scummvm/scumm/gfx.cpp
2003-08-20 08:52:36 +00:00

3623 lines
84 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2003 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "scumm.h"
#include "actor.h"
#include "bomp.h"
#include "charset.h"
#include "resource.h"
#include "usage_bits.h"
#include "util.h"
enum {
kScrolltime = 500, // ms scrolling is supposed to take
kPictureDelay = 20
};
#define NUM_SHAKE_POSITIONS 8
static const int8 shake_positions[NUM_SHAKE_POSITIONS] = {
0, 1 * 2, 2 * 2, 1 * 2, 0 * 2, 2 * 2, 3 * 2, 1 * 2
};
/**
* The following structs define four basic fades/transitions used by
* transitionEffect(), each looking differently to the user.
* Note that the stripTables contain strip numbers, and they assume
* that the screen has 40 vertical strips (i.e. 320 pixel), and 25 horizontal
* strips (i.e. 200 pixel). There is a hack in transitionEffect that
* makes it work correctly in games which have a different screen height
* (for example, 240 pixel), but nothing is done regarding the width, so this
* code won't work correctly in COMI. Also, the number of iteration depends
* on min(vertStrips, horizStrips}. So the 13 is derived from 25/2, rounded up.
* And the 25 = min(25,40). Hence for Zak256 instead of 13 and 25, the values
* 15 and 30 should be used, and for COMI probably 30 and 60.
*/
struct TransitionEffect {
byte numOfIterations;
int8 deltaTable[16]; // four times l / t / r / b
byte stripTable[16]; // ditto
};
#ifdef __PALM_OS__
static const TransitionEffect *transitionEffects;
#else
static const TransitionEffect transitionEffects[5] = {
// Iris effect (looks like an opening/closing camera iris)
{
13, // Number of iterations
{
1, 1, -1, 1,
-1, 1, -1, -1,
1, -1, -1, -1,
1, 1, 1, -1
},
{
0, 0, 39, 0,
39, 0, 39, 24,
0, 24, 39, 24,
0, 0, 0, 24
}
},
// Box wipe (a box expands from the upper-left corner to the lower-right corner)
{
25, // Number of iterations
{
0, 1, 2, 1,
2, 0, 2, 1,
2, 0, 2, 1,
0, 0, 0, 0
},
{
0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 1, 0,
255, 0, 0, 0
}
},
// Box wipe (a box expands from the lower-right corner to the upper-left corner)
{
25, // Number of iterations
{
-2, -1, 0, -1,
-2, -1, -2, 0,
-2, -1, -2, 0,
0, 0, 0, 0
},
{
39, 24, 39, 24,
39, 24, 39, 24,
38, 24, 38, 24,
255, 0, 0, 0
}
},
// Inverse box wipe
{
25, // Number of iterations
{
0, -1, -2, -1,
-2, 0, -2, -1,
-2, 0, -2, -1,
0, 0, 0, 0
},
{
0, 24, 39, 24,
39, 0, 39, 24,
38, 0, 38, 24,
255, 0, 0, 0
}
},
// Inverse iris effect, specially tailored for V1/V2 games
{
8, // Number of iterations
{
-1, -1, 1, -1,
-1, 1, 1, 1,
-1, -1, -1, 1,
1, -1, 1, 1
},
{
7, 7, 32, 7,
7, 8, 32, 8,
7, 8, 7, 8,
32, 7, 32, 8
}
}
};
#endif
/*
* Mouse cursor cycle colors (for the default crosshair).
*/
static const byte default_v1_cursor_colors[4] = {
1, 1, 12, 11
};
static const byte default_cursor_colors[4] = {
15, 15, 7, 8
};
static const uint16 default_cursor_images[5][16] = {
/* cross-hair */
{ 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000, 0x7e3f,
0x0000, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000 },
/* hourglass */
{ 0x0000, 0x7ffe, 0x6006, 0x300c, 0x1818, 0x0c30, 0x0660, 0x03c0,
0x0660, 0x0c30, 0x1998, 0x33cc, 0x67e6, 0x7ffe, 0x0000, 0x0000 },
/* arrow */
{ 0x0000, 0x4000, 0x6000, 0x7000, 0x7800, 0x7c00, 0x7e00, 0x7f00,
0x7f80, 0x78c0, 0x7c00, 0x4600, 0x0600, 0x0300, 0x0300, 0x0180 },
/* hand */
{ 0x1e00, 0x1200, 0x1200, 0x1200, 0x1200, 0x13ff, 0x1249, 0x1249,
0xf249, 0x9001, 0x9001, 0x9001, 0x8001, 0x8001, 0x8001, 0xffff },
/* cross-hair zak256 - chrilith palmos */
/*
{ 0x0080, 0x0080, 0x02a0, 0x01c0, 0x0080, 0x1004, 0x0808, 0x7c1f,
0x0808, 0x1004, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0080, 0x0000 },
*/
{ 0x0080, 0x02a0, 0x01c0, 0x0080, 0x0000, 0x2002, 0x1004, 0x780f,
0x1004, 0x2002, 0x0000, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0000 },
};
static const byte default_cursor_hotspots[10] = {
8, 7, 8, 7, 1, 1, 5, 0,
8, 7, //zak256
};
static inline uint colorWeight(int red, int green, int blue) {
return 3 * red * red + 6 * green * green + 2 * blue * blue;
}
void Scumm::getGraphicsPerformance() {
int i;
for (i = 10; i != 0; i--) {
initScreens(0, 0, _screenWidth, _screenHeight);
}
if (VAR_PERFORMANCE_1 != 0xFF) // Variable is reserved for game scripts in earlier games
VAR(VAR_PERFORMANCE_1) = 0;
for (i = 10; i != 0; i--) {
virtscr[0].setDirtyRange(0, _screenHeight); //ender
drawDirtyScreenParts();
}
if (VAR_PERFORMANCE_2 != 0xFF) // Variable is reserved for game scripts in earlier games
VAR(VAR_PERFORMANCE_2) = 0;
if (_version >= 7)
initScreens(0, 0, _screenWidth, _screenHeight);
else
initScreens(0, 16, _screenWidth, 144);
}
void Scumm::initScreens(int a, int b, int w, int h) {
int i;
for (i = 0; i < 3; i++) {
nukeResource(rtBuffer, i + 1);
nukeResource(rtBuffer, i + 5);
}
if (!getResourceAddress(rtBuffer, 4)) {
if (_version >= 7) {
initVirtScreen(3, 0, (_screenHeight / 2) - 10, _screenWidth, 13, false, false);
} else {
initVirtScreen(3, 0, 80, _screenWidth, 13, false, false);
}
}
initVirtScreen(0, 0, b, _screenWidth, h - b, true, true);
initVirtScreen(1, 0, 0, _screenWidth, b, false, false);
initVirtScreen(2, 0, h, _screenWidth, _screenHeight - h, false, false);
_screenB = b;
_screenH = h;
}
void Scumm::initVirtScreen(int slot, int number, int top, int width, int height, bool twobufs,
bool scrollable) {
VirtScreen *vs = &virtscr[slot];
int size;
assert(height >= 0);
assert(slot >= 0 && slot < 4);
if (_version >= 7) {
if (slot == 0 && (_roomHeight != 0))
height = _roomHeight;
}
vs->number = slot;
vs->width = _screenWidth;
vs->topline = top;
vs->height = height;
vs->alloctwobuffers = twobufs;
vs->scrollable = scrollable;
vs->xstart = 0;
size = vs->width * vs->height;
vs->size = size;
vs->backBuf = NULL;
if (vs->scrollable) {
if (_version >= 7) {
size += _screenWidth * 8;
} else {
size += _screenWidth * 4;
}
}
createResource(rtBuffer, slot + 1, size);
vs->screenPtr = getResourceAddress(rtBuffer, slot + 1);
memset(vs->screenPtr, 0, size); // reset background
if (twobufs) {
createResource(rtBuffer, slot + 5, size);
}
if (slot != 3) {
virtscr[slot].setDirtyRange(0, height);
}
}
VirtScreen *Scumm::findVirtScreen(int y) {
VirtScreen *vs = virtscr;
int i;
for (i = 0; i < 3; i++, vs++) {
if (y >= vs->topline && y < vs->topline + vs->height) {
return vs;
}
}
return NULL;
}
void Scumm::updateDirtyRect(int virt, int left, int right, int top, int bottom, int dirtybit) {
VirtScreen *vs = &virtscr[virt];
int lp, rp;
if (left > right || top > bottom)
return;
if (top > vs->height || bottom < 0)
return;
if (top < 0)
top = 0;
if (bottom > vs->height)
bottom = vs->height;
if (virt == 0 && dirtybit) {
lp = (left >> 3) + _screenStartStrip;
if (lp < 0)
lp = 0;
if (_version >= 7) {
#ifdef V7_SMOOTH_SCROLLING_HACK
rp = (right + vs->xstart) >> 3;
#else
rp = (right >> 3) + _screenStartStrip;
#endif
if (rp > 409)
rp = 409;
} else {
rp = (right >> 3) + _screenStartStrip;
if (rp >= 200)
rp = 200;
}
for (; lp <= rp; lp++)
setGfxUsageBit(lp, dirtybit);
}
// The following code used to be in the seperate method setVirtscreenDirty
lp = left >> 3;
rp = right >> 3;
if ((lp >= gdi._numStrips) || (rp < 0))
return;
if (lp < 0)
lp = 0;
if (rp >= gdi._numStrips)
rp = gdi._numStrips - 1;
while (lp <= rp) {
if (top < vs->tdirty[lp])
vs->tdirty[lp] = top;
if (bottom > vs->bdirty[lp])
vs->bdirty[lp] = bottom;
lp++;
}
}
void Scumm::drawDirtyScreenParts() {
int i;
VirtScreen *vs;
byte *src;
updateDirtyScreen(2);
if (_version <= 3)
updateDirtyScreen(1);
if (camera._last.x == camera._cur.x && (camera._last.y == camera._cur.y || !(_features & GF_NEW_CAMERA))) {
updateDirtyScreen(0);
} else {
vs = &virtscr[0];
src = vs->screenPtr + vs->xstart + _screenTop * _screenWidth;
_system->copy_rect(src, _screenWidth, 0, vs->topline, _screenWidth, vs->height - _screenTop);
for (i = 0; i < gdi._numStrips; i++) {
vs->tdirty[i] = vs->height;
vs->bdirty[i] = 0;
}
}
/* Handle shaking */
if (_shakeEnabled) {
_shakeFrame = (_shakeFrame + 1) & (NUM_SHAKE_POSITIONS - 1);
_system->set_shake_pos(shake_positions[_shakeFrame]);
} else if (!_shakeEnabled &&_shakeFrame != 0) {
_shakeFrame = 0;
_system->set_shake_pos(shake_positions[_shakeFrame]);
}
}
void Scumm::updateDirtyScreen(int slot) {
gdi.updateDirtyScreen(&virtscr[slot]);
}
/**
* Blit the data from the given VirtScreen to the display. If the camera moved,
* a full blit is done, otherwise only the visible dirty areas are updated.
*/
void Gdi::updateDirtyScreen(VirtScreen *vs) {
if (vs->height == 0)
return;
if (_vm->_features & GF_NEW_CAMERA && (_vm->camera._cur.y != _vm->camera._last.y)) {
drawStripToScreen(vs, 0, _numStrips << 3, 0, vs->height);
} else {
int i;
int start, w, top, bottom;
w = 8;
start = 0;
for (i = 0; i < _numStrips; i++) {
bottom = vs->bdirty[i];
if (bottom) {
top = vs->tdirty[i];
vs->tdirty[i] = vs->height;
vs->bdirty[i] = 0;
if (i != (_numStrips - 1) && vs->bdirty[i + 1] == bottom && vs->tdirty[i + 1] == top) {
// Simple optimizations: if two or more neighbouring strips form one bigger rectangle,
// blit them all at once.
w += 8;
continue;
}
// handle vertically scrolling rooms
if (_vm->_features & GF_NEW_CAMERA)
drawStripToScreen(vs, start * 8, w, 0, vs->height);
else
drawStripToScreen(vs, start * 8, w, top, bottom);
w = 8;
}
start = i + 1;
}
}
}
/**
* Blit the specified rectangle from the given virtual screen to the display.
*/
void Gdi::drawStripToScreen(VirtScreen *vs, int x, int w, int t, int b) {
byte *ptr;
int height;
if (b <= t)
return;
if (t > vs->height)
t = 0;
if (b > vs->height)
b = vs->height;
height = b - t;
if (height > _vm->_screenHeight)
height = _vm->_screenHeight;
// Normally, _vm->_screenTop should always be >= 0, but for some old save games
// it is not, hence we check & correct it here.
if (_vm->_screenTop < 0)
_vm->_screenTop = 0;
ptr = vs->screenPtr + (x + vs->xstart) + (_vm->_screenTop + t) * _vm->_screenWidth;
_vm->_system->copy_rect(ptr, _vm->_screenWidth, x, vs->topline + t, w, height);
}
void Gdi::clearCharsetMask() {
memset(_vm->getResourceAddress(rtBuffer, 9), 0, _imgBufOffs[1]);
_mask.top = _mask.left = 32767;
_mask.right = _mask.bottom = 0;
}
/**
* Reset the background behind an actor or blast object.
*/
void Gdi::resetBackground(int top, int bottom, int strip) {
VirtScreen *vs = &_vm->virtscr[0];
byte *backbuff_ptr, *bgbak_ptr;
int offs, numLinesToProcess;
assert(0 <= strip && strip < _numStrips);
if (top < vs->tdirty[strip])
vs->tdirty[strip] = top;
if (bottom > vs->bdirty[strip])
vs->bdirty[strip] = bottom;
offs = (top * _numStrips + _vm->_screenStartStrip + strip) << 3;
byte *mask_ptr = _vm->getMaskBuffer(strip * 8, top, 0);
bgbak_ptr = _vm->getResourceAddress(rtBuffer, 5) + offs;
backbuff_ptr = vs->screenPtr + offs;
numLinesToProcess = bottom - top;
if (numLinesToProcess) {
if ((_vm->_features & GF_NEW_OPCODES) || (_vm->VAR(_vm->VAR_CURRENT_LIGHTS) & LIGHTMODE_screen)) {
if (_vm->hasCharsetMask(strip << 3, top, (strip + 1) << 3, bottom))
draw8ColWithMasking(backbuff_ptr, bgbak_ptr, numLinesToProcess, mask_ptr);
else
draw8Col(backbuff_ptr, bgbak_ptr, numLinesToProcess);
} else {
clear8Col(backbuff_ptr, numLinesToProcess);
}
}
}
void Scumm::blit(byte *dst, const byte *src, int w, int h) {
assert(h > 0);
assert(src != NULL);
assert(dst != NULL);
if (w==_screenWidth)
memcpy (dst, src, w*h);
else
{
do {
memcpy(dst, src, w);
dst += _screenWidth;
src += _screenWidth;
} while (--h);
}
}
void Scumm::drawBox(int x, int y, int x2, int y2, int color) {
int width, height;
VirtScreen *vs;
byte *backbuff, *bgbuff;
if ((vs = findVirtScreen(y)) == NULL)
return;
if (x > x2)
SWAP(x, x2);
if (y > y2)
SWAP(y, y2);
x2++;
y2++;
// Adjust for the topline of the VirtScreen
y -= vs->topline;
y2 -= vs->topline;
// Clip the coordinates
if (x < 0)
x = 0;
else if (x >= vs->width)
return;
if (x2 < 0)
return;
else if (x2 > vs->width)
x2 = vs->width;
if (y < 0)
y = 0;
else if (y > vs->height)
return;
if (y2 < 0)
return;
else if (y2 > vs->height)
y2 = vs->height;
updateDirtyRect(vs->number, x, x2, y, y2, 0);
backbuff = vs->screenPtr + vs->xstart + y * _screenWidth + x;
width = x2 - x;
height = y2 - y;
if (color == -1) {
if (vs->number != 0)
error("can only copy bg to main window");
bgbuff = getResourceAddress(rtBuffer, vs->number + 5) + vs->xstart + y * _screenWidth + x;
blit(backbuff, bgbuff, width, height);
} else {
while (height--) {
memset(backbuff, color, width);
backbuff += _screenWidth;
}
}
}
#pragma mark -
void Scumm::initBGBuffers(int height) {
const byte *ptr;
int size, itemsize, i;
byte *room;
if (_version >= 7) {
initVirtScreen(0, 0, virtscr[0].topline, _screenWidth, height, 1, 1);
}
room = getResourceAddress(rtRoom, _roomResource);
if (_version <= 3) {
gdi._numZBuffer = 2;
} else if (_features & GF_SMALL_HEADER) {
int off;
ptr = findResourceData(MKID('SMAP'), room);
gdi._numZBuffer = 0;
if (_gameId == GID_MONKEY_EGA || _gameId == GID_PASS)
off = READ_LE_UINT16(ptr);
else
off = READ_LE_UINT32(ptr);
while (off && gdi._numZBuffer < 4) {
gdi._numZBuffer++;
ptr += off;
off = READ_LE_UINT16(ptr);
}
} else if (_version == 8) {
// in V8 there is no RMIH and num z buffers is in RMHD
ptr = findResource(MKID('RMHD'), room);
gdi._numZBuffer = READ_LE_UINT32(ptr + 24) + 1;
} else {
ptr = findResource(MKID('RMIH'), findResource(MKID('RMIM'), room));
gdi._numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
}
assert(gdi._numZBuffer >= 1 && gdi._numZBuffer <= 8);
if (_version >= 7)
itemsize = (_roomHeight + 10) * gdi._numStrips;
else
itemsize = (_roomHeight + 4) * gdi._numStrips;
size = itemsize * gdi._numZBuffer;
memset(createResource(rtBuffer, 9, size), 0, size);
for (i = 0; i < (int)ARRAYSIZE(gdi._imgBufOffs); i++) {
if (i < gdi._numZBuffer)
gdi._imgBufOffs[i] = i * itemsize;
else
gdi._imgBufOffs[i] = (gdi._numZBuffer - 1) * itemsize;
}
}
void Scumm::drawFlashlight() {
int i, j, offset, x, y;
// Remove the flash light first if it was previously drawn
if (_flashlight.isDrawn) {
updateDirtyRect(0, _flashlight.x, _flashlight.x + _flashlight.w,
_flashlight.y, _flashlight.y + _flashlight.h, USAGE_BIT_DIRTY);
if (_flashlight.buffer) {
i = _flashlight.h;
do {
memset(_flashlight.buffer, 0, _flashlight.w);
_flashlight.buffer += _screenWidth;
} while (--i);
}
_flashlight.isDrawn = false;
}
if (_flashlight.xStrips == 0 || _flashlight.yStrips == 0)
return;
// Calculate the area of the flashlight
if (_gameId == GID_ZAK256 || _version <= 2) {
x = _mouse.x + virtscr[0].xstart;
y = _mouse.y - virtscr[0].topline;
} else {
Actor *a = derefActor(VAR(VAR_EGO), "drawFlashlight");
x = a->x;
y = a->y;
}
_flashlight.w = _flashlight.xStrips * 8;
_flashlight.h = _flashlight.yStrips * 8;
_flashlight.x = x - _flashlight.w / 2 - _screenStartStrip * 8;
_flashlight.y = y - _flashlight.h / 2;
if (_gameId == GID_LOOM || _gameId == GID_LOOM256)
_flashlight.y -= 12;
// Clip the flashlight at the borders
if (_flashlight.x < 0)
_flashlight.x = 0;
else if (_flashlight.x + _flashlight.w > gdi._numStrips * 8)
_flashlight.x = gdi._numStrips * 8 - _flashlight.w;
if (_flashlight.y < 0)
_flashlight.y = 0;
else if (_flashlight.y + _flashlight.h> virtscr[0].height)
_flashlight.y = virtscr[0].height - _flashlight.h;
// Redraw any actors "under" the flashlight
for (i = _flashlight.x / 8; i < (_flashlight.x + _flashlight.w) / 8; i++) {
assert(0 <= i && i < gdi._numStrips);
setGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY);
virtscr[0].tdirty[i] = 0;
virtscr[0].bdirty[i] = virtscr[0].height;
}
byte *bgbak;
offset = _flashlight.y * _screenWidth + virtscr[0].xstart + _flashlight.x;
_flashlight.buffer = virtscr[0].screenPtr + offset;
bgbak = getResourceAddress(rtBuffer, 5) + offset;
blit(_flashlight.buffer, bgbak, _flashlight.w, _flashlight.h);
// Round the corners. To do so, we simply hard-code a set of nicely
// rounded corners.
int corner_data[] = { 8, 6, 4, 3, 2, 2, 1, 1 };
int minrow = 0;
int maxcol = _flashlight.w - 1;
int maxrow = (_flashlight.h - 1) * _screenWidth;
for (i = 0; i < 8; i++, minrow += _screenWidth, maxrow -= _screenWidth) {
int d = corner_data[i];
for (j = 0; j < d; j++) {
_flashlight.buffer[minrow + j] = 0;
_flashlight.buffer[minrow + maxcol - j] = 0;
_flashlight.buffer[maxrow + j] = 0;
_flashlight.buffer[maxrow + maxcol - j] = 0;
}
}
_flashlight.isDrawn = true;
}
/**
* Redraw background as needed, i.e. the left/right sides if scrolling took place etc.
* Note that this only updated the virtual screen, not the actual display.
*/
void Scumm::redrawBGAreas() {
int i;
int val;
int diff;
if (!(_features & GF_NEW_CAMERA))
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
val = 0;
// Redraw parts of the background which are marked as dirty.
if (!_fullRedraw && _BgNeedsRedraw) {
for (i = 0; i != gdi._numStrips; i++) {
if (testGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY)) {
redrawBGStrip(i, 1);
}
}
}
if (_features & GF_NEW_CAMERA) {
diff = (camera._cur.x >> 3) - (camera._last.x >> 3);
if (_fullRedraw == 0 && diff == 1) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && diff == -1) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || diff != 0) {
_BgNeedsRedraw = false;
redrawBGStrip(0, gdi._numStrips);
}
} else {
if (_fullRedraw == 0 && camera._cur.x - camera._last.x == 8) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && camera._cur.x - camera._last.x == -8) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || camera._cur.x != camera._last.x) {
_BgNeedsRedraw = false;
_flashlight.isDrawn = false;
redrawBGStrip(0, gdi._numStrips);
}
}
drawRoomObjects(val);
_BgNeedsRedraw = false;
}
void Scumm::redrawBGStrip(int start, int num) {
int s = _screenStartStrip + start;
assert(s >= 0 && (size_t) s < sizeof(gfxUsageBits) / (3 * sizeof(gfxUsageBits[0])));
for (int i = 0; i < num; i++)
setGfxUsageBit(s + i, USAGE_BIT_DIRTY);
if (_version == 1) {
gdi._C64ObjectMode = false;
}
gdi.drawBitmap(getResourceAddress(rtRoom, _roomResource) + _IM00_offs,
&virtscr[0], s, 0, _roomWidth, virtscr[0].height, s, num, 0, _roomStrips);
}
void Scumm::restoreCharsetBg() {
if (_charset->_hasMask) {
restoreBG(gdi._mask);
_charset->_hasMask = false;
gdi._mask.top = gdi._mask.left = 32767;
gdi._mask.right = gdi._mask.bottom = 0;
_charset->_str.left = -1;
_charset->_left = -1;
}
_charset->_nextLeft = _string[0].xpos;
_charset->_nextTop = _string[0].ypos;
}
void Scumm::restoreBG(ScummVM::Rect rect, byte backColor) {
VirtScreen *vs;
int topline, height, width;
byte *backbuff, *bgbak;
bool lightsOn;
if (rect.top < 0)
rect.top = 0;
if (rect.left >= rect.right || rect.top >= rect.bottom)
return;
if ((vs = findVirtScreen(rect.top)) == NULL)
return;
topline = vs->topline;
height = topline + vs->height;
if (rect.left < 0)
rect.left = 0;
if (rect.right < 0)
rect.right = 0;
if (rect.left > _screenWidth)
return;
if (rect.right > _screenWidth)
rect.right = _screenWidth;
if (rect.bottom >= height)
rect.bottom = height;
updateDirtyRect(vs->number, rect.left, rect.right, rect.top - topline, rect.bottom - topline, USAGE_BIT_RESTORED);
int offset = (rect.top - topline) * _screenWidth + vs->xstart + rect.left;
backbuff = vs->screenPtr + offset;
bgbak = getResourceAddress(rtBuffer, vs->number + 5) + offset;
height = rect.height();
width = rect.width();
// Check whether lights are turned on or not
lightsOn = (_features & GF_NEW_OPCODES) || (vs->number != 0) || (VAR(VAR_CURRENT_LIGHTS) & LIGHTMODE_screen);
if (vs->alloctwobuffers && _currentRoom != 0 && lightsOn ) {
blit(backbuff, bgbak, width, height);
if (vs->number == 0 && _charset->_hasMask && height) {
byte *mask;
// Note: At first sight it may look as if this could
// be optimized to (rect.right - rect.left) >> 3 and
// thus to width >> 3, but that's not the case since
// we are dealing with integer math here.
int mask_width = (rect.right >> 3) - (rect.left >> 3);
if (rect.right & 0x07)
mask_width++;
mask = getMaskBuffer(rect.left, rect.top, 0);
if (vs->number == 0)
mask += vs->topline * gdi._numStrips;
do {
memset(mask, 0, mask_width);
mask += gdi._numStrips;
} while (--height);
}
} else {
while (height--) {
memset(backbuff, backColor, width);
backbuff += _screenWidth;
}
}
}
bool Scumm::hasCharsetMask(int left, int top, int right, int bottom) {
ScummVM::Rect rect(left, top, right, bottom);
return _charset->_hasMask && rect.intersects(gdi._mask);
}
byte *Scumm::getMaskBuffer(int x, int y, int z) {
return getResourceAddress(rtBuffer, 9)
+ _screenStartStrip + (x / 8) + y * gdi._numStrips + gdi._imgBufOffs[z];
}
#pragma mark -
#pragma mark --- Image drawing ---
#pragma mark -
/**
* Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds
* and objects, used throughout all SCUMM versions.
*/
void Gdi::drawBitmap(const byte *ptr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, int numstrip, byte flag, StripTable *table) {
assert(ptr);
assert(height > 0);
byte *backbuff_ptr, *bgbak_ptr;
const byte *smap_ptr;
const byte *z_plane_ptr;
byte *mask_ptr;
int i;
const byte *zplane_list[9];
int bottom;
int numzbuf;
int sx;
bool lightsOn;
bool useOrDecompress = false;
// Check whether lights are turned on or not
lightsOn = (_vm->_features & GF_NEW_OPCODES) || (vs->number != 0) || (_vm->VAR(_vm->VAR_CURRENT_LIGHTS) & LIGHTMODE_screen);
CHECK_HEAP;
if (_vm->_features & GF_SMALL_HEADER)
smap_ptr = ptr;
else if (_vm->_version == 8)
smap_ptr = ptr;
else
smap_ptr = findResource(MKID('SMAP'), ptr);
assert(smap_ptr);
zplane_list[0] = smap_ptr;
if (_zbufferDisabled)
numzbuf = 0;
else if (_numZBuffer <= 1 || (_vm->_version <= 2))
numzbuf = _numZBuffer;
else {
numzbuf = _numZBuffer;
assert(numzbuf <= (int)ARRAYSIZE(zplane_list));
if (_vm->_features & GF_OLD256) {
zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr);
if (0 == READ_LE_UINT32(zplane_list[1]))
zplane_list[1] = 0;
} else if (_vm->_features & GF_SMALL_HEADER) {
if (_vm->_features & GF_16COLOR)
zplane_list[1] = smap_ptr + READ_LE_UINT16(smap_ptr);
else
zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr);
for (i = 2; i < numzbuf; i++) {
zplane_list[i] = zplane_list[i-1] + READ_LE_UINT16(zplane_list[i-1]);
}
} else if (_vm->_version == 8) {
// Find the OFFS chunk of the ZPLN chunk
const byte *zplnOffsChunkStart = smap_ptr + READ_BE_UINT32(smap_ptr + 12) + 24;
// Each ZPLN contains a WRAP chunk, which has (as always) an OFFS subchunk pointing
// at ZSTR chunks. These once more contain a WRAP chunk which contains nothing but
// an OFFS chunk. The content of this OFFS chunk contains the offsets to the
// Z-planes.
// We do not directly make use of this, but rather hard code offsets (like we do
// for all other Scumm-versions, too). Clearly this is a bit hackish, but works
// well enough, and there is no reason to assume that there are any cases where it
// might fail. Still, doing this properly would have the advantage of catching
// invalid/damaged data files, and allow us to exit gracefully instead of segfaulting.
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = zplnOffsChunkStart + READ_LE_UINT32(zplnOffsChunkStart + 4 + i*4) + 16;
}
} else {
const uint32 zplane_tags[] = {
MKID('ZP00'),
MKID('ZP01'),
MKID('ZP02'),
MKID('ZP03'),
MKID('ZP04')
};
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = findResource(zplane_tags[i], ptr);
}
}
}
if (_vm->_version == 8) {
// A small hack to skip to the BSTR->WRAP->OFFS chunk. Note: order matters, we do this
// *after* the Z buffer code because that assumes' the orginal value of smap_ptr.
smap_ptr += 24;
}
bottom = y + height;
if (bottom > vs->height) {
warning("Gdi::drawBitmap, strip drawn to %d below window bottom %d", bottom, vs->height);
}
_vertStripNextInc = height * _vm->_screenWidth - 1;
sx = x;
if (vs->scrollable)
sx -= vs->xstart >> 3;
//
// Since V3, all graphics data was encoded in strips, which is very efficient
// for redrawing only parts of the screen. However, V2 is different: here
// the whole graphics are encoded as one big chunk. That makes it rather
// dificult to draw only parts of a room/object. We handle the V2 graphics
// differently from all other (newer) graphic formats for this reason.
//
if (_vm->_version == 2) {
if (vs->alloctwobuffers)
bgbak_ptr = _vm->getResourceAddress(rtBuffer, vs->number + 5) + (y * _numStrips + x) * 8;
else
bgbak_ptr = vs->screenPtr + (y * _numStrips + x) * 8;
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + (y * _numStrips + x) + _imgBufOffs[1];
const int left = (stripnr << 3);
const int right = left + (numstrip << 3);
byte *dst = bgbak_ptr;
const byte *src;
byte color, data = 0;
int run;
bool dither = false;
byte dither_table[128];
byte *ptr_dither_table;
memset(dither_table, 0, sizeof(dither_table));
int theX, theY, maxX;
if (table) {
run = table->run[stripnr];
color = table->color[stripnr];
src = smap_ptr + table->offsets[stripnr];
theX = left;
maxX = right;
} else {
run = 1;
color = 0;
src = smap_ptr;
theX = 0;
maxX = width;
}
// Draw image data. To do this, we decode the full RLE graphics data,
// but only draw those parts we actually want to display.
assert(height <= 128);
for (; theX < maxX; theX++) {
ptr_dither_table = dither_table;
for (theY = 0; theY < height; theY++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
dither = true;
} else {
run = data >> 4;
dither = false;
}
color = data & 0x0f;
if (run == 0) {
run = *src++;
}
}
if (!dither) {
*ptr_dither_table = color;
}
if (left <= theX && theX < right) {
*dst = *ptr_dither_table++;
dst += _vm->_screenWidth;
}
}
if (left <= theX && theX < right) {
dst -= _vertStripNextInc;
}
}
// Draw mask (zplane) data
theY = 0;
if (table) {
src = smap_ptr + table->zoffsets[stripnr];
run = table->zrun[stripnr];
theX = left;
} else {
run = *src++;
theX = 0;
}
while (theX < right) {
const byte runFlag = run & 0x80;
if (runFlag) {
run &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (left <= theX) {
*mask_ptr = data;
mask_ptr += _numStrips;
}
theY++;
if (theY >= height) {
if (left <= theX) {
mask_ptr -= _numStrips * height - 1;
}
theY = 0;
theX += 8;
if (theX >= right)
break;
}
} while (--run);
run = *src++;
}
}
while (numstrip--) {
CHECK_HEAP;
if (sx < 0)
goto next_iter;
if (sx >= _numStrips)
return;
if (y < vs->tdirty[sx])
vs->tdirty[sx] = y;
if (bottom > vs->bdirty[sx])
vs->bdirty[sx] = bottom;
backbuff_ptr = vs->screenPtr + (y * _numStrips + x) * 8;
if (vs->alloctwobuffers)
bgbak_ptr = _vm->getResourceAddress(rtBuffer, vs->number + 5) + (y * _numStrips + x) * 8;
else
bgbak_ptr = backbuff_ptr;
if (_vm->_version == 1) {
if (_C64ObjectMode)
drawStripC64Object(bgbak_ptr, stripnr, width, height);
else
drawStripC64Background(bgbak_ptr, stripnr, height);
} else if (_vm->_version > 2) {
if (_vm->_features & GF_16COLOR) {
decodeStripEGA(bgbak_ptr, smap_ptr + READ_LE_UINT16(smap_ptr + stripnr * 2 + 2), height);
} else if (_vm->_features & GF_SMALL_HEADER) {
useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 4), height);
} else {
useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 8), height);
}
}
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + (y * _numStrips + x);
CHECK_HEAP;
if (vs->alloctwobuffers) {
if (_vm->hasCharsetMask(sx << 3, y, (sx + 1) << 3, bottom)) {
if (flag & dbClear || !lightsOn)
clear8ColWithMasking(backbuff_ptr, height, mask_ptr);
else
draw8ColWithMasking(backbuff_ptr, bgbak_ptr, height, mask_ptr);
} else {
if (flag & dbClear || !lightsOn)
clear8Col(backbuff_ptr, height);
else
draw8Col(backbuff_ptr, bgbak_ptr, height);
}
}
CHECK_HEAP;
if (_vm->_version == 1) {
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[1];
if (_C64ObjectMode) {
// FIXME/TODO: V1 object masks are stored separately
} else {
//drawStripC64Mask(mask_ptr, stripnr, height);
}
} else if (_vm->_version == 2) {
// Do nothing here for V2 games - zplane was handled already.
} else if (flag & dbDrawMaskOnAll) {
// Sam & Max uses dbDrawMaskOnAll for things like the inventory
// box and the speech icons. While these objects only have one
// mask, it should be applied to all the Z-planes in the room,
// i.e. they should mask every actor.
//
// This flag used to be called dbDrawMaskOnBoth, and all it
// would do was to mask Z-plane 0. (Z-plane 1 would also be
// masked, because what is now the else-clause used to be run
// always.) While this seems to be the only way there is to
// mask Z-plane 0, this wasn't good enough since actors in
// Z-planes >= 2 would not be masked.
//
// The flag is also used by The Dig and Full Throttle, but I
// don't know what for. At the time of writing, these games
// are still too unstable for me to investigate.
if (_vm->_version == 8)
z_plane_ptr = zplane_list[1] + READ_LE_UINT32(zplane_list[1] + stripnr * 4 + 8);
else
z_plane_ptr = zplane_list[1] + READ_LE_UINT16(zplane_list[1] + stripnr * 2 + 8);
for (i = 0; i < numzbuf; i++) {
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i];
if (useOrDecompress && (flag & dbAllowMaskOr))
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
else
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
for (i = 1; i < numzbuf; i++) {
uint16 offs;
if (!zplane_list[i])
continue;
if (_vm->_features & GF_OLD_BUNDLE)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2);
else if (_vm->_features & GF_OLD256)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 4);
else if (_vm->_features & GF_SMALL_HEADER)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 2);
else if (_vm->_version == 8)
offs = (uint16) READ_LE_UINT32(zplane_list[i] + stripnr * 4 + 8);
else
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i];
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
if (useOrDecompress && (flag & dbAllowMaskOr)) {
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
} else {
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
if (!(useOrDecompress && (flag & dbAllowMaskOr)))
for (int h = 0; h < height; h++)
mask_ptr[h * _numStrips] = 0;
// FIXME: needs better abstraction
}
}
}
#if 0
// HACK: blit mask(s) onto normal screen. Useful to debug masking
for (i = 0; i < numzbuf; i++) {
mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + x + _imgBufOffs[i] + (y * _numStrips);
byte *dst = backbuff_ptr;
byte *dst2 = bgbak_ptr;
for (int h = 0; h < height; h++) {
int maskbits = *mask_ptr;
for (int j = 0; j < 8; j++) {
if (maskbits & 0x80)
dst[j] = dst2[j] = 12+i;
maskbits <<= 1;
}
dst += _vm->_screenWidth;
dst2 += _vm->_screenWidth;
mask_ptr += _numStrips;
}
}
#endif
next_iter:
CHECK_HEAP;
x++;
sx++;
stripnr++;
}
}
/**
* Create and fill a table with offsets to the graphic and mask strips in the
* given V2 EGA bitmap.
* @param src the V2 EGA bitmap
* @param width the width of the bitmap
* @param height the height of the bitmap
* @param table the strip table to fill
* @return filled strip table
*/
StripTable *Gdi::generateStripTable(const byte *src, int width, int height, StripTable *table) {
// If no strip table was given to use, allocate a new one
if (table == 0)
table = (StripTable *)calloc(1, sizeof(StripTable));
const byte *bitmapStart = src;
byte color = 0, data = 0;
int x, y, length = 0;
byte run = 1;
for (x = 0 ; x < width; x++) {
if ((x % 8) == 0) {
assert(x/8 < 160);
table->run[x/8] = run;
table->color[x/8] = color;
table->offsets[x/8] = src - bitmapStart;
}
for (y = 0; y < height; y++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
} else {
run = data >> 4;
}
if (run == 0) {
run = *src++;
}
color = data & 0x0f;
}
}
}
// Directly after the graphics data, the mask follows
x = 0;
y = height;
width /= 8;
for (;;) {
length = *src++;
const byte runFlag = length & 0x80;
if (runFlag) {
length &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (y == height) {
assert(x < 120);
table->zoffsets[x] = src - bitmapStart - 1;
table->zrun[x] = length | runFlag;
}
if (--y == 0) {
if (--width == 0)
return table;
x++;
y = height;
}
} while (--length);
}
return table;
}
void Gdi::drawStripC64Background(byte *dst, int stripnr, int height) {
height >>= 3;
for (int y = 0; y < height; y++) {
_C64Colors[3] = (_C64ColorMap[y + stripnr * height] & 7);
for (int i = 0; i < 8; i++) {
byte c = _C64CharMap[_C64PicMap[y + stripnr * height] * 8 + i];
dst[0] = dst[1] = _C64Colors[(c >> 6) & 3];
dst[2] = dst[3] = _C64Colors[(c >> 4) & 3];
dst[4] = dst[5] = _C64Colors[(c >> 2) & 3];
dst[6] = dst[7] = _C64Colors[(c >> 0) & 3];
dst += _vm->_screenWidth;
}
}
}
void Gdi::drawStripC64Object(byte *dst, int stripnr, int width, int height) {
height >>= 3;
width >>= 3;
for (int y = 0; y < height; y++) {
_C64Colors[3] = (_C64ObjectMap[y * width + stripnr + (width * height)] & 7);
for (int i = 0; i < 8; i++) {
byte c = _C64CharMap[_C64ObjectMap[y * width + stripnr] * 8 + i];
dst[0] = dst[1] = _C64Colors[(c >> 6) & 3];
dst[2] = dst[3] = _C64Colors[(c >> 4) & 3];
dst[4] = dst[5] = _C64Colors[(c >> 2) & 3];
dst[6] = dst[7] = _C64Colors[(c >> 0) & 3];
dst += _vm->_screenWidth;
}
}
}
void Gdi::drawStripC64Mask(byte *dst, int stripnr, int height) {
height >>= 3;
for (int y = 0; y < height; y++) {
for (int i = 0; i < 8; i++) {
byte c = _C64MaskChar[_C64MaskMap[y + stripnr * height] * 8 + i];
byte tmp1 = ((c >> 6) & 3) == 0;
byte tmp2 = ((c >> 4) & 3) == 0;
byte tmp3 = ((c >> 2) & 3) == 0;
byte tmp4 = ((c >> 0) & 3) == 0;
*dst = (tmp1 << 7) | (tmp1 << 6) | (tmp2 << 5) | (tmp2 << 4) |
(tmp3 << 3) | (tmp3 << 2) | (tmp4 << 1) | (tmp4 << 0);
dst += _numStrips;
}
}
}
void Gdi::decodeC64Gfx(const byte *src, byte *dst, int size) {
int x, z;
byte color, run, common[4];
for (z = 0; z < 4; z++) {
common[z] = *src++;
}
x = 0;
while (x < size){
color = *src++;
if (color < 0x40) {
for (z = 0; z <= color; z++) {
dst[x++] = *src++;
}
} else if (color < 0x80) {
color &= 0x3F;
run = *src++;
for (z = 0; z <= color; z++) {
dst[x++] = run;
}
} else {
run = common[(color >> 5) & 3];
color &= 0x1F;
for (z = 0; z <= color; z++) {
dst[x++] = run;
}
}
}
}
void Gdi::decodeStripEGA(byte *dst, const byte *src, int height) {
byte color = 0;
int run = 0, x = 0, y = 0, z;
while (x < 8) {
color = *src++;
if (color & 0x80) {
run = color & 0x3f;
if (color & 0x40) {
color = *src++;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * _vm->_screenWidth + x) = (z&1) ? ((color & 0xf) + _palette_mod) : ((color >> 4) + _palette_mod);
y++;
if (y >= height) {
y = 0;
x++;
}
}
} else {
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * _vm->_screenWidth + x) = *(dst + y * _vm->_screenWidth + x - 1);
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
} else {
run = color >> 4;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * _vm->_screenWidth + x) = (color & 0xf) + _palette_mod;
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
}
}
bool Gdi::decompressBitmap(byte *bgbak_ptr, const byte *src, int numLinesToProcess) {
assert(numLinesToProcess);
byte code = *src++;
if (_vm->_features & GF_AMIGA)
_palette_mod = 16;
else
_palette_mod = 0;
bool useOrDecompress = false;
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
switch (code) {
case 1:
unkDecode7(bgbak_ptr, src, numLinesToProcess);
break;
case 2:
unkDecode8(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 3:
unkDecode9(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 4:
unkDecode10(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 7:
unkDecode11(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
// FIXME implement these codecs...
// 8/9 used in 3do version of puttputt joins the parade maybe others
case 8:
case 9:
error("decompressBitmap: Graphics codec %d not yet supported\n", code);
// used in amiga version of Monkey Island
case 10:
decodeStripEGA(bgbak_ptr, src, numLinesToProcess);
break;
case 14:
case 15:
case 16:
case 17:
case 18:
unkDecodeC(bgbak_ptr, src, numLinesToProcess);
break;
case 24:
case 25:
case 26:
case 27:
case 28:
unkDecodeB(bgbak_ptr, src, numLinesToProcess);
break;
case 34:
case 35:
case 36:
case 37:
case 38:
useOrDecompress = true;
unkDecodeC_trans(bgbak_ptr, src, numLinesToProcess);
break;
case 44:
case 45:
case 46:
case 47:
case 48:
useOrDecompress = true;
unkDecodeB_trans(bgbak_ptr, src, numLinesToProcess);
break;
case 64:
case 65:
case 66:
case 67:
case 68:
case 104:
case 105:
case 106:
case 107:
case 108:
unkDecodeA(bgbak_ptr, src, numLinesToProcess);
break;
case 84:
case 85:
case 86:
case 87:
case 88:
case 124:
case 125:
case 126:
case 127:
case 128:
useOrDecompress = true;
unkDecodeA_trans(bgbak_ptr, src, numLinesToProcess);
break;
default:
error("Gdi::decompressBitmap: default case %d", code);
}
return useOrDecompress;
}
void Gdi::draw8ColWithMasking(byte *dst, const byte *src, int height, byte *mask) {
byte maskbits;
do {
maskbits = *mask;
if (maskbits) {
if (!(maskbits & 0x80))
dst[0] = src[0];
if (!(maskbits & 0x40))
dst[1] = src[1];
if (!(maskbits & 0x20))
dst[2] = src[2];
if (!(maskbits & 0x10))
dst[3] = src[3];
if (!(maskbits & 0x08))
dst[4] = src[4];
if (!(maskbits & 0x04))
dst[5] = src[5];
if (!(maskbits & 0x02))
dst[6] = src[6];
if (!(maskbits & 0x01))
dst[7] = src[7];
} else {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
#endif
}
src += _vm->_screenWidth;
dst += _vm->_screenWidth;
mask += _numStrips;
} while (--height);
}
void Gdi::clear8ColWithMasking(byte *dst, int height, byte *mask) {
byte maskbits;
do {
maskbits = *mask;
if (maskbits) {
if (!(maskbits & 0x80))
dst[0] = 0;
if (!(maskbits & 0x40))
dst[1] = 0;
if (!(maskbits & 0x20))
dst[2] = 0;
if (!(maskbits & 0x10))
dst[3] = 0;
if (!(maskbits & 0x08))
dst[4] = 0;
if (!(maskbits & 0x04))
dst[5] = 0;
if (!(maskbits & 0x02))
dst[6] = 0;
if (!(maskbits & 0x01))
dst[7] = 0;
} else {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
#endif
}
dst += _vm->_screenWidth;
mask += _numStrips;
} while (--height);
}
void Gdi::draw8Col(byte *dst, const byte *src, int height) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
#endif
dst += _vm->_screenWidth;
src += _vm->_screenWidth;
} while (--height);
}
void Gdi::clear8Col(byte *dst, int height)
{
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
#endif
dst += _vm->_screenWidth;
} while (--height);
}
void Gdi::decompressMaskImg(byte *dst, const byte *src, int height) {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst = c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst = *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
void Gdi::decompressMaskImgOr(byte *dst, const byte *src, int height) {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst |= c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst |= *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
#define READ_BIT (cl--, bit = bits&1, bits>>=1,bit)
#define FILL_BITS do { \
if (cl <= 8) { \
bits |= (*src++ << cl); \
cl += 8; \
} \
} while (0)
void Gdi::unkDecodeA(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
*dst++ = color + _palette_mod;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color = (byte)((color+incm)&0xFF);
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += _vm->_screenWidth - 8;
if (!--height)
return;
}
*dst++ = color + _palette_mod;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += _vm->_screenWidth - 8;
} while (--height);
}
void Gdi::unkDecodeA_trans(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color += incm;
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += _vm->_screenWidth - 8;
if (!--height)
return;
}
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += _vm->_screenWidth - 8;
} while (--height);
}
void Gdi::unkDecodeB(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
*dst++ = color + _palette_mod;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += _vm->_screenWidth - 8;
} while (--height);
}
void Gdi::unkDecodeB_trans(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += _vm->_screenWidth - 8;
} while (--height);
}
void Gdi::unkDecodeC(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
*dst = color + _palette_mod;
dst += _vm->_screenWidth;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
void Gdi::unkDecodeC_trans(byte *dst, const byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst += _vm->_screenWidth;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef READ_BIT
#undef FILL_BITS
/* Ender - Zak256/Indy256 decoders */
#define READ_256BIT \
if ((mask <<= 1) == 256) { \
buffer = *src++; \
mask = 1; \
} \
bits = ((buffer & mask) != 0);
#define NEXT_ROW \
dst += _vm->_screenWidth; \
if (--h == 0) { \
if (!--x) \
return; \
dst -= _vertStripNextInc; \
h = height; \
}
void Gdi::unkDecode7(byte *dst, const byte *src, int height) {
uint h = height;
if (_vm->_features & GF_OLD256) {
int x = 8;
for (;;) {
*dst = *src++;
NEXT_ROW
}
return;
}
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
#endif
dst += _vm->_screenWidth;
src += 8;
} while (--height);
}
void Gdi::unkDecode8(byte *dst, const byte *src, int height) {
uint h = height;
int x = 8;
for (;;) {
uint run = (*src++) + 1;
byte color = *src++;
do {
*dst = color;
NEXT_ROW
} while (--run);
}
}
void Gdi::unkDecode9(byte *dst, const byte *src, int height) {
unsigned char c, bits, color, run;
int i, j;
uint buffer = 0, mask = 128;
int h = height;
i = j = run = 0;
int x = 8;
for (;;) {
c = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
c += (bits << i);
}
switch (c >> 2) {
case 0:
color = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
color += bits << i;
}
for (i = 0; i < ((c & 3) + 2); i++) {
*dst = (run * 16 + color);
NEXT_ROW
}
break;
case 1:
for (i = 0; i < ((c & 3) + 1); i++) {
color = 0;
for (j = 0; j < 4; j++) {
READ_256BIT;
color += bits << j;
}
*dst = (run * 16 + color);
NEXT_ROW
}
break;
case 2:
run = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
run += bits << i;
}
break;
}
}
}
void Gdi::unkDecode10(byte *dst, const byte *src, int height) {
int i;
unsigned char local_palette[256], numcolors = *src++;
uint h = height;
for (i = 0; i < numcolors; i++)
local_palette[i] = *src++;
int x = 8;
for (;;) {
byte color = *src++;
if (color < numcolors) {
*dst = local_palette[color];
NEXT_ROW
} else {
uint run = color - numcolors + 1;
color = *src++;
do {
*dst = color;
NEXT_ROW
} while (--run);
}
}
}
void Gdi::unkDecode11(byte *dst, const byte *src, int height) {
int bits, i;
uint buffer = 0, mask = 128;
unsigned char inc = 1, color = *src++;
int x = 8;
do {
int h = height;
do {
*dst = color;
dst += _vm->_screenWidth;
for (i = 0; i < 3; i++) {
READ_256BIT
if (!bits)
break;
}
switch (i) {
case 1:
inc = -inc;
color -= inc;
break;
case 2:
color -= inc;
break;
case 3:
color = 0;
inc = 1;
for (i = 0; i < 8; i++) {
READ_256BIT
color += bits << i;
}
break;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef NEXT_ROW
#undef READ_256BIT
#pragma mark -
#pragma mark --- Transition effects ---
#pragma mark -
void Scumm::fadeIn(int effect) {
updatePalette();
switch (effect) {
case 1:
case 2:
case 3:
case 4:
case 5:
// Some of the transition effects won't work properly unless
// the screen is marked as clean first. At first I thought I
// could safely do this every time fadeIn() was called, but
// that broke the FOA intro. Probably other things as well.
//
// Hopefully it's safe to do it at this point, at least.
virtscr[0].setDirtyRange(0, 0);
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 130:
case 131:
case 132:
case 133:
scrollEffect(133 - effect);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
case 129:
break;
default:
warning("Unknown screen effect, %d", effect);
}
_screenEffectFlag = true;
}
void Scumm::fadeOut(int effect) {
VirtScreen *vs = &virtscr[0];
vs->setDirtyRange(0, 0);
if (!(_features & GF_NEW_CAMERA))
camera._last.x = camera._cur.x;
if (_screenEffectFlag && effect != 0) {
// Fill screen 0 with black
memset(vs->screenPtr + vs->xstart, 0, vs->size);
// Fade to black with the specified effect, if any.
switch (effect) {
case 1:
case 2:
case 3:
case 4:
case 5:
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
// Just blit screen 0 to the display (i.e. display will be black)
vs->setDirtyRange(0, vs->height);
updateDirtyScreen(0);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
default:
warning("fadeOut: default case %d", effect);
}
}
// Update the palette at the end (once we faded to black) to avoid
// some nasty effects when the palette is changed
updatePalette();
_screenEffectFlag = false;
}
/**
* Perform a transition effect. There are four different effects possible:
* 0: Iris effect
* 1: Box wipe (a black box expands from the upper-left corner to the lower-right corner)
* 2: Box wipe (a black box expands from the lower-right corner to the upper-left corner)
* 3: Inverse box wipe
* All effects operate on 8x8 blocks of the screen. These blocks are updated
* in a certain order; the exact order determines how the effect appears to the user.
* @param a the transition effect to perform
*/
void Scumm::transitionEffect(int a) {
int delta[16]; // Offset applied during each iteration
int tab_2[16];
int i, j;
int bottom;
int l, t, r, b;
for (i = 0; i < 16; i++) {
delta[i] = transitionEffects[a].deltaTable[i];
j = transitionEffects[a].stripTable[i];
if (j == 24)
j = (virtscr[0].height >> 3) - 1;
tab_2[i] = j;
}
bottom = virtscr[0].height >> 3;
for (j = 0; j < transitionEffects[a].numOfIterations; j++) {
for (i = 0; i < 4; i++) {
l = tab_2[i * 4];
t = tab_2[i * 4 + 1];
r = tab_2[i * 4 + 2];
b = tab_2[i * 4 + 3];
if (t == b) {
while (l <= r) {
if (l >= 0 && l < gdi._numStrips && (uint) t < (uint) bottom) {
virtscr[0].tdirty[l] = t << 3;
virtscr[0].bdirty[l] = (t + 1) << 3;
}
l++;
}
} else {
if (l < 0 || l >= gdi._numStrips || b <= t)
continue;
if (b > bottom)
b = bottom;
if (t < 0)
t = 0;
virtscr[0].tdirty[l] = t << 3;
virtscr[0].bdirty[l] = (b + 1) << 3;
}
updateDirtyScreen(0);
}
for (i = 0; i < 16; i++)
tab_2[i] += delta[i];
// Draw the current state to the screen and wait half a sec so the user
// can watch the effect taking place.
_system->update_screen();
waitForTimer(30);
}
}
/**
* Update width*height areas of the screen, in random order, until the whole
* screen has been updated. For instance:
*
* dissolveEffect(1, 1) produces a pixel-by-pixel dissolve
* dissolveEffect(8, 8) produces a square-by-square dissolve
* dissolveEffect(virtsrc[0].width, 1) produces a line-by-line dissolve
*/
void Scumm::dissolveEffect(int width, int height) {
VirtScreen *vs = &virtscr[0];
int *offsets;
int blits_before_refresh, blits;
int x, y;
int w, h;
int i;
// There's probably some less memory-hungry way of doing this. But
// since we're only dealing with relatively small images, it shouldn't
// be too bad.
w = vs->width / width;
h = vs->height / height;
// When used correctly, vs->width % width and vs->height % height
// should both be zero, but just to be safe...
if (vs->width % width)
w++;
if (vs->height % height)
h++;
offsets = (int *) malloc(w * h * sizeof(int));
if (offsets == NULL) {
warning("dissolveEffect: out of memory");
return;
}
// Create a permutation of offsets into the frame buffer
if (width == 1 && height == 1) {
// Optimized case for pixel-by-pixel dissolve
for (i = 0; i < vs->size; i++)
offsets[i] = i;
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = i;
}
} else {
int *offsets2;
for (i = 0, x = 0; x < vs->width; x += width)
for (y = 0; y < vs->height; y += height)
offsets[i++] = y * vs->width + x;
offsets2 = (int *) malloc(w * h * sizeof(int));
if (offsets2 == NULL) {
warning("dissolveEffect: out of memory");
free(offsets);
return;
}
memcpy(offsets2, offsets, w * h * sizeof(int));
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = offsets2[i];
}
free(offsets2);
}
// Blit the image piece by piece to the screen. The idea here is that
// the whole update should take about a quarter of a second, assuming
// most of the time is spent in waitForTimer(). It looks good to me,
// but might still need some tuning.
blits = 0;
blits_before_refresh = (3 * w * h) / 25;
// Speed up the effect for CD Loom since it uses it so often. I don't
// think the original had any delay at all, so on modern hardware it
// wasn't even noticeable.
if (_gameId == GID_LOOM256)
blits_before_refresh *= 2;
for (i = 0; i < w * h; i++) {
x = offsets[i] % vs->width;
y = offsets[i] / vs->width;
_system->copy_rect(vs->screenPtr + vs->xstart + y * vs->width + x, vs->width, x, y + vs->topline, width, height);
if (++blits >= blits_before_refresh) {
blits = 0;
_system->update_screen();
waitForTimer(30);
}
}
free(offsets);
if (blits != 0) {
_system->update_screen();
waitForTimer(30);
}
}
void Scumm::scrollEffect(int dir) {
VirtScreen *vs = &virtscr[0];
int x, y;
int step;
if ((dir == 0) || (dir == 1))
step = vs->height;
else
step = vs->width;
step = (step * kPictureDelay) / kScrolltime;
switch (dir) {
case 0:
//up
y = 1 + step;
while (y < vs->height) {
_system->move_screen(0, -step, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + (y - step) * vs->width,
vs->width,
0, vs->height - step,
vs->width, step);
_system->update_screen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 1:
// down
y = 1 + step;
while (y < vs->height) {
_system->move_screen(0, step, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + vs->width * (vs->height-y),
vs->width,
0, 0,
vs->width, step);
_system->update_screen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 2:
// left
x = 1 + step;
while (x < vs->width) {
_system->move_screen(-step, 0, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + x - step,
vs->width,
vs->width - step, 0,
step, vs->height);
_system->update_screen();
waitForTimer(kPictureDelay);
x += step;
}
break;
case 3:
// right
x = 1 + step;
while (x < vs->width) {
_system->move_screen(step, 0, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + vs->width - x,
vs->width,
0, 0,
step, vs->height);
_system->update_screen();
waitForTimer(kPictureDelay);
x += step;
}
break;
}
}
void Scumm::unkScreenEffect6() {
// CD Loom (but not EGA Loom!) uses a more fine-grained dissolve
if (_gameId == GID_LOOM256)
dissolveEffect(1, 1);
else
dissolveEffect(8, 4);
}
void Scumm::unkScreenEffect5(int a) {
// unkScreenEffect5(0), which is used by FOA during the opening
// cutscene when Indy opens the small statue, has been replaced by
// dissolveEffect(1, 1).
//
// I still don't know what unkScreenEffect5(1) is supposed to do.
/* XXX: not implemented */
warning("stub unkScreenEffect(%d)", a);
}
void Scumm::setShake(int mode) {
if (_shakeEnabled != (mode != 0))
_fullRedraw = true;
_shakeEnabled = mode != 0;
_shakeFrame = 0;
_system->set_shake_pos(0);
}
#pragma mark -
#pragma mark --- Palette ---
#pragma mark -
void Scumm::setupAmigaPalette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 0, 0, 187);
setPalColor( 2, 0, 187, 0);
setPalColor( 3, 0, 187, 187);
setPalColor( 4, 187, 0, 0);
setPalColor( 5, 187, 0, 187);
setPalColor( 6, 187, 119, 0);
setPalColor( 7, 187, 187, 187);
setPalColor( 8, 119, 119, 119);
setPalColor( 9, 119, 119, 255);
setPalColor(10, 0, 255, 0);
setPalColor(11, 0, 255, 255);
setPalColor(12, 255, 136, 136);
setPalColor(13, 255, 0, 255);
setPalColor(14, 255, 255, 0);
setPalColor(15, 255, 255, 255);
}
void Scumm::setupEGAPalette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 0, 0, 168);
setPalColor( 2, 0, 168, 0);
setPalColor( 3, 0, 168, 168);
setPalColor( 4, 168, 0, 0);
setPalColor( 5, 168, 0, 168);
setPalColor( 6, 168, 84, 0);
setPalColor( 7, 168, 168, 168);
setPalColor( 8, 84, 84, 84);
setPalColor( 9, 84, 84, 252);
setPalColor(10, 84, 252, 84);
setPalColor(11, 84, 252, 252);
setPalColor(12, 252, 84, 84);
setPalColor(13, 252, 84, 252);
setPalColor(14, 252, 252, 84);
setPalColor(15, 252, 252, 252);
}
void Scumm::setupV1ManiacPalette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 252, 252, 252);
setPalColor( 2, 168, 0, 0);
setPalColor( 3, 0, 168, 168);
setPalColor( 4, 168, 0, 168);
setPalColor( 5, 0, 168, 0);
setPalColor( 6, 0, 0, 168);
setPalColor( 7, 252, 252, 84);
setPalColor( 8, 252, 84, 84);
setPalColor( 9, 168, 84, 0);
setPalColor(10, 252, 84, 84);
setPalColor(11, 84, 84, 84);
setPalColor(12, 168, 168, 168);
setPalColor(13, 84, 252, 84);
setPalColor(14, 84, 84, 252);
setPalColor(15, 84, 84, 84);
}
void Scumm::setupV1ZakPalette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 252, 252, 252);
setPalColor( 2, 168, 0, 0);
setPalColor( 3, 0, 168, 168);
setPalColor( 4, 168, 0, 168);
setPalColor( 5, 0, 168, 0);
setPalColor( 6, 0, 0, 168);
setPalColor( 7, 252, 252, 84);
setPalColor( 8, 252, 84, 84);
setPalColor( 9, 168, 84, 0);
setPalColor(10, 252, 84, 84);
setPalColor(11, 84, 84, 84);
setPalColor(12, 168, 168, 168);
setPalColor(13, 84, 252, 84);
setPalColor(14, 84, 84, 252);
setPalColor(15, 168, 168, 168);
}
/* Old palette used in Commodore 64 versions
void Scumm::setupC64Palette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 252, 252, 252);
setPalColor( 2, 204, 0, 0);
setPalColor( 3, 0, 252, 204);
setPalColor( 4, 252, 0, 252);
setPalColor( 5, 0, 204, 0);
setPalColor( 6, 0, 0, 204);
setPalColor( 7, 252, 252, 0);
setPalColor( 8, 252, 136, 0);
setPalColor( 9, 136, 68, 0);
setPalColor(10, 252, 136, 136);
setPalColor(11, 68, 68, 68);
setPalColor(12, 136, 136, 136);
setPalColor(13, 136, 252, 136);
setPalColor(14, 136, 136, 252);
setPalColor(15, 204, 204, 204);
}
*/
void Scumm::setPaletteFromPtr(const byte *ptr) {
int i;
byte *dest, r, g, b;
int numcolor;
if (_features & GF_SMALL_HEADER) {
if (_features & GF_OLD256)
numcolor = 256;
else
numcolor = READ_LE_UINT16(ptr + 6) / 3;
ptr += 8;
} else {
numcolor = getResourceDataSize(ptr) / 3;
}
checkRange(256, 0, numcolor, "Too many colors (%d) in Palette");
dest = _currentPalette;
for (i = 0; i < numcolor; i++) {
r = *ptr++;
g = *ptr++;
b = *ptr++;
// This comparison might look weird, but it's what the disassembly (DOTT) says!
// FIXME: Fingolfin still thinks it looks weird: the value 252 = 4*63 clearly comes from
// the days 6/6/6 palettes were used, OK. But it breaks MonkeyVGA, so I had to add a
// check for that. And somebody before me added a check for V7 games, turning this
// off there, too... I wonder if it hurts other games, too? What exactly is broken
// if we remove this patch?
// Since it also causes problems in Zak256, I am turning it off for all V4 games and older.
if ((_version <= 4) || (_version >= 7) || (i <= 15 || r < 252 || g < 252 || b < 252)) {
*dest++ = r;
*dest++ = g;
*dest++ = b;
} else {
dest += 3;
}
}
setDirtyColors(0, numcolor - 1);
}
void Scumm::setPaletteFromRes() {
byte *ptr;
ptr = getResourceAddress(rtRoom, _roomResource) + _CLUT_offs;
setPaletteFromPtr(ptr);
}
void Scumm::setDirtyColors(int min, int max) {
if (_palDirtyMin > min)
_palDirtyMin = min;
if (_palDirtyMax < max)
_palDirtyMax = max;
}
void Scumm::initCycl(const byte *ptr) {
int j;
ColorCycle *cycl;
memset(_colorCycle, 0, sizeof(_colorCycle));
while ((j = *ptr++) != 0) {
if (j < 1 || j > 16) {
error("Invalid color cycle index %d", j);
}
cycl = &_colorCycle[j - 1];
ptr += 2;
cycl->counter = 0;
cycl->delay = 16384 / READ_BE_UINT16(ptr);
ptr += 2;
cycl->flags = READ_BE_UINT16(ptr);
ptr += 2;
cycl->start = *ptr++;
cycl->end = *ptr++;
}
}
void Scumm::stopCycle(int i) {
ColorCycle *cycl;
checkRange(16, 0, i, "Stop Cycle %d Out Of Range");
if (i != 0) {
_colorCycle[i - 1].delay = 0;
return;
}
for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++)
cycl->delay = 0;
}
/**
* Cycle the colors in the given palette in the intervael [cycleStart, cycleEnd]
* either one step forward or backward.
*/
static void cyclePalette(byte *palette, int cycleStart, int cycleEnd, int size, bool forward) {
byte *start = palette + cycleStart * size;
byte *end = palette + cycleEnd * size;
int num = cycleEnd - cycleStart;
byte tmp[6];
assert(size <= 6);
if (forward) {
memmove(tmp, end, size);
memmove(start + size, start, num * size);
memmove(start, tmp, size);
} else {
memmove(tmp, start, size);
memmove(start, start + size, num * size);
memmove(end, tmp, size);
}
}
/**
* Adjust an 'indirect' color palette for the color cycling performed on its master
* palette. An indirect palette is a palette which contains indices pointing into
* another palette - it provides a level of indirection to map palette colors to
* other colors. Now when the target palette is cycled, the indirect palette suddenly
* point at the wrong color(s). This function takes care of adjusting an indirect
* palette by searching through it and replacing all indices that are in the
* cycle range by the new (cycled) index.
*/
static void cycleIndirectPalette(byte *palette, int cycleStart, int cycleEnd, bool forward) {
int num = cycleEnd - cycleStart + 1;
int i;
int offset = forward ? 1 : num - 1;
for (i = 0; i < 256; i++) {
if (cycleStart <= palette[i] && palette[i] <= cycleEnd) {
palette[i] = (palette[i] - cycleStart + offset) % num + cycleStart;
}
}
}
void Scumm::cyclePalette() {
ColorCycle *cycl;
int valueToAdd;
int i, j;
if (VAR_TIMER == 0xFF) {
// FIXME - no idea if this is right :-/
// Needed for both V2 and V8 at this time
valueToAdd = VAR(VAR_TIMER_NEXT);
} else {
valueToAdd = VAR(VAR_TIMER);
if (valueToAdd < VAR(VAR_TIMER_NEXT))
valueToAdd = VAR(VAR_TIMER_NEXT);
}
if (!_colorCycle) // FIXME
return;
for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++) {
if (!cycl->delay || cycl->start > cycl->end)
continue;
cycl->counter += valueToAdd;
if (cycl->counter >= cycl->delay) {
cycl->counter %= cycl->delay;
setDirtyColors(cycl->start, cycl->end);
moveMemInPalRes(cycl->start, cycl->end, cycl->flags & 2);
::cyclePalette(_currentPalette, cycl->start, cycl->end, 3, !(cycl->flags & 2));
// Also cycle the other, indirect palettes
if (_proc_special_palette) {
::cycleIndirectPalette(_proc_special_palette, cycl->start, cycl->end, !(cycl->flags & 2));
}
if (_shadowPalette) {
if (_version >= 7) {
for (j = 0; j < NUM_SHADOW_PALETTE; j++)
::cycleIndirectPalette(_shadowPalette + j * 256, cycl->start, cycl->end, !(cycl->flags & 2));
} else {
::cycleIndirectPalette(_shadowPalette, cycl->start, cycl->end, !(cycl->flags & 2));
}
}
}
}
}
/**
* Perform color cycling on the palManipulate data, too, otherwise
* color cycling will be disturbed by the palette fade.
*/
void Scumm::moveMemInPalRes(int start, int end, byte direction) {
if (!_palManipCounter)
return;
::cyclePalette(_palManipPalette, start, end, 3, !direction);
::cyclePalette(_palManipIntermediatePal, start, end, 6, !direction);
}
void Scumm::palManipulateInit(int start, int end, int string_id, int time) {
byte *pal, *target, *between;
byte *string1, *string2, *string3;
int i;
string1 = getStringAddress(string_id);
string2 = getStringAddress(string_id + 1);
string3 = getStringAddress(string_id + 2);
if (!string1 || !string2 || !string3) {
warning("palManipulateInit(%d,%d,%d,%d): Cannot obtain string resources %d, %d and %d",
start, end, string_id, time, string_id, string_id + 1, string_id + 2);
return;
}
string1+=start;
string2+=start;
string3+=start;
_palManipStart = start;
_palManipEnd = end;
_palManipCounter = 0;
if (!_palManipPalette)
_palManipPalette = (byte *)calloc(0x300, 1);
if (!_palManipIntermediatePal)
_palManipIntermediatePal = (byte *)calloc(0x600, 1);
pal = _currentPalette + start * 3;
target = _palManipPalette + start * 3;
between = _palManipIntermediatePal + start * 6;
for (i = start; i < end; ++i) {
*target++ = *string1++;
*target++ = *string2++;
*target++ = *string3++;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
}
_palManipCounter = time;
}
void Scumm::palManipulate() {
byte *target, *pal, *between;
int i, j;
if (!_palManipCounter || !_palManipPalette || !_palManipIntermediatePal)
return;
target = _palManipPalette + _palManipStart * 3;
pal = _currentPalette + _palManipStart * 3;
between = _palManipIntermediatePal + _palManipStart * 6;
for (i = _palManipStart; i < _palManipEnd; ++i) {
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
}
setDirtyColors(_palManipStart, _palManipEnd);
_palManipCounter--;
}
void Scumm::setupShadowPalette(int slot, int redScale, int greenScale, int blueScale, int startColor, int endColor) {
byte *table;
int i;
byte *curpal;
if (slot < 0 || slot >= NUM_SHADOW_PALETTE)
error("setupShadowPalette: invalid slot %d", slot);
if (startColor < 0 || startColor > 255 || endColor < 0 || startColor > 255 || endColor < startColor)
error("setupShadowPalette: invalid range from %d to %d", startColor, endColor);
table = _shadowPalette + slot * 256;
for (i = 0; i < 256; i++)
table[i] = i;
table += startColor;
curpal = _currentPalette + startColor * 3;
for (i = startColor; i <= endColor; i++) {
*table++ = remapPaletteColor((curpal[0] * redScale) >> 8,
(curpal[1] * greenScale) >> 8,
(curpal[2] * blueScale) >> 8,
(uint) - 1);
curpal += 3;
}
}
void Scumm::setupShadowPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) {
const byte *basepal = getPalettePtr();
const byte *pal = basepal;
const byte *compareptr;
byte *table = _shadowPalette;
int i;
// This is a correction of the patch supplied for BUG #588501.
// It has been tested in all four known rooms where unkRoomFunc3 is used:
//
// 1) FOA Room 53: subway departing Knossos for Atlantis.
// 2) FOA Room 48: subway crashing into the Atlantis entrance area
// 3) FOA Room 82: boat/sub shadows while diving near Thera
// 4) FOA Room 23: the big machine room inside Atlantis
//
// The implementation behaves well in all tests.
// Pixel comparisons show that the resulting palette entries being
// derived from the shadow palette generated here occassionally differ
// slightly from the ones derived in the LEC executable.
// Not sure yet why, but the differences are VERY minor.
//
// There seems to be no explanation for why this function is called
// from within Room 23 (the big machine), as it has no shadow effects
// and thus doesn't result in any visual differences.
for (i = 0; i <= 255; i++) {
int r = (int) (*pal++ * redScale) >> 8;
int g = (int) (*pal++ * greenScale) >> 8;
int b = (int) (*pal++ * blueScale) >> 8;
// The following functionality is similar to remapPaletteColor, except
// 1) we have to work off the original CLUT rather than the current palette, and
// 2) the target shadow palette entries must be bounded to the upper and lower
// bounds provided by the opcode. (This becomes significant in Room 48, but
// is not an issue in all other known case studies.)
int j;
int ar, ag, ab;
uint sum, bestsum, bestitem = 0;
if (r > 255)
r = 255;
if (g > 255)
g = 255;
if (b > 255)
b = 255;
bestsum = (uint)-1;
r &= ~3;
g &= ~3;
b &= ~3;
compareptr = basepal + startColor * 3;
for (j = startColor; j <= endColor; j++, compareptr += 3) {
ar = compareptr[0] & ~3;
ag = compareptr[1] & ~3;
ab = compareptr[2] & ~3;
if (ar == r && ag == g && ab == b) {
bestitem = j;
break;
}
sum = colorWeight(ar - r, ag - g, ab - b);
if (sum < bestsum) {
bestsum = sum;
bestitem = j;
}
}
*table++ = bestitem;
}
}
/** This function create the specialPalette used for semi-transparency in SamnMax */
void Scumm::createSpecialPalette(int16 from, int16 to, int16 redScale, int16 greenScale, int16 blueScale,
int16 startColor, int16 endColor) {
const byte *palPtr, *curPtr;
const byte *searchPtr;
uint bestResult;
uint currentResult;
byte currentIndex;
int i, j;
palPtr = getPalettePtr();
for (i = 0; i < 256; i++)
_proc_special_palette[i] = i;
curPtr = palPtr + startColor * 3;
for (i = startColor; i < endColor; i++) {
int r = (int) (*curPtr++ * redScale) >> 8;
int g = (int) (*curPtr++ * greenScale) >> 8;
int b = (int) (*curPtr++ * blueScale) >> 8;
if (r > 255)
r = 255;
if (g > 255)
g = 255;
if (b > 255)
b = 255;
searchPtr = palPtr + from * 3;
bestResult = (uint)-1;
currentIndex = (byte) from;
for (j = from; j <= to; j++) {
int ar = (*searchPtr++);
int ag = (*searchPtr++);
int ab = (*searchPtr++);
currentResult = colorWeight(ar - r, ag - g, ab - b);
if (currentResult < bestResult) {
_proc_special_palette[i] = currentIndex;
bestResult = currentResult;
}
currentIndex++;
}
}
}
void Scumm::darkenPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) {
if (_roomResource == 0) // FIXME - HACK to get COMI demo working
return;
if (startColor <= endColor) {
const byte *cptr;
byte *cur;
int j;
int color;
cptr = getPalettePtr() + startColor * 3;
cur = _currentPalette + startColor * 3;
for (j = startColor; j <= endColor; j++) {
color = *cptr++;
color = color * redScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
color = *cptr++;
color = color * greenScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
color = *cptr++;
color = color * blueScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
}
setDirtyColors(startColor, endColor);
}
}
static int value(int n1, int n2, int hue) {
if (hue > 360)
hue = hue - 360;
else if (hue < 0)
hue = hue + 360;
if (hue < 60)
return n1 + (n2 - n1) * hue / 60;
if (hue < 180)
return n2;
if (hue < 240)
return n1 + (n2 - n1) * (240 - hue) / 60;
return n1;
}
/**
* This function scales the HSL (Hue, Saturation and Lightness)
* components of the palette colors. It's used in CMI when Guybrush
* walks from the beach towards the swamp.
*/
void Scumm::desaturatePalette(int hueScale, int satScale, int lightScale, int startColor, int endColor) {
if (startColor <= endColor) {
const byte *cptr;
byte *cur;
int j;
cptr = getPalettePtr() + startColor * 3;
cur = _currentPalette + startColor * 3;
for (j = startColor; j <= endColor; j++) {
int R = *cptr++;
int G = *cptr++;
int B = *cptr++;
// RGB to HLS (Foley and VanDam)
const int min = MIN(R, MIN(G, B));
const int max = MAX(R, MAX(G, B));
const int diff = (max - min);
const int sum = (max + min);
if (diff != 0) {
int H, S, L;
if (sum <= 255)
S = 255 * diff / sum;
else
S = 255 * diff / (255 * 2 - sum);
if (R == max)
H = 60 * (G - B) / diff;
else if (G == max)
H = 120 + 60 * (B - R) / diff;
else
H = 240 + 60 * (R - G) / diff;
if (H < 0)
H = H + 360;
// Scale the result
H = (H * hueScale) / 255;
S = (S * satScale) / 255;
L = (sum * lightScale) / 255;
// HLS to RGB (Foley and VanDam)
int m1, m2;
if (L <= 255)
m2 = L * (255 + S) / (255 * 2);
else
m2 = L * (255 - S) / (255 * 2) + S;
m1 = L - m2;
R = value(m1, m2, H + 120);
G = value(m1, m2, H);
B = value(m1, m2, H - 120);
} else {
// Maximal color = minimal color -> R=G=B -> it's a grayscale.
R = G = B = (R * lightScale) / 255;
}
*cur++ = R;
*cur++ = G;
*cur++ = B;
}
setDirtyColors(startColor, endColor);
}
}
int Scumm::remapPaletteColor(int r, int g, int b, uint threshold) {
int i;
int ar, ag, ab;
uint sum, bestsum, bestitem = 0;
byte *pal = _currentPalette;
if (r > 255)
r = 255;
if (g > 255)
g = 255;
if (b > 255)
b = 255;
bestsum = (uint) - 1;
r &= ~3;
g &= ~3;
b &= ~3;
for (i = 0; i < 256; i++, pal += 3) {
ar = pal[0] & ~3;
ag = pal[1] & ~3;
ab = pal[2] & ~3;
if (ar == r && ag == g && ab == b)
return i;
sum = colorWeight(ar - r, ag - g, ab - b);
if (sum < bestsum) {
bestsum = sum;
bestitem = i;
}
}
if (threshold != (uint) - 1 && bestsum > colorWeight(threshold, threshold, threshold)) {
// Best match exceeded threshold. Try to find an unused palette entry and
// use it for our purpose.
pal = _currentPalette + (256 - 2) * 3;
for (i = 254; i > 48; i--, pal -= 3) {
if (pal[0] >= 252 && pal[1] >= 252 && pal[2] >= 252) {
setPalColor(i, r, g, b);
return i;
}
}
}
return bestitem;
}
void Scumm::swapPalColors(int a, int b) {
byte *ap, *bp;
byte t;
if ((uint) a >= 256 || (uint) b >= 256)
error("swapPalColors: invalid values, %d, %d", a, b);
ap = &_currentPalette[a * 3];
bp = &_currentPalette[b * 3];
t = ap[0];
ap[0] = bp[0];
bp[0] = t;
t = ap[1];
ap[1] = bp[1];
bp[1] = t;
t = ap[2];
ap[2] = bp[2];
bp[2] = t;
setDirtyColors(a, a);
setDirtyColors(b, b);
}
void Scumm::copyPalColor(int dst, int src) {
byte *dp, *sp;
if ((uint) dst >= 256 || (uint) src >= 256)
error("copyPalColor: invalid values, %d, %d", dst, src);
dp = &_currentPalette[dst * 3];
sp = &_currentPalette[src * 3];
dp[0] = sp[0];
dp[1] = sp[1];
dp[2] = sp[2];
setDirtyColors(dst, dst);
}
void Scumm::setPalColor(int idx, int r, int g, int b) {
_currentPalette[idx * 3 + 0] = r;
_currentPalette[idx * 3 + 1] = g;
_currentPalette[idx * 3 + 2] = b;
setDirtyColors(idx, idx);
}
void Scumm::setPalette(int palindex) {
const byte *pals;
_curPalIndex = palindex;
pals = getPalettePtr();
setPaletteFromPtr(pals);
}
const byte *Scumm::findPalInPals(const byte *pal, int idx) {
const byte *offs;
uint32 size;
pal = findResource(MKID('WRAP'), pal);
if (pal == NULL)
return NULL;
offs = findResourceData(MKID('OFFS'), pal);
if (offs == NULL)
return NULL;
size = getResourceDataSize(offs) >> 2;
if ((uint32)idx >= (uint32)size)
return NULL;
return offs + READ_LE_UINT32(offs + idx * sizeof(uint32));
}
const byte *Scumm::getPalettePtr() {
const byte *cptr;
cptr = getResourceAddress(rtRoom, _roomResource);
assert(cptr);
if (_CLUT_offs) {
cptr += _CLUT_offs;
} else {
cptr = findPalInPals(cptr + _PALS_offs, _curPalIndex);
}
assert(cptr);
return cptr;
}
void Scumm::updatePalette() {
if (_palDirtyMax == -1)
return;
bool noir_mode = (_gameId == GID_SAMNMAX && readVar(0x8000));
int first = _palDirtyMin;
int num = _palDirtyMax - first + 1;
int i;
byte palette_colors[1024];
byte *p = palette_colors;
for (i = _palDirtyMin; i <= _palDirtyMax; i++) {
byte *data;
if (_features & GF_SMALL_HEADER)
data = _currentPalette + _shadowPalette[i] * 3;
else
data = _currentPalette + i * 3;
// Sam & Max film noir mode. Convert the colours to grayscale
// before uploading them to the backend.
if (noir_mode) {
int r, g, b;
byte brightness;
r = data[0];
g = data[1];
b = data[2];
brightness = (byte)((0.299 * r + 0.587 * g + 0.114 * b) + 0.5);
*p++ = brightness;
*p++ = brightness;
*p++ = brightness;
*p++ = 0;
} else {
*p++ = data[0];
*p++ = data[1];
*p++ = data[2];
*p++ = 0;
}
}
_system->set_palette(palette_colors, first, num);
_palDirtyMax = -1;
_palDirtyMin = 256;
}
#pragma mark -
#pragma mark --- Cursor ---
#pragma mark -
void Scumm::grabCursor(int x, int y, int w, int h) {
VirtScreen *vs = findVirtScreen(y);
if (vs == NULL) {
warning("grabCursor: invalid Y %d", y);
return;
}
grabCursor(vs->screenPtr + (y - vs->topline) * _screenWidth + x, w, h);
}
void Scumm::grabCursor(byte *ptr, int width, int height) {
uint size;
byte *dst;
size = width * height;
if (size > sizeof(_grabbedCursor))
error("grabCursor: grabbed cursor too big");
_cursor.width = width;
_cursor.height = height;
_cursor.animate = 0;
dst = _grabbedCursor;
for (; height; height--) {
memcpy(dst, ptr, width);
dst += width;
ptr += _screenWidth;
}
updateCursor();
}
void Scumm::useIm01Cursor(const byte *im, int w, int h) {
VirtScreen *vs = &virtscr[0];
byte *buf, *dst;
const byte *src;
int i;
w <<= 3;
h <<= 3;
dst = buf = (byte *) malloc(w * h);
src = vs->screenPtr + vs->xstart;
for (i = 0; i < h; i++) {
memcpy(dst, src, w);
dst += w;
src += _screenWidth;
}
drawBox(0, 0, w - 1, h - 1, 0xFF);
vs->alloctwobuffers = false;
gdi.disableZBuffer();
gdi.drawBitmap(im, vs, _screenStartStrip, 0, w, h, 0, w >> 3, 0);
vs->alloctwobuffers = true;
gdi.enableZBuffer();
grabCursor(vs->screenPtr + vs->xstart, w, h);
src = buf;
dst = vs->screenPtr + vs->xstart;
for (i = 0; i < h; i++) {
memcpy(dst, src, w);
dst += _screenWidth;
src += w;
}
free(buf);
}
void Scumm::setCursor(int cursor) {
if (cursor >= 0 && cursor <= 3)
_currentCursor = cursor;
else
warning("setCursor(%d)", cursor);
}
void Scumm::setCursorHotspot(int x, int y) {
_cursor.hotspotX = x;
_cursor.hotspotY = y;
// FIXME this hacks around offset cursor in the humongous games
if (_features & GF_HUMONGOUS) {
_cursor.hotspotX += 15;
_cursor.hotspotY += 15;
}
}
void Scumm::updateCursor() {
_system->set_mouse_cursor(_grabbedCursor, _cursor.width, _cursor.height,
_cursor.hotspotX, _cursor.hotspotY);
}
void Scumm::animateCursor() {
if (_cursor.animate) {
if (!(_cursor.animateIndex & 0x3)) {
decompressDefaultCursor((_cursor.animateIndex >> 2) & 3);
}
_cursor.animateIndex++;
}
}
void Scumm::useBompCursor(const byte *im, int width, int height) {
uint size;
width <<= 3;
height <<= 3;
size = width * height;
if (size > sizeof(_grabbedCursor))
error("useBompCursor: cursor too big (%d)", size);
_cursor.width = width;
_cursor.height = height;
_cursor.animate = 0;
// Skip the header
if (_version == 8) {
im += 16;
} else {
im += 18;
}
decompressBomp(_grabbedCursor, im, width, height);
updateCursor();
}
void Scumm::decompressDefaultCursor(int idx) {
int i, j;
byte color;
memset(_grabbedCursor, 0xFF, sizeof(_grabbedCursor));
if (_version == 1)
color = default_v1_cursor_colors[idx];
else
color = default_cursor_colors[idx];
// FIXME: None of the stock cursors are right for Loom. Why is that?
if (_gameId == GID_LOOM || _gameId == GID_LOOM256) {
int w = 0;
_cursor.width = 8;
_cursor.height = 8;
_cursor.hotspotX = 0;
_cursor.hotspotY = 0;
for (i = 0; i < 8; i++) {
w += (i >= 6) ? -2 : 1;
for (j = 0; j < w; j++)
_grabbedCursor[i * 8 + j] = color;
}
} else if (_version <= 2) {
_cursor.width = 23;
_cursor.height = 21;
_cursor.hotspotX = 11;
_cursor.hotspotY = 10;
byte *hotspot = _grabbedCursor + _cursor.hotspotY * _cursor.width + _cursor.hotspotX;
// Crosshair, slightly assymetric
for (i = 0; i < 7; i++) {
*(hotspot - 5 - i) = color;
*(hotspot + 5 + i) = color;
}
for (i = 0; i < 8; i++) {
*(hotspot - _cursor.width * (3 + i)) = color;
*(hotspot + _cursor.width * (3 + i)) = color;
}
// Arrow heads, diagonal lines
for (i = 1; i <= 3; i++) {
*(hotspot - _cursor.width * i - 5 - i) = color;
*(hotspot + _cursor.width * i - 5 - i) = color;
*(hotspot - _cursor.width * i + 5 + i) = color;
*(hotspot + _cursor.width * i + 5 + i) = color;
*(hotspot - _cursor.width * (i + 3) - i) = color;
*(hotspot - _cursor.width * (i + 3) + i) = color;
*(hotspot + _cursor.width * (i + 3) - i) = color;
*(hotspot + _cursor.width * (i + 3) + i) = color;
}
// Final touches
*(hotspot - _cursor.width - 7) = color;
*(hotspot - _cursor.width + 7) = color;
*(hotspot + _cursor.width - 7) = color;
*(hotspot + _cursor.width + 7) = color;
*(hotspot - (_cursor.width * 5) - 1) = color;
*(hotspot - (_cursor.width * 5) + 1) = color;
*(hotspot + (_cursor.width * 5) - 1) = color;
*(hotspot + (_cursor.width * 5) + 1) = color;
} else {
byte currentCursor = _currentCursor;
#ifdef __PALM_OS__
if (_gameId == GID_ZAK256 && currentCursor == 0)
currentCursor = 4;
#endif
_cursor.width = 16;
_cursor.height = 16;
_cursor.hotspotX = default_cursor_hotspots[2 * currentCursor];
_cursor.hotspotY = default_cursor_hotspots[2 * currentCursor + 1];
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) {
if (default_cursor_images[currentCursor][i] & (1 << j))
_grabbedCursor[16 * i + 15 - j] = color;
}
}
}
updateCursor();
}
void Scumm::makeCursorColorTransparent(int a) {
int i, size;
size = _cursor.width * _cursor.height;
for (i = 0; i < size; i++)
if (_grabbedCursor[i] == (byte)a)
_grabbedCursor[i] = 0xFF;
updateCursor();
}
#ifdef __PALM_OS__
#include "scumm_globals.h"
_GINIT(Gfx)
_GSETPTR(transitionEffects, GBVARS_TRANSITIONEFFECTS_INDEX, TransitionEffect, GBVARS_SCUMM)
_GEND
_GRELEASE(Gfx)
_GRELEASEPTR(GBVARS_TRANSITIONEFFECTS_INDEX, GBVARS_SCUMM)
_GEND
#endif