scummvm/engines/mtropolis/assets.cpp

1241 lines
37 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "graphics/managed_surface.h"
#include "graphics/surface.h"
#include "audio/audiostream.h"
#include "common/endian.h"
#include "common/memstream.h"
#include "image/codecs/codec.h"
#include "mtropolis/assets.h"
#include "mtropolis/asset_factory.h"
namespace MTropolis {
AssetHooks::~AssetHooks() {
}
void AssetHooks::onLoaded(Asset *asset, const Common::String &name) {
}
Asset::Asset() : _assetID(0) {
}
Asset::~Asset() {
}
uint32 Asset::getAssetID() const {
return _assetID;
}
bool ColorTableAsset::load(AssetLoaderContext &context, const Data::ColorTableAsset &data) {
_assetID = data.assetID;
for (int i = 0; i < 256; i++) {
if (!_colors[i].load(data.colors[i]))
return false;
}
return true;
}
AssetType ColorTableAsset::getAssetType() const {
return kAssetTypeColorTable;
}
const ColorRGB8 *ColorTableAsset::getColors() const {
return _colors;
}
CachedAudio::CachedAudio() {
}
bool CachedAudio::loadFromStream(const AudioMetadata &metadata, Common::ReadStream *stream, size_t size) {
_data.resize(size);
if (size > 0) {
stream->read(&_data[0], size);
if (stream->err())
return false;
if (metadata.encoding == AudioMetadata::kEncodingUncompressed && metadata.bitsPerSample == 16) {
int16 *samples = reinterpret_cast<int16 *>(&_data[0]);
size_t numSamples = _data.size() / 2;
if (metadata.isBigEndian) {
for (size_t i = 0; i < numSamples; i++)
samples[i] = FROM_BE_16(samples[i]);
} else {
for (size_t i = 0; i < numSamples; i++)
samples[i] = FROM_LE_16(samples[i]);
}
}
return true;
}
return true;
}
const void *CachedAudio::getData() const {
if (_data.size() == 0)
return nullptr;
return &_data[0];
}
size_t CachedAudio::getSize() const {
return _data.size();
}
size_t CachedAudio::getNumSamples(const AudioMetadata &metadata) const {
switch (metadata.encoding) {
case AudioMetadata::kEncodingMace6:
return _data.size() * 6 / metadata.channels;
case AudioMetadata::kEncodingMace3:
return _data.size() * 3 / metadata.channels;
case AudioMetadata::kEncodingUncompressed:
return _data.size() / (metadata.channels * metadata.bitsPerSample / 8);
default:
return 0;
}
}
MToonMetadata::FrameDef::FrameDef() : dataOffset(0), compressedSize(0), decompressedSize(0), decompressedBytesPerRow(0), isKeyFrame(false) {
}
bool MToonMetadata::FrameDef::load(AssetLoaderContext &context, const Data::MToonAsset::FrameDef &data) {
compressedSize = data.compressedSize;
dataOffset = data.dataOffset;
decompressedBytesPerRow = data.decompressedBytesPerRow;
decompressedSize = data.decompressedSize;
isKeyFrame = (data.keyframeFlag != 0);
if (!data.rect1.toScummVMRect(rect))
return false;
return true;
}
MToonMetadata::FrameRangeDef::FrameRangeDef() : startFrame(0), endFrame(0) {
}
MToonMetadata::MToonMetadata() : imageFormat(kImageFormatWindows), bitsPerPixel(0), codecID(0), encodingFlags(0) {
}
CachedMToon::RleFrame::RleFrame() : version(0), width(0), height(0), isKeyframe(0) {
}
CachedMToon::CachedMToon() : _isRLETemporalCompressed(false) {
}
bool CachedMToon::loadFromStream(const Common::SharedPtr<MToonMetadata> &metadata, Common::ReadStream *stream, size_t size) {
_metadata = metadata;
Common::Array<uint8> data;
data.resize(size);
if (size > 0) {
stream->read(&data[0], size);
if (stream->err())
return false;
}
if (metadata->codecID == kMToonRLECodecID) {
loadRLEFrames(data);
uint16 fullWidth = metadata->rect.width();
uint16 fullHeight = metadata->rect.height();
bool haveAnyTemporalFrames = false;
bool haveDifferentDimensions = false;
_isRLETemporalCompressed = false;
for (size_t i = 0; i < metadata->frames.size(); i++) {
if (!_rleData[i].isKeyframe)
haveAnyTemporalFrames = true;
if (_rleData[i].width != fullWidth || _rleData[i].height != fullHeight) {
haveDifferentDimensions = true;
break;
}
}
if (haveAnyTemporalFrames && !haveDifferentDimensions)
_isRLETemporalCompressed = true;
}
if (!_isRLETemporalCompressed)
decompressFrames(data);
return true;
}
void CachedMToon::decompressFrames(const Common::Array<uint8> &data) {
size_t numFrames = _metadata->frames.size();
_decompressedFrames.resize(numFrames);
_optimizedFrames.resize(numFrames);
for (size_t i = 0; i < numFrames; i++) {
if (_metadata->codecID == kMToonRLECodecID) {
decompressRLEFrame(i);
} else if (_metadata->codecID == 0) {
loadUncompressedFrame(data, i);
} else {
decompressQuickTimeFrame(data, i);
}
}
_rleData.clear();
}
template<class TNumber, uint32 TLiteralMask, uint32 TTransparentRowSkipMask>
bool CachedMToon::decompressMToonRLE(const RleFrame &frame, const Common::Array<TNumber> &coefsArray, Graphics::ManagedSurface &surface, bool isBottomUp) {
assert(sizeof(TNumber) == surface.format.bytesPerPixel);
size_t size = coefsArray.size();
if (size == 0)
return false;
const TNumber *coefs = &coefsArray[0];
size_t x = 0;
size_t y = 0;
size_t w = surface.w;
size_t h = surface.h;
if (w != frame.width || h != frame.height)
return false;
TNumber *rowData = static_cast<TNumber *>(surface.getBasePtr(0, isBottomUp ? (h - 1) : 0));
for (;;) {
if (size == 0)
return false;
const TNumber rleCode = coefs[0];
coefs++;
size--;
size_t remainingInRow = w - x;
if (rleCode == 0) {
if (size == 0)
return false;
const TNumber transparentCountCode = coefs[0];
coefs++;
size--;
if (transparentCountCode & TTransparentRowSkipMask) {
// Vertical skip
y += (transparentCountCode - TTransparentRowSkipMask);
x = 0;
if (y < h) {
rowData = static_cast<TNumber *>(surface.getBasePtr(0, isBottomUp ? (h - 1 - y) : y));
continue;
} else {
break;
}
} else {
// Horizontal skip
const size_t horizontalSkip = transparentCountCode;
if (horizontalSkip > remainingInRow)
return false;
x += horizontalSkip;
}
} else if (rleCode & TLiteralMask) {
// Literals
const size_t numLiterals = (rleCode - TLiteralMask);
if (numLiterals > size || numLiterals > remainingInRow)
return false;
memcpy(rowData + x, coefs, sizeof(TNumber) * numLiterals);
coefs += numLiterals;
size -= numLiterals;
x += numLiterals;
} else {
// Literals
const size_t numCopies = rleCode;
if (numCopies > remainingInRow || size == 0)
return false;
const TNumber repeatedValue = coefs[0];
for (size_t i = 0; i < numCopies; i++)
rowData[x + i] = repeatedValue;
coefs++;
size--;
x += numCopies;
}
if (x == w) {
y++;
x = 0;
if (y < h) {
rowData = static_cast<TNumber *>(surface.getBasePtr(0, isBottomUp ? (h - 1 - y) : y));
continue;
} else {
break;
}
}
}
return true;
}
void CachedMToon::decompressRLEFrameToImage(size_t frameIndex, Graphics::ManagedSurface &surface) {
assert(surface.format == _rleOptimizedFormat);
bool isBottomUp = (_metadata->imageFormat == MToonMetadata::kImageFormatWindows);
bool decompressedOK = false;
if (_rleOptimizedFormat.bytesPerPixel == 4) {
decompressedOK = decompressMToonRLE<uint32, 0x80000000u, 0x80000000u>(_rleData[frameIndex], _rleData[frameIndex].data32, surface, isBottomUp);
} else if (_rleOptimizedFormat.bytesPerPixel == 2) {
decompressedOK = decompressMToonRLE<uint16, 0x8000u, 0x8000u>(_rleData[frameIndex], _rleData[frameIndex].data16, surface, isBottomUp);
} else if (_rleOptimizedFormat.bytesPerPixel == 1) {
decompressedOK = decompressMToonRLE<uint8, 0x80u, 0x80u>(_rleData[frameIndex], _rleData[frameIndex].data8, surface, isBottomUp);
} else
error("Unknown mToon encoding");
if (!decompressedOK)
warning("mToon RLE frame decompression failed");
}
void CachedMToon::loadRLEFrames(const Common::Array<uint8> &data) {
size_t numFrames = _metadata->frames.size();
uint16 bpp = _metadata->bitsPerPixel;
_rleData.resize(numFrames);
for (size_t i = 0; i < numFrames; i++) {
const MToonMetadata::FrameDef &frameDef = _metadata->frames[i];
RleFrame &rleFrame = _rleData[i];
size_t baseOffset = frameDef.dataOffset;
uint32 headerInts[5];
for (size_t hi = 0; hi < 5; hi++) {
uint32 unpacked = 0;
for (size_t b = 0; b < 4; b++)
unpacked = (unpacked << 8) + data[baseOffset + hi * 4 + b];
headerInts[hi] = unpacked;
}
rleFrame.isKeyframe = (headerInts[0] == kMToonRLEKeyframePrefix);
if (headerInts[1] == 0x01000001) {
if (bpp != 8)
error("Unknown mToon encoding");
} else if (headerInts[1] == 0x01000002) {
if (bpp != 16)
error("Unknown mToon encoding");
} else
error("Unknown mToon encoding");
rleFrame.version = headerInts[1];
rleFrame.width = headerInts[2];
rleFrame.height = headerInts[3];
uint32 frameDataSize = headerInts[4];
if (frameDataSize > 0) {
if (bpp == 8) {
rleFrame.data8.resize(frameDataSize);
memcpy(&rleFrame.data8[0], &data[baseOffset + 20], frameDataSize);
} else if (bpp == 16) {
// In RLE16, frameDataSize is sometimes set to frameDef.compressedSize but sometimes contains garbage,
// so we need to ignore it and derive size from the frameDef instead.
uint32 numDWords = (frameDef.compressedSize - 20) / 2;
rleFrame.data16.resize(numDWords);
memcpy(&rleFrame.data16[0], &data[baseOffset + 20], static_cast<size_t>(numDWords) * 2u);
uint16 *i16 = &rleFrame.data16[0];
if (_metadata->imageFormat == MToonMetadata::kImageFormatWindows) {
for (size_t swapIndex = 0; swapIndex < numDWords; swapIndex++)
i16[swapIndex] = FROM_LE_16(i16[swapIndex]);
} else if (_metadata->imageFormat == MToonMetadata::kImageFormatMac) {
for (size_t swapIndex = 0; swapIndex < numDWords; swapIndex++)
i16[swapIndex] = FROM_BE_16(i16[swapIndex]);
}
} else
error("Unknown mToon encoding");
}
}
if (bpp == 8)
_rleInternalFormat = Graphics::PixelFormat::createFormatCLUT8();
else if (bpp == 16)
_rleInternalFormat = Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 15);
else
error("Unknown mToon encoding");
_rleOptimizedFormat = _rleInternalFormat;
}
void CachedMToon::decompressRLEFrame(size_t frameIndex) {
Common::SharedPtr<Graphics::ManagedSurface> surface(new Graphics::ManagedSurface());
RleFrame &frame = _rleData[frameIndex];
surface->create(frame.width, frame.height, _rleInternalFormat);
decompressRLEFrameToImage(frameIndex, *surface);
this->_decompressedFrames[frameIndex] = surface;
}
void CachedMToon::loadUncompressedFrame(const Common::Array<uint8> &data, size_t frameIndex) {
const MToonMetadata::FrameDef &frameDef = _metadata->frames[frameIndex];
uint16 stride = frameDef.decompressedBytesPerRow;
uint16 bpp = _metadata->bitsPerPixel;
Common::SharedPtr<Graphics::ManagedSurface> surface(new Graphics::ManagedSurface());
Graphics::PixelFormat pixFmt;
if (bpp == 1 || bpp == 2 || bpp == 4 || bpp == 8)
pixFmt = Graphics::PixelFormat::createFormatCLUT8();
else if (bpp == 16)
pixFmt = Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 15);
else if (bpp == 32)
pixFmt = Graphics::PixelFormat(4, 8, 8, 8, 0, 0, 8, 16, 24);
else
error("Unknown mToon encoding");
size_t w = frameDef.rect.width();
size_t h = frameDef.rect.height();
surface->create(w, h, pixFmt);
for (size_t row = 0; row < h; row++) {
const uint8 *inData = &data[frameDef.dataOffset + row * stride];
void *outDataUntyped = nullptr;
if (_metadata->imageFormat == MToonMetadata::kImageFormatWindows)
outDataUntyped = surface->getBasePtr(0, h - 1 - row);
else if (_metadata->imageFormat == MToonMetadata::kImageFormatMac)
outDataUntyped = surface->getBasePtr(0, row);
else
error("Unimplemented mToon uncompressed image layout");
if (bpp == 1) {
for (size_t col = 0; col < w; col++)
static_cast<uint8 *>(outDataUntyped)[col] = (inData[col / 8] >> (7 - (col % 8))) & 1;
} else if (bpp == 2) {
for (size_t col = 0; col < w; col++)
static_cast<uint8 *>(outDataUntyped)[col] = (inData[col / 4] >> (6 - (col % 4) * 2)) & 3;
} else if (bpp == 4) {
for (size_t col = 0; col < w; col++)
static_cast<uint8 *>(outDataUntyped)[col] = (inData[col / 2] >> (4 - (col % 2) * 4)) & 15;
} else if (bpp == 8) {
for (size_t col = 0; col < w; col++)
static_cast<uint8 *>(outDataUntyped)[col] = inData[col];
} else if (bpp == 16) {
if (_metadata->imageFormat == MToonMetadata::kImageFormatMac) {
for (size_t col = 0; col < w; col++)
static_cast<uint16 *>(outDataUntyped)[col] = (inData[col * 2] << 8) | (inData[col * 2 + 1]);
} else if (_metadata->imageFormat == MToonMetadata::kImageFormatWindows) {
for (size_t col = 0; col < w; col++)
static_cast<uint16 *>(outDataUntyped)[col] = (inData[col * 2 + 1] << 8) | (inData[col * 2]);
}
} else if (bpp == 32) {
if (_metadata->imageFormat == MToonMetadata::kImageFormatMac) {
for (size_t col = 0; col < w; col++)
static_cast<uint32 *>(outDataUntyped)[col] = (0xff000000 | (inData[col * 4 + 1]) | (inData[col * 4 + 2] << 8) | (inData[col * 4 + 3] << 16));
} else if (_metadata->imageFormat == MToonMetadata::kImageFormatWindows) {
for (size_t col = 0; col < w; col++)
static_cast<uint32 *>(outDataUntyped)[col] = (0xff000000 | (inData[col * 4 + 2]) | (inData[col * 4 + 1] << 8) | (inData[col * 4 + 0] << 16));
}
}
}
_decompressedFrames[frameIndex] = surface;
}
void CachedMToon::decompressQuickTimeFrame(const Common::Array<uint8> &data, size_t frameIndex) {
const MToonMetadata::FrameDef &frameDef = _metadata->frames[frameIndex];
// We used to validate that these match the sample desc, but that actually breaks in Obsidian
// on the Bureau Immediate Action clock puzzle, because the frames have different sizes and
// the codec data encodes the size of the last frame.
uint16 w = frameDef.rect.width();
uint16 h = frameDef.rect.height();
uint16 bpp = READ_BE_UINT16(&_metadata->codecData[82]);
Image::Codec *codec = Image::createQuickTimeCodec(_metadata->codecID, w, h, bpp);
if (!codec) {
error("Unknown QuickTime codec for mToon frame");
}
if (frameDef.dataOffset > data.size())
error("Invalid framedef offset");
if (frameDef.compressedSize > data.size())
error("Invalid compressed size");
if (frameDef.compressedSize - data.size() < frameDef.dataOffset)
error("Not enough available bytes for compressed data");
Common::MemoryReadStream stream(&data[frameDef.dataOffset], frameDef.compressedSize);
const Graphics::Surface *surface = codec->decodeFrame(stream);
if (!surface) {
error("mToon QuickTime frame failed to decompress");
}
// Clone the decompressed frame
_decompressedFrames[frameIndex].reset(new Graphics::ManagedSurface(surface));
}
template<class TSrcNumber, uint32 TSrcLiteralMask, uint32 TSrcTransparentSkipMask, class TDestNumber, uint32 TDestLiteralMask, uint32 TDestTransparentSkipMask>
void CachedMToon::rleReformat(RleFrame &frame, const Common::Array<TSrcNumber> &srcData, const Graphics::PixelFormat &srcFormatRef, Common::Array<TDestNumber> &destData, const Graphics::PixelFormat &destFormatRef) {
const Graphics::PixelFormat srcFormat = srcFormatRef;
const Graphics::PixelFormat destFormat = destFormatRef;
size_t offset = 0;
destData.resize(srcData.size());
while (offset < srcData.size()) {
uint32 rleCodeOffset = offset;
const uint32 rleCode = srcData[rleCodeOffset];
if (rleCode == 0) {
destData[offset] = 0;
offset++;
uint32 numTransparentCode = srcData[offset];
if (numTransparentCode & TSrcTransparentSkipMask)
destData[offset] = (numTransparentCode - TSrcTransparentSkipMask) + TDestTransparentSkipMask;
else
destData[offset] = numTransparentCode;
offset++;
} else if (rleCode & TSrcLiteralMask) {
uint32 numLiterals = rleCode - TSrcLiteralMask;
destData[offset] = numLiterals + TDestLiteralMask;
offset++;
while (numLiterals) {
uint8 a, r, g, b;
srcFormat.colorToARGB(srcData[offset], a, r, g, b);
destData[offset] = destFormat.ARGBToColor(a, r, g, b);
offset++;
numLiterals--;
}
} else {
destData[offset] = rleCode;
offset++;
uint8 a, r, g, b;
srcFormat.colorToARGB(srcData[offset], a, r, g, b);
destData[offset] = destFormat.ARGBToColor(a, r, g, b);
offset++;
}
}
}
void CachedMToon::optimize(Runtime *runtime) {
Graphics::PixelFormat renderFmt = runtime->getRenderPixelFormat();
if (_isRLETemporalCompressed)
optimizeRLE(renderFmt);
else
optimizeNonTemporal(renderFmt);
}
void CachedMToon::optimizeNonTemporal(const Graphics::PixelFormat &targetFormatRef) {
const Graphics::PixelFormat targetFormat = targetFormatRef;
_optimizedFrames.resize(_decompressedFrames.size());
for (size_t i = 0; i < _decompressedFrames.size(); i++) {
Common::SharedPtr<Graphics::ManagedSurface> srcSurface = _decompressedFrames[i];
Common::SharedPtr<Graphics::ManagedSurface> &optimizedSurfRef = _optimizedFrames[i];
// FIXME: Aggregate these checks and merge into a single format field
if (optimizedSurfRef == nullptr || optimizedSurfRef->format != targetFormat) {
if (targetFormat.bytesPerPixel > 1 && srcSurface->format.bytesPerPixel > 1) {
if (targetFormat.bytesPerPixel == srcSurface->format.bytesPerPixel) {
srcSurface->convertToInPlace(targetFormat);
optimizedSurfRef = srcSurface;
} else {
optimizedSurfRef.reset();
optimizedSurfRef.reset(new Graphics::ManagedSurface(srcSurface->surfacePtr()->convertTo(targetFormat)));
}
} else {
optimizedSurfRef = srcSurface;
}
}
}
}
void CachedMToon::optimizeRLE(const Graphics::PixelFormat &targetFormatRef) {
const Graphics::PixelFormat targetFormat = targetFormatRef;
if (targetFormat == _rleOptimizedFormat)
return;
if (_rleInternalFormat.bytesPerPixel != 2 && _rleInternalFormat.bytesPerPixel != 4)
return; // Can't optimize
size_t numFrames = _metadata->frames.size();
for (size_t i = 0; i < numFrames; i++) {
if (_rleInternalFormat.bytesPerPixel == 2) {
if (targetFormat.bytesPerPixel == 4)
rleReformat<uint16, 0x8000u, 0x8000u, uint32, 0x80000000u, 0x80000000u>(_rleData[i], _rleData[i].data16, _rleInternalFormat, _rleData[i].data32, targetFormat);
else if (targetFormat.bytesPerPixel == 2)
rleReformat<uint16, 0x8000u, 0x8000u, uint16, 0x8000u, 0x8000u>(_rleData[i], _rleData[i].data16, _rleInternalFormat, _rleData[i].data16, targetFormat);
} else if (_rleInternalFormat.bytesPerPixel == 4) {
if (targetFormat.bytesPerPixel == 4)
rleReformat<uint32, 0x80000000u, 0x80000000u, uint32, 0x80000000u, 0x80000000u>(_rleData[i], _rleData[i].data32, _rleInternalFormat, _rleData[i].data32, targetFormat);
else if (targetFormat.bytesPerPixel == 2)
rleReformat<uint32, 0x80000000u, 0x80000000u, uint16, 0x8000u, 0x8000u>(_rleData[i], _rleData[i].data32, _rleInternalFormat, _rleData[i].data16, targetFormat);
}
}
if (_rleInternalFormat.bytesPerPixel == targetFormat.bytesPerPixel)
_rleInternalFormat = targetFormat;
_rleOptimizedFormat = targetFormat;
}
void CachedMToon::getOrRenderFrame(uint32 prevFrame, uint32 targetFrame, Common::SharedPtr<Graphics::ManagedSurface> &surface) const {
if (!_isRLETemporalCompressed) {
surface = _optimizedFrames[targetFrame];
} else if (_metadata->codecID == kMToonRLECodecID) {
uint32 firstFrameToRender = 0;
uint32 backStopFrame = 0;
if (surface && surface->format != _rleOptimizedFormat)
surface.reset();
if (surface != nullptr) {
if (prevFrame == targetFrame)
return;
if (prevFrame < targetFrame)
backStopFrame = prevFrame + 1;
}
firstFrameToRender = targetFrame;
while (firstFrameToRender > backStopFrame) {
if (_metadata->frames[firstFrameToRender].isKeyFrame)
break;
firstFrameToRender--;
}
if (!surface || surface->format != _rleOptimizedFormat) {
surface.reset(new Graphics::ManagedSurface());
surface->create(_metadata->rect.width(), _metadata->rect.height(), _rleOptimizedFormat);
}
bool isBottomUp = (_metadata->imageFormat == MToonMetadata::kImageFormatWindows);
for (size_t i = firstFrameToRender; i <= targetFrame; i++) {
if (_rleOptimizedFormat.bytesPerPixel == 1)
decompressMToonRLE<uint8, 0x80u, 0x80u>(_rleData[i], _rleData[i].data8, *surface, isBottomUp);
else if (_rleOptimizedFormat.bytesPerPixel == 2)
decompressMToonRLE<uint16, 0x8000u, 0x8000u>(_rleData[i], _rleData[i].data16, *surface, isBottomUp);
else if (_rleOptimizedFormat.bytesPerPixel == 4)
decompressMToonRLE<uint32, 0x80000000u, 0x80000000u>(_rleData[i], _rleData[i].data32, *surface, isBottomUp);
}
}
}
const Common::SharedPtr<MToonMetadata>& CachedMToon::getMetadata() const {
return _metadata;
}
AudioMetadata::AudioMetadata() : encoding(kEncodingUncompressed), durationMSec(0),
sampleRate(0), channels(0), bitsPerSample(0), isBigEndian(false) {
}
bool AudioAsset::load(AssetLoaderContext &context, const Data::AudioAsset &data) {
_assetID = data.assetID;
_metadata.reset(new AudioMetadata());
_metadata->sampleRate = data.sampleRate1;
_metadata->bitsPerSample = data.bitsPerSample;
_streamIndex = context.streamIndex;
switch (data.encoding1) {
case 0:
_metadata->encoding = AudioMetadata::kEncodingUncompressed;
break;
case 3:
_metadata->encoding = AudioMetadata::kEncodingMace3;
break;
case 4:
_metadata->encoding = AudioMetadata::kEncodingMace6;
break;
default:
return false;
}
_metadata->channels = data.channels;
// Hours Minutes Seconds Hundredths -> msec
// Maximum is 0x37a4f52e so this fits in 30 bits
_metadata->durationMSec = ((((data.codedDuration[0] * 60u) + data.codedDuration[1]) * 60u + data.codedDuration[2]) * 100u + data.codedDuration[3]) * 10u;
_filePosition = data.filePosition;
_size = data.size;
_metadata->cuePoints.resize(data.cuePoints.size());
_metadata->isBigEndian = data.isBigEndian;
for (size_t i = 0; i < data.cuePoints.size(); i++) {
_metadata->cuePoints[i].cuePointID = data.cuePoints[i].cuePointID;
_metadata->cuePoints[i].position = data.cuePoints[i].position;
}
return true;
}
AssetType AudioAsset::getAssetType() const {
return kAssetTypeAudio;
}
size_t AudioAsset::getStreamIndex() const {
return _streamIndex;
}
const Common::SharedPtr<AudioMetadata> &AudioAsset::getMetadata() const {
return _metadata;
}
const Common::SharedPtr<CachedAudio> &AudioAsset::loadAndCacheAudio(Runtime *runtime) {
if (_audioCache)
return _audioCache;
size_t streamIndex = getStreamIndex();
int segmentIndex = runtime->getProject()->getSegmentForStreamIndex(streamIndex);
runtime->getProject()->openSegmentStream(segmentIndex);
Common::SeekableReadStream *stream = runtime->getProject()->getStreamForSegment(segmentIndex);
if (!stream || !stream->seek(_filePosition)) {
warning("Audio asset failed to load, couldn't seek to position");
return _audioCache;
}
Common::SharedPtr<CachedAudio> audio(new CachedAudio());
if (!audio->loadFromStream(*_metadata, stream, _size)) {
warning("Audio asset failed to load, couldn't read data");
return _audioCache;
}
_audioCache.reset();
_audioCache = audio;
return _audioCache;
}
bool MovieAsset::load(AssetLoaderContext &context, const Data::MovieAsset &data) {
_assetID = data.assetID;
_moovAtomPos = data.moovAtomPos;
_movieDataPos = data.movieDataPos;
_movieDataSize = data.movieDataSize;
_extFileName = data.extFileName;
_streamIndex = context.streamIndex;
return true;
}
AssetType MovieAsset::getAssetType() const {
return kAssetTypeMovie;
}
uint32 MovieAsset::getMovieDataPos() const {
return _movieDataPos;
}
uint32 MovieAsset::getMoovAtomPos() const {
return _moovAtomPos;
}
uint32 MovieAsset::getMovieDataSize() const {
return _movieDataSize;
}
const Common::String &MovieAsset::getExtFileName() const {
return _extFileName;
}
size_t MovieAsset::getStreamIndex() const {
return _streamIndex;
}
void MovieAsset::addDamagedFrame(int frame) {
_damagedFrames.push_back(frame);
}
const Common::Array<int> &MovieAsset::getDamagedFrames() const {
return _damagedFrames;
}
CachedImage::CachedImage() : _colorDepth(kColorDepthModeInvalid), _isOptimized(false) {
}
void CachedImage::resetSurface(ColorDepthMode colorDepth, const Common::SharedPtr<Graphics::ManagedSurface> &surface) {
_optimizedSurface.reset();
_isOptimized = false;
_colorDepth = colorDepth;
_surface = surface;
}
ColorDepthMode CachedImage::getOriginalColorDepth() const {
return _colorDepth;
}
const Common::SharedPtr<Graphics::ManagedSurface> &CachedImage::optimize(Runtime *runtime) {
ColorDepthMode renderDepth = runtime->getRealColorDepth();
const Graphics::PixelFormat &renderFmt = runtime->getRenderPixelFormat();
if (renderDepth != _colorDepth) {
if (!_optimizedSurface) {
size_t w = _surface->w;
size_t h = _surface->h;
if (renderDepth == kColorDepthMode16Bit && _colorDepth == kColorDepthMode32Bit) {
_optimizedSurface.reset(new Graphics::ManagedSurface());
_optimizedSurface->create(w, h, renderFmt);
Render::convert32To16(*_optimizedSurface, *_surface);
} else if (renderDepth == kColorDepthMode32Bit && _colorDepth == kColorDepthMode16Bit) {
_optimizedSurface.reset(new Graphics::ManagedSurface());
_optimizedSurface->create(w, h, renderFmt);
Render::convert16To32(*_optimizedSurface, *_surface);
} else {
return _surface; // Can't optimize
}
}
return _optimizedSurface;
}
return _surface; // Already optimal
}
ImageAsset::ImageAsset() : _colorDepth(kColorDepthMode8Bit), _filePosition(0), _size(0), _streamIndex(0), _imageFormat(kImageFormatWindows) {
}
ImageAsset::~ImageAsset() {
}
bool ImageAsset::load(AssetLoaderContext &context, const Data::ImageAsset &data) {
_assetID = data.assetID;
if (!data.rect1.toScummVMRect(_rect))
return false;
_filePosition = data.filePosition;
_size = data.size;
_streamIndex = context.streamIndex;
switch (data.bitsPerPixel) {
case 1:
_colorDepth = kColorDepthMode1Bit;
break;
case 2:
_colorDepth = kColorDepthMode2Bit;
break;
case 4:
_colorDepth = kColorDepthMode4Bit;
break;
case 8:
_colorDepth = kColorDepthMode8Bit;
break;
case 16:
_colorDepth = kColorDepthMode16Bit;
break;
case 32:
_colorDepth = kColorDepthMode32Bit;
break;
default:
return false;
}
if (data.haveMacPart)
_imageFormat = kImageFormatMac;
else if (data.haveWinPart)
_imageFormat = kImageFormatWindows;
else
return false;
return true;
}
AssetType ImageAsset::getAssetType() const {
return kAssetTypeImage;
}
const Common::Rect &ImageAsset::getRect() const {
return _rect;
}
ColorDepthMode ImageAsset::getColorDepth() const {
return _colorDepth;
}
uint32 ImageAsset::getFilePosition() const {
return _filePosition;
}
uint32 ImageAsset::getSize() const {
return _size;
}
size_t ImageAsset::getStreamIndex() const {
return _streamIndex;
}
ImageAsset::ImageFormat ImageAsset::getImageFormat() const {
return _imageFormat;
}
const Common::SharedPtr<CachedImage> &ImageAsset::loadAndCacheImage(Runtime *runtime) {
if (_imageCache)
return _imageCache;
size_t streamIndex = getStreamIndex();
int segmentIndex = runtime->getProject()->getSegmentForStreamIndex(streamIndex);
runtime->getProject()->openSegmentStream(segmentIndex);
Common::SeekableReadStream *stream = runtime->getProject()->getStreamForSegment(segmentIndex);
if (!stream || !stream->seek(getFilePosition())) {
warning("Image element failed to load");
return _imageCache;
}
size_t bytesPerRow = 0;
Common::Rect imageRect = getRect();
int width = imageRect.right - imageRect.left;
int height = imageRect.bottom - imageRect.top;
if (width <= 0 || height < 0) {
warning("Image asset has invalid size");
return _imageCache;
}
Graphics::PixelFormat pixelFmt;
switch (getColorDepth()) {
case kColorDepthMode1Bit:
bytesPerRow = (width + 31) / 32 * 4;
pixelFmt = Graphics::PixelFormat::createFormatCLUT8();
break;
case kColorDepthMode2Bit:
bytesPerRow = (width + 15) / 16 * 4;
pixelFmt = Graphics::PixelFormat::createFormatCLUT8();
break;
case kColorDepthMode4Bit:
bytesPerRow = (width + 7) / 8 * 4;
pixelFmt = Graphics::PixelFormat::createFormatCLUT8();
break;
case kColorDepthMode8Bit:
bytesPerRow = (width + 3) / 4 * 4;
pixelFmt = Graphics::PixelFormat::createFormatCLUT8();
break;
case kColorDepthMode16Bit:
bytesPerRow = (width * 2 + 3) / 4 * 4;
pixelFmt = Graphics::createPixelFormat<1555>();
break;
case kColorDepthMode32Bit:
bytesPerRow = width * 4;
pixelFmt = Graphics::createPixelFormat<8888>();
break;
default:
warning("Image asset has an unrecognizable pixel format");
return _imageCache;
}
Common::Array<uint8> rowBuffer;
rowBuffer.resize(bytesPerRow);
ImageAsset::ImageFormat imageFormat = getImageFormat();
bool bottomUp = (imageFormat == ImageAsset::kImageFormatWindows);
bool isBigEndian = (imageFormat == ImageAsset::kImageFormatMac);
Common::SharedPtr<Graphics::ManagedSurface> imageSurface;
imageSurface.reset(new Graphics::ManagedSurface());
imageSurface->create(width, height, pixelFmt);
for (int inRow = 0; inRow < height; inRow++) {
int outRow = bottomUp ? (height - 1 - inRow) : inRow;
stream->read(&rowBuffer[0], bytesPerRow);
const uint8 *inRowBytes = &rowBuffer[0];
void *outBase = imageSurface->getBasePtr(0, outRow);
switch (getColorDepth()) {
case kColorDepthMode1Bit: {
for (int x = 0; x < width; x++) {
int bit = (inRowBytes[x / 8] >> (7 - (x % 8))) & 1;
static_cast<uint8 *>(outBase)[x] = bit;
}
} break;
case kColorDepthMode2Bit: {
for (int x = 0; x < width; x++) {
int bit = (inRowBytes[x / 4] >> (3 - (x % 4))) & 3;
static_cast<uint8 *>(outBase)[x] = bit;
}
} break;
case kColorDepthMode4Bit: {
for (int x = 0; x < width; x++) {
int bit = (inRowBytes[x / 2] >> (1 - (x % 2))) & 15;
static_cast<uint8 *>(outBase)[x] = bit;
}
} break;
case kColorDepthMode8Bit:
memcpy(outBase, inRowBytes, width);
break;
case kColorDepthMode16Bit: {
if (isBigEndian) {
for (int x = 0; x < width; x++) {
uint16 packedPixel = inRowBytes[x * 2 + 1] + (inRowBytes[x * 2 + 0] << 8);
int r = ((packedPixel >> 10) & 0x1f);
int g = ((packedPixel >> 5) & 0x1f);
int b = (packedPixel & 0x1f);
uint16 repacked = (1 << pixelFmt.aShift) | (r << pixelFmt.rShift) | (g << pixelFmt.gShift) | (b << pixelFmt.bShift);
static_cast<uint16 *>(outBase)[x] = repacked;
}
} else {
for (int x = 0; x < width; x++) {
uint16 packedPixel = inRowBytes[x * 2 + 0] + (inRowBytes[x * 2 + 1] << 8);
int r = ((packedPixel >> 10) & 0x1f);
int g = ((packedPixel >> 5) & 0x1f);
int b = (packedPixel & 0x1f);
uint16 repacked = (1 << pixelFmt.aShift) | (r << pixelFmt.rShift) | (g << pixelFmt.gShift) | (b << pixelFmt.bShift);
static_cast<uint16 *>(outBase)[x] = repacked;
}
}
} break;
case kColorDepthMode32Bit: {
if (imageFormat == ImageAsset::kImageFormatMac) {
for (int x = 0; x < width; x++) {
uint8 r = inRowBytes[x * 4 + 1];
uint8 g = inRowBytes[x * 4 + 2];
uint8 b = inRowBytes[x * 4 + 3];
uint32 repacked = (255 << pixelFmt.aShift) | (r << pixelFmt.rShift) | (g << pixelFmt.gShift) | (b << pixelFmt.bShift);
static_cast<uint32 *>(outBase)[x] = repacked;
}
} else if (imageFormat == ImageAsset::kImageFormatWindows) {
for (int x = 0; x < width; x++) {
uint8 r = inRowBytes[x * 4 + 2];
uint8 g = inRowBytes[x * 4 + 1];
uint8 b = inRowBytes[x * 4 + 0];
uint32 repacked = (255 << pixelFmt.aShift) | (r << pixelFmt.rShift) | (g << pixelFmt.gShift) | (b << pixelFmt.bShift);
static_cast<uint32 *>(outBase)[x] = repacked;
}
}
} break;
default:
break;
}
}
_imageCache.reset(new CachedImage());
_imageCache->resetSurface(getColorDepth(), imageSurface);
return _imageCache;
}
bool MToonAsset::load(AssetLoaderContext &context, const Data::MToonAsset &data) {
_streamIndex = context.streamIndex;
_assetID = data.assetID;
_metadata.reset(new MToonMetadata());
if (data.haveMacPart)
_metadata->imageFormat = MToonMetadata::kImageFormatMac;
else if (data.haveWinPart)
_metadata->imageFormat = MToonMetadata::kImageFormatWindows;
else
return false;
_frameDataPosition = data.frameDataPosition;
_sizeOfFrameData = data.sizeOfFrameData;
if (!data.registrationPoint.toScummVMPoint(_metadata->registrationPoint))
return false;
if (!data.rect.toScummVMRect(_metadata->rect))
return false;
_metadata->bitsPerPixel = data.bitsPerPixel;
_metadata->codecID = data.codecID;
_metadata->encodingFlags = data.encodingFlags;
_metadata->frames.resize(data.frames.size());
for (size_t i = 0; i < data.frames.size(); i++) {
if (!_metadata->frames[i].load(context, data.frames[i]))
return false;
}
_metadata->frameRanges.resize(data.frameRangesPart.frameRanges.size());
for (size_t i = 0; i < data.frameRangesPart.frameRanges.size(); i++) {
if (!_metadata->frameRanges[i].load(context, data.frameRangesPart.frameRanges[i]))
return false;
}
_metadata->codecData = data.codecData;
return true;
}
AssetType MToonAsset::getAssetType() const {
return kAssetTypeMToon;
}
const Common::SharedPtr<CachedMToon> &MToonAsset::loadAndCacheMToon(Runtime *runtime) {
if (_cachedMToon)
return _cachedMToon;
Common::SharedPtr<CachedMToon> cachedMToon(new CachedMToon());
size_t streamIndex = _streamIndex;
int segmentIndex = runtime->getProject()->getSegmentForStreamIndex(streamIndex);
runtime->getProject()->openSegmentStream(segmentIndex);
Common::SeekableReadStream *stream = runtime->getProject()->getStreamForSegment(segmentIndex);
if (!stream || !stream->seek(_frameDataPosition)) {
warning("Couldn't seek stream to mToon data");
return _cachedMToon;
}
if (!cachedMToon->loadFromStream(_metadata, stream, _sizeOfFrameData)) {
warning("mToon data failed to load");
return _cachedMToon;
}
_cachedMToon = cachedMToon;
return _cachedMToon;
}
bool MToonMetadata::FrameRangeDef::load(AssetLoaderContext &context, const Data::MToonAsset::FrameRangeDef &data) {
name = data.name;
startFrame = data.startFrame;
endFrame = data.endFrame;
return true;
}
TextAsset::TextAsset() : _alignment(kTextAlignmentLeft), _isBitmap(false) {
}
bool TextAsset::load(AssetLoaderContext &context, const Data::TextAsset &data) {
_assetID = data.assetID;
_isBitmap = ((data.isBitmap & 1) != 0);
// Bitmaps may contain garbled alignment
switch (data.alignment) {
case Data::kTextAlignmentCodeLeft:
_alignment = kTextAlignmentLeft;
break;
case Data::kTextAlignmentCodeRight:
_alignment = kTextAlignmentRight;
break;
case Data::kTextAlignmentCodeCenter:
_alignment = kTextAlignmentCenter;
break;
default:
if (_isBitmap)
_alignment = kTextAlignmentLeft;
else
return false;
break;
};
if (_isBitmap) {
if (!data.bitmapRect.toScummVMRect(_bitmapRect))
return false;
_bitmapData.reset(new Graphics::ManagedSurface());
uint16 width = _bitmapRect.width();
uint16 height = _bitmapRect.height();
uint16 pitch = (data.pitchBigEndian[0] << 8) + data.pitchBigEndian[1];
if (static_cast<uint32>(pitch * height) != data.bitmapSize) {
// Pitch is normally aligned to 4 bytes, so if this fails, maybe compute it that way?
warning("Pre-rendered text bitmap pitch didn't compute to bitmap size correctly, maybe it's wrong?");
return false;
}
if (pitch * 8 < width) {
warning("Pre-rendered text pitch is too small");
return false;
}
_bitmapData->create(width, height, Graphics::PixelFormat::createFormatCLUT8());
for (int row = 0; row < height; row++) {
int outRowY = row;
if (data.isBottomUp)
outRowY = height - 1 - row;
uint8 *outRow = static_cast<uint8 *>(_bitmapData->getBasePtr(0, outRowY));
const uint8 *inRow = &data.bitmapData[row * pitch];
for (int col = 0; col < width; col++) {
int bit = ((inRow[col / 8] >> (7 - (col & 7))) & 1);
outRow[col] = bit;
}
}
} else {
_bitmapRect = Common::Rect(0, 0, 0, 0);
_stringData = data.text;
for (size_t i = 0; i < data.macFormattingSpans.size(); i++) {
const Data::TextAsset::MacFormattingSpan &inSpan = data.macFormattingSpans[i];
MacFormattingSpan fmtSpan;
fmtSpan.formatting = MacFontFormatting(inSpan.fontID, inSpan.fontFlags, inSpan.size);
fmtSpan.spanStart = inSpan.spanStart;
_macFormattingSpans.push_back(fmtSpan);
}
}
return true;
}
AssetType TextAsset::getAssetType() const {
return kAssetTypeText;
}
bool TextAsset::isBitmap() const {
return _isBitmap;
}
const Common::SharedPtr<Graphics::ManagedSurface>& TextAsset::getBitmapSurface() const {
return _bitmapData;
}
const Common::String& TextAsset::getString() const {
return _stringData;
}
const Common::Array<MacFormattingSpan> &TextAsset::getMacFormattingSpans() const {
return _macFormattingSpans;
}
} // End of namespace MTropolis