTBUFFERS)(bufType*,const FLAC__int32*[], uint, const uint, const uint8);
PFCONVERTBUFFERS _methodConvertBuffers;
static void convertBuffersGeneric(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereo8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMonoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMono8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
};
FlacInputStream::FlacInputStream(File *sourceFile, const uint32 fileStart)
: _decoder(::FLAC__seekable_stream_decoder_new()), _firstSample(0), _lastSample(0),
_outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(true),
_methodConvertBuffers(&FlacInputStream::convertBuffersGeneric)
{
assert(sourceFile != NULL && sourceFile->isOpen());
memset(&_streaminfo, 0, sizeof(_streaminfo));
_preBuffer.bufData = NULL;
_preBuffer.bufFill = 0;
_preBuffer.bufSize = 0;
_fileInfo.fileHandle = sourceFile;
_fileInfo.fileStartPos = fileStart;
_fileInfo.filePos = fileStart;
_fileInfo.fileEndPos = sourceFile->size();
_fileInfo.fileHandle->incRef();
}
FlacInputStream::FlacInputStream(File *sourceFile, const uint32 fileStart, const uint32 fileStop)
: _decoder(::FLAC__seekable_stream_decoder_new()), _firstSample(0), _lastSample(0),
_outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(true),
_methodConvertBuffers(&FlacInputStream::convertBuffersGeneric)
{
assert(sourceFile != NULL && sourceFile->isOpen());
assert(fileStop <= 0 || (fileStart < fileStop && fileStop <= sourceFile->size()));
memset(&_streaminfo, 0, sizeof(_streaminfo));
_preBuffer.bufData = NULL;
_preBuffer.bufFill = 0;
_preBuffer.bufSize = 0;
_fileInfo.fileHandle = sourceFile;
_fileInfo.fileStartPos = fileStart;
_fileInfo.filePos = fileStart;
_fileInfo.fileEndPos = fileStop;
_fileInfo.fileHandle->incRef();
}
FlacInputStream::~FlacInputStream() {
if (_decoder != NULL) {
(void) ::FLAC__seekable_stream_decoder_finish(_decoder);
::FLAC__seekable_stream_decoder_delete(_decoder);
}
if (_preBuffer.bufData != NULL)
delete[] _preBuffer.bufData;
_fileInfo.fileHandle->decRef();
}
inline FLAC__SeekableStreamDecoderState FlacInputStream::getState() const {
assert(isValid());
return ::FLAC__seekable_stream_decoder_get_state(_decoder);
}
inline FLAC__StreamDecoderState FlacInputStream::getStreamDecoderState() const {
assert(isValid());
return ::FLAC__seekable_stream_decoder_get_stream_decoder_state(_decoder);
}
bool FlacInputStream::init() {
assert(isValid());
memset(&_streaminfo, 0, sizeof (_streaminfo));
deleteBuffer();
_fileInfo.filePos = _fileInfo.fileStartPos;
_lastSampleWritten = false;
_methodConvertBuffers = &FlacInputStream::convertBuffersGeneric;
::FLAC__seekable_stream_decoder_set_read_callback(_decoder, &FlacInputStream::callWrapRead);
::FLAC__seekable_stream_decoder_set_seek_callback(_decoder, &FlacInputStream::callWrapSeek);
::FLAC__seekable_stream_decoder_set_tell_callback(_decoder, &FlacInputStream::callWrapTell);
::FLAC__seekable_stream_decoder_set_length_callback(_decoder, &FlacInputStream::callWrapLength);
::FLAC__seekable_stream_decoder_set_eof_callback(_decoder, &FlacInputStream::callWrapEOF);
::FLAC__seekable_stream_decoder_set_write_callback(_decoder, &FlacInputStream::callWrapWrite);
::FLAC__seekable_stream_decoder_set_metadata_callback(_decoder, &FlacInputStream::callWrapMetadata);
::FLAC__seekable_stream_decoder_set_error_callback(_decoder, &FlacInputStream::callWrapError);
::FLAC__seekable_stream_decoder_set_client_data(_decoder, (void*)this);
if (::FLAC__seekable_stream_decoder_init(_decoder) == FLAC__SEEKABLE_STREAM_DECODER_OK) {
if (processUntilEndOfMetadata() && _streaminfo.channels > 0) {
if (_firstSample == 0 || 0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, _firstSample)) {
// FLAC__StreamDecoderState state = getStreamDecoderState();
return true; // no error occured
}
}
}
warning("FlacInputStream: could not create an Audiostream from File %s", _fileInfo.fileHandle->name());
return false;
}
bool FlacInputStream::finish() {
assert(isValid());
deleteBuffer();
return 0 != ::FLAC__seekable_stream_decoder_finish(_decoder);
}
bool FlacInputStream::flush() {
assert(isValid());
flushBuffer();
return 0 != ::FLAC__seekable_stream_decoder_flush(_decoder);
}
inline bool FlacInputStream::processSingleBlock() {
assert(isValid());
return 0 != ::FLAC__seekable_stream_decoder_process_single(_decoder);
}
inline bool FlacInputStream::processUntilEndOfMetadata() {
assert(isValid());
return 0 != ::FLAC__seekable_stream_decoder_process_until_end_of_metadata(_decoder);
}
bool FlacInputStream::seekAbsolute(FLAC__uint64 sample) {
assert(isValid());
const bool result = (0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, sample));
if (result) {
flushBuffer();
_lastSampleWritten = (_lastSample != 0 && sample >= _lastSample); // only set if we are SURE
}
return result;
}
int FlacInputStream::readBuffer(int16 *buffer, const int numSamples) {
const uint kNumChannels = getChannels();
if (kNumChannels == 0) {
warning("FlacInputStream: Stream not sucessfully initialised, cant playback");
return -1; // streaminfo wasnt read!
}
assert(numSamples % kNumChannels == 0); // must be multiple of channels!
assert(buffer != NULL);
assert(_outBuffer == NULL);
assert(_requestedSamples == 0);
_outBuffer = buffer;
_requestedSamples = numSamples;
if (_preBuffer.bufFill > 0) {
assert(_preBuffer.bufData != NULL && _preBuffer.bufReadPos != NULL && _preBuffer.bufSize > 0);
assert(_preBuffer.bufReadPos >= _preBuffer.bufData);
assert(_preBuffer.bufFill % kNumChannels == 0);
const uint copySamples = MIN((uint)numSamples, _preBuffer.bufFill);
memcpy(buffer, _preBuffer.bufReadPos, copySamples*sizeof(buffer[0]));
_outBuffer = buffer + copySamples;
_requestedSamples = numSamples - copySamples;
_preBuffer.bufReadPos += copySamples;
_preBuffer.bufFill -= copySamples;
}
bool decoderOk = true;
if (!_lastSampleWritten) {
FLAC__StreamDecoderState state = getStreamDecoderState();
for (; _requestedSamples > 0 && state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; state = getStreamDecoderState()) {
assert(_preBuffer.bufFill == 0);
assert(_requestedSamples % kNumChannels == 0);
processSingleBlock();
}
if (state != FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) {
switch (state) {
case FLAC__STREAM_DECODER_END_OF_STREAM :
_lastSampleWritten = true;
decoderOk = true; // no REAL error
break;
default:
decoderOk = false;
warning("FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderStateString[getStreamDecoderState()]);
}
}
}
const int samples = (int)(_outBuffer - buffer);
assert(samples % kNumChannels == 0);
_outBuffer = NULL; // basically unnessecary, only for the purpose of the asserts
_requestedSamples = 0; // basically unnessecary, only for the purpose of the asserts
return decoderOk ? samples : -1;
}
inline ::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callbackRead(FLAC__byte buffer[], uint *bytes) {
assert(_fileInfo.fileHandle != NULL);
if (*bytes == 0)
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR; /* abort to avoid a deadlock */
const uint32 length = MIN(_fileInfo.fileEndPos - _fileInfo.filePos, static_cast<uint32>(*bytes));
_fileInfo.fileHandle->seek(_fileInfo.filePos);
const uint32 bytesRead = _fileInfo.fileHandle->read(buffer, length);
if (bytesRead == 0 && _fileInfo.fileHandle->ioFailed())
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR;
_fileInfo.filePos += bytesRead;
*bytes = static_cast<uint>(bytesRead);
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_OK;
}
inline void FlacInputStream::setLastSample(FLAC__uint64 absoluteSample) {
if (_lastSampleWritten && absoluteSample > _lastSample)
_lastSampleWritten = false;
_lastSample = absoluteSample;
}
inline void FlacInputStream::flushBuffer() {
_lastSampleWritten = _lastSampleWritten && _preBuffer.bufFill == 0;
_preBuffer.bufFill = 0;
}
inline void FlacInputStream::deleteBuffer() {
flushBuffer();
_preBuffer.bufSize = 0;
if (_preBuffer.bufData != NULL) {
delete[] _preBuffer.bufData;
_preBuffer.bufData = NULL;
}
}
bool FlacInputStream::allocateBuffer(uint minSamples) {
uint allocateSize = minSamples / getChannels();
/** insert funky algorythm for optimum buffersize here */
allocateSize = MIN(_streaminfo.max_blocksize, MAX(_streaminfo.min_blocksize, allocateSize));
allocateSize += 8 - (allocateSize % 8); // make sure its an nice even amount
allocateSize *= getChannels();
deleteBuffer();
_preBuffer.bufData = new bufType[allocateSize];
if (_preBuffer.bufData != NULL) {
_preBuffer.bufSize = allocateSize;
return true;
}
return false;
}
void FlacInputStream::setBestConvertBufferMethod()
{
PFCONVERTBUFFERS tempMethod = &FlacInputStream::convertBuffersGeneric;
const uint kNumChannels = getChannels();
const uint8 kNumBits = (uint8)_streaminfo.bits_per_sample;
assert(kNumChannels >= 1);
assert(kNumBits >= 4 && kNumBits <=32);
if (kNumChannels == 1) {
if (kNumBits == 8)
tempMethod = &FlacInputStream::convertBuffersMono8Bit;
if (kNumBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersMonoNS;
} else if (kNumChannels == 2) {
if (kNumBits == 8)
tempMethod = &FlacInputStream::convertBuffersStereo8Bit;
if (kNumBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersStereoNS;
} /* else ... */
_methodConvertBuffers = tempMethod;
}
// 1 channel, no scaling
void FlacInputStream::convertBuffersMonoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 1);
assert(numBits == BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
bufDestination[0] = static_cast<bufType>(inChannel1[0]);
bufDestination[1] = static_cast<bufType>(inChannel1[1]);
bufDestination[2] = static_cast<bufType>(inChannel1[2]);
bufDestination[3] = static_cast<bufType>(inChannel1[3]);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
*bufDestination++ = static_cast<bufType>(*inChannel1++);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 1 channel, scaling from 8Bit
void FlacInputStream::convertBuffersMono8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 1);
assert(numBits == 8);
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
bufDestination[0] = static_cast<bufType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<bufType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<bufType>(inChannel1[2]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<bufType>(inChannel1[3]) << (BUFTYPE_BITS - 8);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
*bufDestination++ = static_cast<bufType>(*inChannel1++) << (BUFTYPE_BITS - 8);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, no scaling
void FlacInputStream::convertBuffersStereoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 2);
assert(numBits == BUFTYPE_BITS);
assert(numSamples % 2 == 0); // must be integral multiply of channels
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
bufDestination[0] = static_cast<bufType>(inChannel1[0]);
bufDestination[1] = static_cast<bufType>(inChannel2[0]);
bufDestination[2] = static_cast<bufType>(inChannel1[1]);
bufDestination[3] = static_cast<bufType>(inChannel2[1]);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
bufDestination[0] = static_cast<bufType>(*inChannel1++);
bufDestination[1] = static_cast<bufType>(*inChannel2++);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, scaling from 8Bit
void FlacInputStream::convertBuffersStereo8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 2);
assert(numBits == 8);
assert(numSamples % 2 == 0); // must be integral multiply of channels
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
bufDestination[0] = static_cast<bufType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<bufType>(inChannel2[0]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<bufType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<bufType>(inChannel2[1]) << (BUFTYPE_BITS - 8);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
bufDestination[0] = static_cast<bufType>(*inChannel1++) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<bufType>(*inChannel2++) << (BUFTYPE_BITS - 8);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// all Purpose-conversion - slowest of em all
void FlacInputStream::convertBuffersGeneric(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numSamples % numChannels == 0); // must be integral multiply of channels
if (numBits < BUFTYPE_BITS) {
const uint8 kPower = (uint8)(BUFTYPE_BITS - numBits);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<bufType>(*(inChannels[i]++)) << kPower;
}
} else if (numBits > BUFTYPE_BITS) {
const uint8 kPower = (uint8)(numBits - BUFTYPE_BITS);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<bufType>(*(inChannels[i]++) >> kPower) ;
}
} else {
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<bufType>(*(inChannels[i]++));
}
}
assert(numSamples == 0); // dint copy too many samples
}
inline ::FLAC__StreamDecoderWriteStatus FlacInputStream::callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]) {
assert(frame->header.channels == _streaminfo.channels);
assert(frame->header.sample_rate == _streaminfo.sample_rate);
assert(frame->header.bits_per_sample == _streaminfo.bits_per_sample);
assert(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER || _streaminfo.min_blocksize == _streaminfo.max_blocksize);
assert(_preBuffer.bufFill == 0); // we dont append data
uint nSamples = frame->header.blocksize;
const uint kNumChannels = getChannels();
const uint8 kNumBits = (uint8)_streaminfo.bits_per_sample;
assert(_requestedSamples % kNumChannels == 0); // must be integral multiply of channels
const FLAC__uint64 firstSampleNumber = (frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER) ?
frame->header.number.sample_number : (static_cast<FLAC__uint64>(frame->header.number.frame_number)) * _streaminfo.max_blocksize;
if (_lastSample != 0 && firstSampleNumber + nSamples >= _lastSample) {
nSamples = (uint)(firstSampleNumber >= _lastSample ? 0 : _lastSample - firstSampleNumber);
_requestedSamples = MIN(_requestedSamples, nSamples * kNumChannels);
_lastSampleWritten = true;
}
nSamples *= kNumChannels;
const FLAC__int32 *inChannels[MAX_OUTPUT_CHANNELS] = { buffer[0] }; // one channel is a given...
for (uint i = 1; i < kNumChannels; ++i)
inChannels[i] = buffer[i];
// writing DIRECTLY to the Buffer ScummVM provided
if (_requestedSamples > 0) {
assert(_requestedSamples % kNumChannels == 0); // must be integral multiply of channels
assert(_outBuffer != NULL);
const uint copySamples = MIN(_requestedSamples,nSamples);
(*_methodConvertBuffers)(_outBuffer, inChannels, copySamples, kNumChannels, kNumBits);
_requestedSamples -= copySamples;
nSamples -= copySamples;
_outBuffer += copySamples;
}
// checking if Buffer fits
if (_preBuffer.bufSize < nSamples) {
if (!allocateBuffer(nSamples))
return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT;
} // optional check if buffer is wasting too much memory ?
(*_methodConvertBuffers)(_preBuffer.bufData, inChannels, nSamples, kNumChannels, kNumBits);
_preBuffer.bufFill = nSamples;
_preBuffer.bufReadPos = _preBuffer.bufData;
return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
inline ::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callbackSeek(FLAC__uint64 absoluteByteOffset) {
FLAC__uint64 newPos = absoluteByteOffset + _fileInfo.fileStartPos;
const bool result = (newPos < _fileInfo.fileEndPos);
if (result)
_fileInfo.filePos = static_cast<uint32>(newPos);
return result ? FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_OK : FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_ERROR;
}
inline ::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callbackTell(FLAC__uint64 *absoluteByteOffset) {
/*if ()
return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_ERROR;*/
*absoluteByteOffset = static_cast<FLAC__uint64>(_fileInfo.filePos-_fileInfo.fileStartPos);
return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_OK;
}
inline ::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callbackLength(FLAC__uint64 *streamLength) {
if (_fileInfo.fileStartPos > _fileInfo.fileEndPos)
return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_ERROR;
*streamLength = static_cast<FLAC__uint64>(_fileInfo.fileEndPos - _fileInfo.fileStartPos);
return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_OK;
}
inline bool FlacInputStream::callbackEOF() {
return _fileInfo.filePos >= _fileInfo.fileEndPos;
}
inline void FlacInputStream::callbackMetadata(const ::FLAC__StreamMetadata *metadata) {
assert(isValid());
assert(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); // others arent really interesting
_streaminfo = metadata->data.stream_info;
setBestConvertBufferMethod(); // should be set after getting stream-information. FLAC always parses the info first
}
inline void FlacInputStream::callbackError(::FLAC__StreamDecoderErrorStatus status) {
// some of these are non-critical-Errors
debug(1, "FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderErrorStatusString[status]);
}
/* Static Callback Wrappers */
::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], uint *bytes, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackRead(buffer, bytes);
}
::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackSeek(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackTell(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackLength(streamLength);
}
FLAC__bool FlacInputStream::callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackEOF();
}
::FLAC__StreamDecoderWriteStatus FlacInputStream::callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
return instance->callbackWrite(frame, buffer);
}
void FlacInputStream::callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
instance->callbackMetadata(metadata);
}
void FlacInputStream::callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData) {
assert(0 != clientData);
FlacInputStream *instance = reinterpret_cast<FlacInputStream *>(clientData);
assert(0 != instance);
instance->callbackError(status);
}
#pragma mark -
#pragma mark --- Flac Audio CD emulation ---
#pragma mark -
class FlacTrackInfo : public DigitalTrackInfo {
private:
File *_file;
FlacInputStream *_firstStream; // avoid having to open the Stream twice the first time
public:
FlacTrackInfo(File *file);
~FlacTrackInfo();
bool error() { return _file == NULL; }
void play(Audio::Mixer *mixer, Audio::SoundHandle *handle, int startFrame, int duration);
};
FlacTrackInfo::FlacTrackInfo(File *file) : _file(NULL), _firstStream(NULL)
{
FlacInputStream *tempStream = new FlacInputStream(file);
/* first time the file will be tested, but not used */
if (tempStream->init()) {
_firstStream = tempStream;
_file = file;
} else
delete tempStream;
}
void FlacTrackInfo::play(Audio::Mixer *mixer, Audio::SoundHandle *handle, int startFrame, int duration) {
if (error()) {
debug(1, "FlacTrackInfo::play: invalid state, method should not been called");
}
FlacInputStream *flac;
if (_firstStream != NULL) {
flac = _firstStream;
_firstStream = NULL;
} else {
flac = new FlacInputStream(_file);
flac->init();
}
if (flac->isStreamDecoderReady()) {
const FLAC__StreamMetadata_StreamInfo &info = flac->getStreamInfo();
if (duration)
flac->setLastSample(static_cast<FLAC__uint64>(startFrame + duration) * (info.sample_rate / 75));
else
flac->setLastSample(0);
if (flac->seekAbsolute(static_cast<FLAC__uint64>(startFrame) * (info.sample_rate / 75))) {
mixer->playInputStream(Audio::Mixer::kMusicSoundType, handle, flac);
return;
}
// startSample is beyond the existing Samples
debug(1, "FlacTrackInfo: Audiostream %s could not seek to frame %d (ca %d secs)", _file->name(), startFrame, startFrame/75);
flac->finish();
}
delete flac;
}
FlacTrackInfo::~FlacTrackInfo()
{
delete _firstStream;
delete _file;
}
DigitalTrackInfo* getFlacTrack(int track)
{
assert(track >=1);
char track_name[32];
File *file = new File();
sprintf(track_name, "track%d.flac", track);
file->open(track_name);
if (file->isOpen()) {
FlacTrackInfo *trackInfo = new FlacTrackInfo(file);
if (!trackInfo->error())
return trackInfo;
delete trackInfo;
}
sprintf(track_name, "track%d.fla", track);
file->open(track_name);
if (file->isOpen()) {
FlacTrackInfo *trackInfo = new FlacTrackInfo(file);
if (!trackInfo->error())
return trackInfo;
delete trackInfo;
}
delete file;
return NULL;
}
AudioStream *makeFlacStream(File *file, uint32 length)
{
assert(file != NULL);
uint32 start = file->pos();
FlacInputStream *flac = new FlacInputStream(file, start, start + length);
if (flac->init())
return flac;
delete flac;
return NULL;
}
#endif // #ifdef USE_FLAC