3987 lines
96 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "kyra/graphics/screen.h"
#include "kyra/kyra_v1.h"
#include "kyra/resource/resource.h"
#include "common/endian.h"
#include "common/memstream.h"
#include "common/system.h"
#include "common/config-manager.h"
#include "engines/util.h"
#include "graphics/cursorman.h"
#include "graphics/palette.h"
#include "graphics/sjis.h"
namespace Kyra {
Screen::Screen(KyraEngine_v1 *vm, OSystem *system, const ScreenDim *dimTable, const int dimTableSize)
: _system(system), _vm(vm), _sjisInvisibleColor(0), _dimTable(dimTable), _dimTableCount(dimTableSize),
_cursorColorKey((vm->game() == GI_KYRA1 || vm->game() == GI_EOB1 || vm->game() == GI_EOB2) ? 0xFF : 0),
_screenHeight(vm->gameFlags().platform == Common::kPlatformSegaCD ? SCREEN_H_SEGA_NTSC : SCREEN_H) {
_debugEnabled = false;
_maskMinY = _maskMaxY = -1;
_drawShapeVar1 = 0;
_drawShapeVar3 = 1;
_drawShapeVar4 = 0;
_drawShapeVar5 = 0;
memset(_fonts, 0, sizeof(_fonts));
memset(_pagePtrs, 0, sizeof(_pagePtrs));
memset(_pageMapping, 0, sizeof(_pageMapping));
memset(_sjisOverlayPtrs, 0, sizeof(_sjisOverlayPtrs));
_renderMode = Common::kRenderDefault;
_sjisMixedFontMode = false;
_screenPalette = _internFadePalette = 0;
_animBlockPtr = _textRenderBuffer = 0;
_textRenderBufferSize = 0;
_useHiColorScreen = _vm->gameFlags().useHiColorMode;
_useShapeShading = true;
_screenPageSize = SCREEN_PAGE_SIZE;
_16bitPalette = 0;
_16bitConversionPalette = 0;
_16bitShadingLevel = 0;
_bytesPerPixel = 1;
_4bitPixelPacking = _useAmigaExtraColors = _isAmiga = _isSegaCD = _use16ColorMode = false;
_useSJIS = _useOverlays = false;
_currentFont = FID_8_FNT;
_fontStyles = 0;
_paletteChanged = true;
_textMarginRight = SCREEN_W;
_customDimTable = 0;
_curDim = 0;
_yTransOffs = 0;
}
Screen::~Screen() {
for (int i = 0; i < SCREEN_OVLS_NUM; ++i)
delete[] _sjisOverlayPtrs[i];
delete[] _pagePtrs[0];
for (int f = 0; f < ARRAYSIZE(_fonts); ++f)
delete _fonts[f];
delete _screenPalette;
delete _internFadePalette;
delete[] _animBlockPtr;
delete[] _16bitPalette;
delete[] _16bitConversionPalette;
_sjisFontShared.reset();
for (uint i = 0; i < _palettes.size(); ++i)
delete _palettes[i];
if (_customDimTable) {
for (int i = 0; i < _dimTableCount; ++i)
delete _customDimTable[i];
delete[] _customDimTable;
}
}
bool Screen::init() {
_debugEnabled = false;
_useOverlays = false;
_useSJIS = false;
_use16ColorMode = _vm->gameFlags().use16ColorMode;
_4bitPixelPacking = (_use16ColorMode && _vm->game() == GI_LOL);
_isAmiga = (_vm->gameFlags().platform == Common::kPlatformAmiga);
_isSegaCD = (_vm->gameFlags().platform == Common::kPlatformSegaCD);
// Amiga copper palette magic requires the use of more than 32 colors for some purposes.
_useAmigaExtraColors = (_isAmiga && _vm->game() == GI_EOB2);
// We only check the "render_mode" setting for both Eye of the Beholder
// games here, since all the other games do not support the render_mode
// setting or handle it differently, like Kyra 1 PC-98. This avoids
// graphics glitches and crashes in other games, when the user sets his
// global render_mode setting to EGA for example.
// TODO/FIXME: It would be nice not to hardcode this. But there is no
// trivial/non annoying way to do mode checks in an easy fashion right
// now.
// In a more general sense, we might want to think about a way to only
// pass valid config values, as in values which the engine can work with,
// to the engines. We already limit the selection via our GUIO flags in
// the game specific settings, but this is not enough due to global
// settings allowing everything.
if (_vm->game() == GI_EOB1 || _vm->game() == GI_EOB2) {
if (ConfMan.hasKey("render_mode"))
_renderMode = Common::parseRenderMode(ConfMan.get("render_mode"));
}
// In VGA mode the odd and even page pointers point to the same buffers.
for (int i = 0; i < SCREEN_PAGE_NUM; i++)
_pageMapping[i] = i & ~1;
// CGA and EGA modes use additional pages to do the CGA/EGA specific graphics conversions.
if (_vm->game() == GI_EOB1 && (_renderMode == Common::kRenderCGA || _renderMode == Common::kRenderEGA)) {
for (int i = 0; i < 8; i++)
_pageMapping[i] = i;
}
memset(_fonts, 0, sizeof(_fonts));
_useOverlays = (_vm->gameFlags().useHiRes && _renderMode != Common::kRenderEGA);
if (_useOverlays) {
_useSJIS = (_vm->gameFlags().lang == Common::JA_JPN);
_sjisInvisibleColor = (_vm->game() == GI_KYRA1) ? 0x80 : 0xF6;
_sjisMixedFontMode = !_use16ColorMode;
if (!_sjisOverlayPtrs[0]) {
// We alway assume 2 bytes per pixel here when the backend is in hicolor mode, since this is the surface that is passed to the backend.
// We do this regardsless of the paramater sent to enableHiColorMode() so as not to have to change the backend color mode.
// Conversions from 8bit to 16bit have to take place when copying data to this surface here.
int bpp = _useHiColorScreen ? 2 : 1;
_sjisOverlayPtrs[0] = new uint8[SCREEN_OVL_SJIS_SIZE * bpp];
assert(_sjisOverlayPtrs[0]);
memset(_sjisOverlayPtrs[0], _sjisInvisibleColor, SCREEN_OVL_SJIS_SIZE * bpp);
}
for (int i = 1; i < SCREEN_OVLS_NUM; ++i) {
if (!_sjisOverlayPtrs[i]) {
_sjisOverlayPtrs[i] = new uint8[SCREEN_OVL_SJIS_SIZE];
assert(_sjisOverlayPtrs[i]);
memset(_sjisOverlayPtrs[i], _sjisInvisibleColor, SCREEN_OVL_SJIS_SIZE);
}
}
if (_useSJIS) {
_sjisFontShared = Common::SharedPtr<Graphics::FontSJIS>(Graphics::FontSJIS::createFont(_vm->gameFlags().platform));
if (!_sjisFontShared.get())
error("Could not load any SJIS font, neither the original nor ScummVM's 'SJIS.FNT'");
if (_use16ColorMode)
_fonts[FID_SJIS_TEXTMODE_FNT] = new SJISFont(_sjisFontShared, _sjisInvisibleColor, true, false, 0);
else
_fonts[FID_SJIS_FNT] = new SJISFont(_sjisFontShared, _sjisInvisibleColor, false, _vm->game() != GI_LOL && _vm->game() != GI_EOB2, _vm->game() == GI_LOL ? 1 : 0);
}
}
_curPage = 0;
enableHiColorMode(false);
memset(_shapePages, 0, sizeof(_shapePages));
const int paletteCount = _isAmiga ? 13 : 4;
// We allow 256 color palettes in EGA mode, since original EOB II code does the same and requires it
const int numColors = _use16ColorMode ? 16 : (_isAmiga ? 32 : (_renderMode == Common::kRenderCGA ? 4 : 256));
const int numColorsInternal = _useAmigaExtraColors ? 64 : numColors;
_dualPaletteModeSplitY = 0;
_screenPalette = new Palette(numColorsInternal);
assert(_screenPalette);
_palettes.resize(paletteCount);
_palettes[0] = new Palette(numColorsInternal);
assert(_palettes[0]);
for (int i = 1; i < paletteCount; ++i) {
_palettes[i] = new Palette(numColors);
assert(_palettes[i]);
}
// Setup CGA colors (if CGA mode is selected)
if (_renderMode == Common::kRenderCGA) {
Palette pal(5);
pal.setCGAPalette(1, Palette::kIntensityHigh);
// create additional black color 4 for use with the mouse cursor manager
pal.fill(4, 1, 0);
Screen::setScreenPalette(pal);
}
_internFadePalette = new Palette(numColorsInternal);
assert(_internFadePalette);
setScreenPalette(getPalette(0));
// We setup the PC98 text mode palette at [16, 24], since that will be used
// for KANJI characters in Lands of Lore.
if (_use16ColorMode && _vm->gameFlags().platform == Common::kPlatformPC98) {
uint8 palette[8 * 3];
for (int i = 0; i < 8; ++i) {
palette[i * 3 + 0] = ((i >> 1) & 1) * 0xFF;
palette[i * 3 + 1] = ((i >> 2) & 1) * 0xFF;
palette[i * 3 + 2] = ((i >> 0) & 1) * 0xFF;
}
_system->getPaletteManager()->setPalette(palette, 16, 8);
}
_customDimTable = new ScreenDim *[_dimTableCount];
memset(_customDimTable, 0, sizeof(ScreenDim *) * _dimTableCount);
_curDimIndex = -1;
_curDim = 0;
_charSpacing = 0;
_lineSpacing = 0;
for (int i = 0; i < ARRAYSIZE(_textColorsMap); ++i)
_textColorsMap[i] = i;
_textColorsMap16bit[0] = _textColorsMap16bit[1] = 0;
_animBlockPtr = NULL;
_animBlockSize = 0;
_mouseLockCount = 1;
CursorMan.showMouse(false);
_forceFullUpdate = false;
return true;
}
bool Screen::enableScreenDebug(bool enable) {
bool temp = _debugEnabled;
if (_debugEnabled != enable) {
_debugEnabled = enable;
setResolution();
_forceFullUpdate = true;
updateScreen();
}
return temp;
}
void Screen::setResolution() {
byte palette[3 * 256];
if (!_useHiColorScreen)
_system->getPaletteManager()->grabPalette(palette, 0, 256);
int width = 320, height = 200;
if (_vm->gameFlags().useHiRes) {
height = 400;
if (_debugEnabled)
width = 960;
else
width = 640;
} else {
if (_debugEnabled)
width = 640;
else
width = 320;
}
if (_vm->gameFlags().platform == Common::kPlatformSegaCD)
height = 224;
if (_useHiColorScreen) {
Graphics::PixelFormat px(2, 5, 5, 5, 0, 10, 5, 0, 0);
Common::List<Graphics::PixelFormat> tryModes = _system->getSupportedFormats();
for (Common::List<Graphics::PixelFormat>::iterator g = tryModes.begin(); g != tryModes.end(); ++g) {
if (g->bytesPerPixel != 2 || g->aBits()) {
g = tryModes.reverse_erase(g);
} else if (*g == px) {
tryModes.clear();
tryModes.push_back(px);
break;
}
}
initGraphics(width, height, tryModes);
if (_system->getScreenFormat().bytesPerPixel != 2)
error("Required graphics mode not supported by platform.");
} else {
initGraphics(width, height);
_system->getPaletteManager()->setPalette(palette, 0, 256);
}
}
void Screen::enableHiColorMode(bool enabled) {
if (_useHiColorScreen && enabled) {
if (!_16bitPalette)
_16bitPalette = new uint16[1024];
memset(_16bitPalette, 0, 1024 * sizeof(uint16));
delete[] _16bitConversionPalette;
_16bitConversionPalette = 0;
_bytesPerPixel = 2;
} else {
if (_useHiColorScreen) {
if (!_16bitConversionPalette)
_16bitConversionPalette = new uint16[256];
memset(_16bitConversionPalette, 0, 256 * sizeof(uint16));
}
delete[] _16bitPalette;
_16bitPalette = 0;
_bytesPerPixel = 1;
}
resetPagePtrsAndBuffers(_isSegaCD ? SCREEN_W * _screenHeight : SCREEN_PAGE_SIZE * _bytesPerPixel);
}
void Screen::updateScreen() {
bool needRealUpdate = _forceFullUpdate || !_dirtyRects.empty() || _paletteChanged;
_paletteChanged = false;
if (_useOverlays)
updateDirtyRectsOvl();
else if (_isAmiga && _dualPaletteModeSplitY)
updateDirtyRectsAmiga();
else
updateDirtyRects();
if (_debugEnabled) {
needRealUpdate = true;
if (!_useOverlays)
_system->copyRectToScreen(getPagePtr(2), SCREEN_W, 320, 0, SCREEN_W, SCREEN_H);
else
_system->copyRectToScreen(getPagePtr(2), SCREEN_W, 640, 0, SCREEN_W, SCREEN_H);
}
if (needRealUpdate)
_system->updateScreen();
}
void Screen::updateDirtyRects() {
if (_forceFullUpdate) {
_system->copyRectToScreen(getCPagePtr(0), SCREEN_W, 0, _yTransOffs, SCREEN_W, _screenHeight - _yTransOffs);
} else {
const byte *page0 = getCPagePtr(0);
Common::List<Common::Rect>::iterator it;
for (it = _dirtyRects.begin(); it != _dirtyRects.end(); ++it) {
_system->copyRectToScreen(page0 + it->top * SCREEN_W + it->left, SCREEN_W, it->left, it->top + _yTransOffs, it->width(), it->height());
}
}
_forceFullUpdate = false;
_dirtyRects.clear();
}
void Screen::updateDirtyRectsAmiga() {
if (_forceFullUpdate) {
uint32 *pos = (uint32*)(_pagePtrs[0] + _dualPaletteModeSplitY * SCREEN_W);
uint16 h = (SCREEN_H - _dualPaletteModeSplitY) * (SCREEN_W >> 2);
while (h--)
*pos++ |= 0x20202020;
_system->copyRectToScreen(getCPagePtr(0), SCREEN_W, 0, 0, SCREEN_W, SCREEN_H);
} else {
Common::List<Common::Rect>::iterator it;
for (it = _dirtyRects.begin(); it != _dirtyRects.end(); ++it) {
if (it->bottom >= _dualPaletteModeSplitY) {
int16 startY = MAX<int16>(_dualPaletteModeSplitY, it->top);
int16 h = it->bottom - startY + 1;
int16 w = it->width();
uint8 *pos = _pagePtrs[0] + startY * SCREEN_W + it->left;
while (h--) {
for (int x = 0; x < w; ++x)
*pos++ |= 0x20;
pos += (SCREEN_W - w);
}
}
_system->copyRectToScreen(_pagePtrs[0] + it->top * SCREEN_W + it->left, SCREEN_W, it->left, it->top, it->width(), it->height());
}
}
_forceFullUpdate = false;
_dirtyRects.clear();
}
#define mScale2x(dst, dstPitch, src, srcPitch, w, h) \
if (!_useHiColorScreen) \
scale2x<uint8, uint16>(dst, dstPitch, src, srcPitch, w, h); \
else if (_bytesPerPixel == 2) \
scale2x<uint16, uint32>(dst, dstPitch, src, srcPitch, w, h); \
else \
scale2x<uint8, uint32>(dst, dstPitch, src, srcPitch, w, h)
void Screen::updateDirtyRectsOvl() {
if (_forceFullUpdate) {
const byte *src = getCPagePtr(0);
byte *dst = _sjisOverlayPtrs[0];
mScale2x(dst, 640, src, SCREEN_W, SCREEN_W, SCREEN_H);
mergeOverlay(0, 0, 640, 400);
_system->copyRectToScreen(dst, _useHiColorScreen ? 1280 : 640, 0, 0, 640, 400);
} else {
const byte *page0 = getCPagePtr(0);
byte *ovl0 = _sjisOverlayPtrs[0];
int dstBpp = _useHiColorScreen ? 2 : 1;
Common::List<Common::Rect>::iterator it;
for (it = _dirtyRects.begin(); it != _dirtyRects.end(); ++it) {
byte *dst = ovl0 + it->top * 1280 * dstBpp + (it->left << dstBpp);
const byte *src = page0 + it->top * SCREEN_W * _bytesPerPixel + it->left * _bytesPerPixel;
mScale2x(dst, 640, src, SCREEN_W, it->width(), it->height());
mergeOverlay(it->left<<1, it->top<<1, it->width()<<1, it->height()<<1);
_system->copyRectToScreen(dst, _useHiColorScreen ? 1280 : 640, it->left << 1, it->top << 1, it->width() << 1, it->height() << 1);
}
}
_forceFullUpdate = false;
_dirtyRects.clear();
}
#undef mScale2x
template<typename srcType, typename scaleToType>
void Screen::scale2x(uint8 *dst, int dstPitch, const uint8 *src, int srcPitch, int w, int h) {
int dstAdd = dstPitch - w;
int srcAdd = srcPitch - w;
scaleToType *dstL1 = (scaleToType*)dst;
scaleToType *dstL2 = (scaleToType*)(dst + dstPitch * (sizeof(scaleToType) >> 1));
const srcType *src1 = (const srcType*)src;
while (h--) {
for (int x = 0; x < w; x++) {
scaleToType col = (sizeof(srcType) == 1 && sizeof(scaleToType) == 4) ? _16bitConversionPalette[*src1++] : *src1++;
*dstL1++ = *dstL2++ = col | (col << (sizeof(scaleToType) << 2));
}
dstL1 += dstAdd; dstL2 += dstAdd;
src1 += srcAdd;
}
}
template void Screen::scale2x<uint8, uint16>(uint8 *dst, int dstPitch, const uint8 *src, int srcPitch, int w, int h);
template void Screen::scale2x<uint16, uint32>(uint8 *dst, int dstPitch, const uint8 *src, int srcPitch, int w, int h);
template void Screen::scale2x<uint8, uint32>(uint8 *dst, int dstPitch, const uint8 *src, int srcPitch, int w, int h);
template<typename pixelType>
void Screen::mergeOverlayImpl(int x, int y, int w, int h) {
const uint8 *src = _sjisOverlayPtrs[1] + y * 640 + x;
uint16 *p16 = _16bitPalette ? _16bitPalette : _16bitConversionPalette;
pixelType *dst = (pixelType*)(_sjisOverlayPtrs[0] + y * 640 * sizeof(pixelType) + x * sizeof(pixelType));
int add = 640 - w;
while (h--) {
for (x = 0; x < w; ++x) {
uint8 col = *src++;
if (col != _sjisInvisibleColor)
*dst = (sizeof(pixelType) == 2) ? p16[col] : col;
dst++;
}
dst += add;
src += add;
}
}
template void Screen::mergeOverlayImpl<uint8>(int x, int y, int w, int h);
template void Screen::mergeOverlayImpl<uint16>(int x, int y, int w, int h);
const ScreenDim *Screen::getScreenDim(int dim) const {
assert(dim < _dimTableCount);
return _customDimTable[dim] ? _customDimTable[dim] : &_dimTable[dim];
}
void Screen::modifyScreenDim(int dim, int x, int y, int w, int h) {
if (!_customDimTable[dim])
_customDimTable[dim] = new ScreenDim;
memcpy(_customDimTable[dim], &_dimTable[dim], sizeof(ScreenDim));
_customDimTable[dim]->sx = x;
_customDimTable[dim]->sy = y;
_customDimTable[dim]->w = w;
_customDimTable[dim]->h = h;
if (dim == _curDimIndex || _vm->game() == GI_LOL)
setScreenDim(dim);
}
void Screen::setScreenDim(int dim) {
_curDim = getScreenDim(dim);
_curDimIndex = dim;
}
void Screen::resetPagePtrsAndBuffers(int pageSize) {
_screenPageSize = pageSize;
delete[] _pagePtrs[0];
memset(_pagePtrs, 0, sizeof(_pagePtrs));
Common::Array<uint8> realPages;
for (int i = 0; i < SCREEN_PAGE_NUM; i++) {
if (Common::find(realPages.begin(), realPages.end(), _pageMapping[i]) == realPages.end())
realPages.push_back(_pageMapping[i]);
}
int numPages = realPages.size();
uint32 bufferSize = numPages * _screenPageSize;
uint8 *pagePtr = new uint8[bufferSize];
memset(pagePtr, 0, bufferSize);
memset(_pagePtrs, 0, sizeof(_pagePtrs));
for (int i = 0; i < SCREEN_PAGE_NUM; i++) {
if (_pagePtrs[_pageMapping[i]]) {
_pagePtrs[i] = _pagePtrs[_pageMapping[i]];
} else {
_pagePtrs[i] = pagePtr;
pagePtr += _screenPageSize;
}
}
}
uint8 *Screen::getPagePtr(int pageNum) {
assert(pageNum < SCREEN_PAGE_NUM);
return _pagePtrs[pageNum];
}
const uint8 *Screen::getCPagePtr(int pageNum) const {
assert(pageNum < SCREEN_PAGE_NUM);
return _pagePtrs[pageNum];
}
uint8 *Screen::getPageRect(int pageNum, int x, int y, int w, int h) {
assert(pageNum < SCREEN_PAGE_NUM);
if (pageNum == 0 || pageNum == 1)
addDirtyRect(x, y, w, h);
return _pagePtrs[pageNum] + y * SCREEN_W + x;
}
void Screen::clearPage(int pageNum) {
assert(pageNum < SCREEN_PAGE_NUM);
if (pageNum == 0 || pageNum == 1)
_forceFullUpdate = true;
memset(getPagePtr(pageNum), 0, _screenPageSize);
clearOverlayPage(pageNum);
}
int Screen::setCurPage(int pageNum) {
assert(pageNum < SCREEN_PAGE_NUM);
int previousPage = _curPage;
_curPage = pageNum;
return previousPage;
}
void Screen::clearCurPage() {
if (_curPage == 0 || _curPage == 1)
_forceFullUpdate = true;
memset(getPagePtr(_curPage), 0, _screenPageSize);
clearOverlayPage(_curPage);
}
void Screen::copyWsaRect(int x, int y, int w, int h, int dimState, int plotFunc, const uint8 *src,
int unk1, const uint8 *unkPtr1, const uint8 *unkPtr2) {
uint8 *dstPtr = getPagePtr(_curPage);
uint8 *origDst = dstPtr;
const ScreenDim *dim = getScreenDim(dimState);
int dimX1 = dim->sx << 3;
int dimX2 = dim->w << 3;
dimX2 += dimX1;
int dimY1 = dim->sy;
int dimY2 = dim->h;
dimY2 += dimY1;
int temp = y - dimY1;
if (temp < 0) {
if ((temp += h) <= 0)
return;
else {
SWAP(temp, h);
y += temp - h;
src += (temp - h) * w;
}
}
temp = dimY2 - y;
if (temp <= 0)
return;
if (temp < h)
h = temp;
int srcOffset = 0;
temp = x - dimX1;
if (temp < 0) {
temp = -temp;
srcOffset = temp;
x += temp;
w -= temp;
}
int srcAdd = 0;
temp = dimX2 - x;
if (temp <= 0)
return;
if (temp < w) {
SWAP(w, temp);
temp -= w;
srcAdd = temp;
}
dstPtr += y * SCREEN_W + x;
uint8 *dst = dstPtr;
if (_curPage == 0 || _curPage == 1)
addDirtyRect(x, y, w, h);
if (!_use16ColorMode)
clearOverlayRect(_curPage, x, y, w, h);
temp = h;
int curY = y;
while (h--) {
src += srcOffset;
++curY;
int cW = w;
switch (plotFunc) {
case 0:
memcpy(dst, src, cW);
dst += cW; src += cW;
break;
case 1:
while (cW--) {
uint8 d = *src++;
uint8 t = unkPtr1[d];
if (t != 0xFF)
d = unkPtr2[*dst + (t << 8)];
*dst++ = d;
}
break;
case 4:
while (cW--) {
uint8 d = *src++;
if (d)
*dst = d;
++dst;
}
break;
case 5:
while (cW--) {
uint8 d = *src++;
if (d) {
uint8 t = unkPtr1[d];
if (t != 0xFF)
d = unkPtr2[*dst + (t << 8)];
*dst = d;
}
++dst;
}
break;
case 8:
case 9:
while (cW--) {
uint8 d = *src++;
uint8 t = _shapePages[0][dst - origDst] & 7;
if (unk1 < t && (curY > _maskMinY && curY < _maskMaxY))
d = _shapePages[1][dst - origDst];
*dst++ = d;
}
break;
case 12:
case 13:
while (cW--) {
uint8 d = *src++;
if (d) {
uint8 t = _shapePages[0][dst - origDst] & 7;
if (unk1 < t && (curY > _maskMinY && curY < _maskMaxY))
d = _shapePages[1][dst - origDst];
*dst++ = d;
} else {
d = _shapePages[1][dst - origDst];
*dst++ = d;
}
}
break;
default:
break;
}
dst = (dstPtr += SCREEN_W);
src += srcAdd;
}
}
int Screen::getPagePixel(int pageNum, int x, int y) {
assert(pageNum < SCREEN_PAGE_NUM);
assert(x >= 0 && x < SCREEN_W && y >= 0 && y < _screenHeight);
if (_bytesPerPixel == 1)
return _pagePtrs[pageNum][y * SCREEN_W + x];
else
return ((uint16*)_pagePtrs[pageNum])[y * SCREEN_W + x];
}
void Screen::setPagePixel(int pageNum, int x, int y, uint8 color) {
assert(pageNum < SCREEN_PAGE_NUM);
assert(x >= 0 && x < SCREEN_W && y >= 0 && y < _screenHeight);
if (pageNum == 0 || pageNum == 1)
addDirtyRect(x, y, 1, 1);
if (_4bitPixelPacking) {
color &= 0x0F;
color |= (color << 4);
} else if (_renderMode == Common::kRenderCGA) {
color &= 0x03;
} else if (_use16ColorMode || (_renderMode == Common::kRenderEGA && !_useHiResEGADithering)) {
color &= 0x0F;
}
if (_bytesPerPixel == 2) {
((uint16*)_pagePtrs[pageNum])[y * SCREEN_W + x] = _16bitPalette[color];
} else {
_pagePtrs[pageNum][y * SCREEN_W + x] = color;
}
}
void Screen::fadeFromBlack(int delay, const UpdateFunctor *upFunc) {
fadePalette(getPalette(0), delay, upFunc);
}
void Screen::fadeToBlack(int delay, const UpdateFunctor *upFunc) {
if (_renderMode == Common::kRenderEGA)
return;
Palette pal(getPalette(0).getNumColors());
fadePalette(pal, delay, upFunc);
}
void Screen::fadePalette(const Palette &pal, int delay, const UpdateFunctor *upFunc) {
if (_renderMode == Common::kRenderEGA || _bytesPerPixel == 2)
setScreenPalette(pal);
updateScreen();
if (_renderMode == Common::kRenderCGA || _renderMode == Common::kRenderEGA || _bytesPerPixel == 2)
return;
int diff = 0, delayInc = 0;
getFadeParams(pal, delay, delayInc, diff);
int delayAcc = 0;
while (!_vm->shouldQuit()) {
delayAcc += delayInc;
int refreshed = fadePalStep(pal, diff);
if (upFunc && upFunc->isValid())
(*upFunc)();
else if (_useHiColorScreen)
updateScreen();
else
_system->updateScreen();
if (!refreshed)
break;
_vm->delay((delayAcc >> 8) * 1000 / 60);
delayAcc &= 0xFF;
}
// In case we should quit we setup the final palette here. This avoids
// ugly palette glitches when quitting while fading. This can for example
// be noticed when quitting while viewing the family album in Kyra3.
if (_vm->shouldQuit()) {
setScreenPalette(pal);
}
}
void Screen::getFadeParams(const Palette &pal, int delay, int &delayInc, int &diff) {
uint8 maxDiff = 0;
for (int i = 0; i < pal.getNumColors() * 3; ++i) {
diff = ABS(pal[i] - (*_screenPalette)[i]);
maxDiff = MAX<uint8>(maxDiff, diff);
}
delayInc = (delay << 8) & 0x7FFF;
if (maxDiff != 0)
delayInc /= maxDiff;
delay = delayInc;
for (diff = 1; diff <= maxDiff; ++diff) {
if (delayInc >= 512)
break;
delayInc += delay;
}
}
int Screen::fadePalStep(const Palette &pal, int diff) {
_internFadePalette->copy(*_screenPalette);
bool needRefresh = false;
for (int i = 0; i < pal.getNumColors() * 3; ++i) {
int c1 = pal[i];
int c2 = (*_internFadePalette)[i];
if (c1 != c2) {
needRefresh = true;
if (c1 > c2) {
c2 += diff;
if (c1 < c2)
c2 = c1;
}
if (c1 < c2) {
c2 -= diff;
if (c1 > c2)
c2 = c1;
}
(*_internFadePalette)[i] = (uint8)c2;
}
}
if (needRefresh)
setScreenPalette(*_internFadePalette);
return needRefresh ? 1 : 0;
}
void Screen::setPaletteIndex(uint8 index, uint8 red, uint8 green, uint8 blue) {
Palette &pal = getPalette(0);
const int offset = index * 3;
if (pal[offset + 0] == red && pal[offset + 1] == green && pal[offset + 2] == blue)
return;
pal[offset + 0] = red;
pal[offset + 1] = green;
pal[offset + 2] = blue;
setScreenPalette(pal);
}
void Screen::getRealPalette(int num, uint8 *dst) {
const int colors = _use16ColorMode ? 16 : (_isAmiga ? 32 : 256);
const uint8 *palData = getPalette(num).getData();
if (!palData) {
memset(dst, 0, colors * 3);
return;
}
for (int i = 0; i < colors; ++i) {
dst[0] = (palData[0] * 0xFF) / 0x3F;
dst[1] = (palData[1] * 0xFF) / 0x3F;
dst[2] = (palData[2] * 0xFF) / 0x3F;
dst += 3;
palData += 3;
}
}
void Screen::setScreenPalette(const Palette &pal) {
uint8 screenPal[256 * 3];
_screenPalette->copy(pal);
for (int i = 0; i < pal.getNumColors(); ++i) {
screenPal[3 * i + 0] = (pal[i * 3 + 0] * 0xFF) / 0x3F;
screenPal[3 * i + 1] = (pal[i * 3 + 1] * 0xFF) / 0x3F;
screenPal[3 * i + 2] = (pal[i * 3 + 2] * 0xFF) / 0x3F;
}
_paletteChanged = true;
if (_useHiColorScreen) {
if (_16bitPalette)
memcpy(_16bitPalette, pal.getData(), 512);
// Generate 16bit palette for the 8bit/16 bit conversion in scale2x()
if (_16bitConversionPalette) {
Graphics::PixelFormat pixelFormat = _system->getScreenFormat();
for (int i = 0; i < 256; ++i)
_16bitConversionPalette[i] = pixelFormat.RGBToColor(screenPal[i * 3], screenPal[i * 3 + 1], screenPal[i * 3 + 2]);
// The whole Surface has to be converted again after each palette chance
_forceFullUpdate = true;
}
return;
}
_system->getPaletteManager()->setPalette(screenPal, 0, pal.getNumColors());
}
void Screen::transposeScreenOutputY(int yAdd) {
updateScreen();
_yTransOffs = yAdd;
}
void Screen::enableDualPaletteMode(int splitY) {
_dualPaletteModeSplitY = splitY;
_forceFullUpdate = true;
_dirtyRects.clear();
// TODO: We might need to reset the mouse cursor
updateScreen();
}
void Screen::disableDualPaletteMode() {
_dualPaletteModeSplitY = 0;
_forceFullUpdate = true;
}
void Screen::copyToPage0(int y, int h, uint8 page, uint8 *seqBuf) {
assert(y + h <= _screenHeight);
const uint8 *src = getPagePtr(page) + y * SCREEN_W;
uint8 *dstPage = getPagePtr(0) + y * SCREEN_W;
for (int i = 0; i < h; ++i) {
for (int x = 0; x < SCREEN_W; ++x) {
if (seqBuf[x] != src[x]) {
seqBuf[x] = src[x];
dstPage[x] = src[x];
}
}
src += SCREEN_W;
seqBuf += SCREEN_W;
dstPage += SCREEN_W;
}
addDirtyRect(0, y, SCREEN_W, h);
// This would remove the text in the end sequence of
// the (Kyrandia 1) FM-TOWNS version.
// Since this method is just used for the Seqplayer
// this shouldn't be a problem anywhere else, so it's
// safe to disable the call here.
//clearOverlayRect(0, 0, y, SCREEN_W, h);
}
void Screen::copyRegion(int x1, int y1, int x2, int y2, int w, int h, int srcPage, int dstPage, int flags) {
if (x2 < 0) {
if (x2 <= -w)
return;
w += x2;
x1 -= x2;
x2 = 0;
} else if (x2 + w >= SCREEN_W) {
if (x2 > SCREEN_W)
return;
w = SCREEN_W - x2;
}
if (y2 < 0) {
if (y2 <= -h)
return;
h += y2;
y1 -= y2;
y2 = 0;
} else if (y2 + h >= _screenHeight) {
if (y2 > _screenHeight)
return;
h = _screenHeight - y2;
}
const uint8 *src = getPagePtr(srcPage) + y1 * SCREEN_W * _bytesPerPixel + x1 * _bytesPerPixel;
uint8 *dst = getPagePtr(dstPage) + y2 * SCREEN_W * _bytesPerPixel + x2 * _bytesPerPixel;
if (src == dst)
return;
if (dstPage == 0 || dstPage == 1)
addDirtyRect(x2, y2, w, h);
copyOverlayRegion(x1, y1, x2, y2, w, h, srcPage, dstPage);
if (flags & CR_NO_P_CHECK) {
while (h--) {
memmove(dst, src, w * _bytesPerPixel);
src += SCREEN_W * _bytesPerPixel;
dst += SCREEN_W * _bytesPerPixel;
}
} else {
while (h--) {
for (int i = 0; i < w; ++i) {
if (_bytesPerPixel == 2) {
uint px = *(const uint16*)&src[i << 1];
if (px)
*(uint16*)&dst[i << 1] = px;
} else {
if (src[i])
dst[i] = src[i];
}
}
src += SCREEN_W * _bytesPerPixel;
dst += SCREEN_W * _bytesPerPixel;
}
}
}
void Screen::copyRegionToBuffer(int pageNum, int x, int y, int w, int h, uint8 *dest) {
if (y < 0) {
dest += (-y) * w * _bytesPerPixel;
h += y;
y = 0;
} else if (y + h > _screenHeight) {
h = _screenHeight - y;
}
if (x < 0) {
dest += -x * _bytesPerPixel;
w += x;
x = 0;
} else if (x + w > SCREEN_W) {
w = SCREEN_W - x;
}
if (w < 0 || h < 0)
return;
uint8 *pagePtr = getPagePtr(pageNum);
for (int i = y; i < y + h; ++i)
memcpy(dest + (i - y) * w * _bytesPerPixel, pagePtr + i * SCREEN_W * _bytesPerPixel + x * _bytesPerPixel, w * _bytesPerPixel);
}
void Screen::copyPage(uint8 srcPage, uint8 dstPage) {
uint8 *src = getPagePtr(srcPage);
uint8 *dst = getPagePtr(dstPage);
if (src != dst)
memcpy(dst, src, SCREEN_W * _screenHeight * _bytesPerPixel);
copyOverlayRegion(0, 0, 0, 0, SCREEN_W, _screenHeight, srcPage, dstPage);
if (dstPage == 0 || dstPage == 1)
_forceFullUpdate = true;
}
void Screen::copyBlockToPage(int pageNum, int x, int y, int w, int h, const uint8 *src) {
if (y < 0) {
src += (-y) * w * _bytesPerPixel;
h += y;
y = 0;
} else if (y + h > _screenHeight) {
h = _screenHeight - y;
}
int pitch = w;
if (x < 0) {
src += -x * _bytesPerPixel;
w += x;
x = 0;
} else if (x + w > SCREEN_W) {
w = SCREEN_W - x;
}
if (w < 0 || h < 0)
return;
uint8 *dst = getPagePtr(pageNum) + y * SCREEN_W * _bytesPerPixel + x * _bytesPerPixel;
if (pageNum == 0 || pageNum == 1)
addDirtyRect(x, y, w, h);
clearOverlayRect(pageNum, x, y, w, h);
while (h--) {
memcpy(dst, src, w * _bytesPerPixel);
dst += SCREEN_W * _bytesPerPixel;
src += pitch * _bytesPerPixel;
}
}
void Screen::shuffleScreen(int sx, int sy, int w, int h, int srcPage, int dstPage, int ticks, bool transparent) {
assert(sx >= 0 && w <= SCREEN_W);
int x;
uint16 x_offs[SCREEN_W];
for (x = 0; x < SCREEN_W; ++x)
x_offs[x] = x;
for (x = 0; x < w; ++x) {
int i = _vm->_rnd.getRandomNumber(w - 1);
SWAP(x_offs[x], x_offs[i]);
}
assert(sy >= 0 && h <= SCREEN_H);
int y;
uint8 y_offs[SCREEN_H];
for (y = 0; y < SCREEN_H; ++y)
y_offs[y] = y;
for (y = 0; y < h; ++y) {
int i = _vm->_rnd.getRandomNumber(h - 1);
SWAP(y_offs[y], y_offs[i]);
}
int32 start, now;
int wait;
for (y = 0; y < h && !_vm->shouldQuit(); ++y) {
start = (int32)_system->getMillis();
int y_cur = y;
for (x = 0; x < w; ++x) {
int i = sx + x_offs[x];
int j = sy + y_offs[y_cur];
++y_cur;
if (y_cur >= h)
y_cur = 0;
uint8 color = getPagePixel(srcPage, i, j);
if (!transparent || color != 0)
setPagePixel(dstPage, i, j, color);
}
// forcing full update for now
_forceFullUpdate = true;
updateScreen();
now = (int32)_system->getMillis();
wait = ticks * _vm->tickLength() - (now - start);
if (wait > 0)
_vm->delay(wait);
}
copyOverlayRegion(sx, sy, sx, sy, w, h, srcPage, dstPage);
if (_vm->shouldQuit()) {
copyRegion(sx, sy, sx, sy, w, h, srcPage, dstPage);
_system->updateScreen();
}
}
void Screen::fillRect(int x1, int y1, int x2, int y2, uint8 color, int pageNum, bool xored) {
assert(x2 < SCREEN_W && y2 < _screenHeight);
uint16 color16 = 0;
if (pageNum == -1)
pageNum = _curPage;
uint8 *dst = getPagePtr(pageNum) + y1 * SCREEN_W * _bytesPerPixel + x1 * _bytesPerPixel;
if (pageNum == 0 || pageNum == 1)
addDirtyRect(x1, y1, x2-x1+1, y2-y1+1);
clearOverlayRect(pageNum, x1, y1, x2-x1+1, y2-y1+1);
if (_4bitPixelPacking) {
color &= 0x0F;
color |= (color << 4);
} else if (_renderMode == Common::kRenderCGA) {
color &= 0x03;
} else if (_use16ColorMode || (_renderMode == Common::kRenderEGA && !_useHiResEGADithering)) {
color &= 0x0F;
} else if (_bytesPerPixel == 2)
color16 = shade16bitColor(_16bitPalette[color]);
if (xored) {
// no 16 bit support for this (unneeded)
for (; y1 <= y2; ++y1) {
for (int x = x1; x <= x2; ++x)
dst[x] ^= color;
dst += SCREEN_W;
}
} else {
for (; y1 <= y2; ++y1) {
if (_bytesPerPixel == 2) {
uint16 *ptr = (uint16*)dst;
for (int i = 0; i < x2 - x1 + 1; i++)
*ptr++ = color16;
} else {
memset(dst, color, x2 - x1 + 1);
}
dst += SCREEN_W * _bytesPerPixel;
}
}
}
void Screen::drawBox(int x1, int y1, int x2, int y2, int color) {
drawClippedLine(x1, y1, x2, y1, color);
drawClippedLine(x1, y1, x1, y2, color);
drawClippedLine(x2, y1, x2, y2, color);
drawClippedLine(x1, y2, x2, y2, color);
}
void Screen::drawShadedBox(int x1, int y1, int x2, int y2, int color1, int color2) {
assert(x1 >= 0 && y1 >= 0);
fillRect(x1, y1, x2, y1 + 1, color1);
fillRect(x2 - 1, y1, x2, y2, color1);
drawClippedLine(x1, y1, x1, y2, color2);
drawClippedLine(x1 + 1, y1 + 1, x1 + 1, y2 - 1, color2);
drawClippedLine(x1, y2 - 1, x2 - 1, y2 - 1, color2);
drawClippedLine(x1, y2, x2, y2, color2);
}
void Screen::drawClippedLine(int x1, int y1, int x2, int y2, int color) {
if (x1 < 0)
x1 = 0;
else if (x1 > 319)
x1 = 319;
if (x2 < 0)
x2 = 0;
else if (x2 > 319)
x2 = 319;
if (y1 < 0)
y1 = 0;
else if (y1 > 199)
y1 = 199;
if (y2 < 0)
y2 = 0;
else if (y2 > 199)
y2 = 199;
if (x1 == x2)
if (y1 > y2)
drawLine(true, x1, y2, y1 - y2 + 1, color);
else
drawLine(true, x1, y1, y2 - y1 + 1, color);
else
if (x1 > x2)
drawLine(false, x2, y1, x1 - x2 + 1, color);
else
drawLine(false, x1, y1, x2 - x1 + 1, color);
}
void Screen::drawLine(bool vertical, int x, int y, int length, int color) {
uint8 *ptr = getPagePtr(_curPage) + y * SCREEN_W * _bytesPerPixel + x * _bytesPerPixel;
if (_4bitPixelPacking) {
color &= 0x0F;
color |= (color << 4);
} else if (_renderMode == Common::kRenderCGA) {
color &= 0x03;
} else if (_use16ColorMode || (_renderMode == Common::kRenderEGA && !_useHiResEGADithering)) {
color &= 0x0F;
} else if (_bytesPerPixel == 2)
color = shade16bitColor(_16bitPalette[color]);
if (vertical) {
assert((y + length) <= SCREEN_H);
int currLine = 0;
while (currLine < length) {
if (_bytesPerPixel == 2)
*(uint16*)ptr = color;
else
*ptr = color;
ptr += SCREEN_W * _bytesPerPixel;
currLine++;
}
} else {
assert((x + length) <= SCREEN_W);
if (_bytesPerPixel == 2) {
for (int i = 0; i < length; i++) {
*(uint16*)ptr = color;
ptr += 2;
}
} else {
memset(ptr, color, length);
}
}
if (_curPage == 0 || _curPage == 1)
addDirtyRect(x, y, (vertical) ? 1 : length, (vertical) ? length : 1);
clearOverlayRect(_curPage, x, y, (vertical) ? 1 : length, (vertical) ? length : 1);
}
void Screen::setAnimBlockPtr(int size) {
delete[] _animBlockPtr;
_animBlockPtr = new uint8[size];
assert(_animBlockPtr);
memset(_animBlockPtr, 0, size);
_animBlockSize = size;
}
void Screen::setTextColor(const uint8 *cmap8, int a, int b) {
memcpy(&_textColorsMap[a], cmap8, (b - a + 1));
// We need to update the color tables of all fonts, we
// setup so far here.
for (int i = 0; i < FID_NUM; ++i) {
if (_fonts[i])
_fonts[i]->setColorMap(_textColorsMap);
}
}
void Screen::setTextColor16bit(const uint16 *cmap16) {
assert(cmap16);
_textColorsMap16bit[0] = cmap16[0];
_textColorsMap16bit[1] = cmap16[1];
// We need to update the color tables of all fonts, we
// setup so far here.
for (int i = 0; i < FID_NUM; ++i) {
if (_fonts[i])
_fonts[i]->set16bitColorMap(_textColorsMap16bit);
}
}
int Screen::setFontStyles(FontId fontId, int styles) {
assert(_fonts[fontId]);
SWAP(_fontStyles, styles);
_fonts[fontId]->setStyles(_fontStyles);
return styles;
}
bool Screen::loadFont(FontId fontId, const char *filename) {
if (fontId == FID_SJIS_FNT) {
warning("Trying to replace system SJIS font");
return true;
}
Font *&fnt = _fonts[fontId];
if (!fnt) {
if (_vm->game() == GI_KYRA1 && _isAmiga)
fnt = new AMIGAFont();
else
fnt = new DOSFont();
assert(fnt);
}
Common::SeekableReadStream *file = _vm->resource()->createReadStream(filename);
if (!file)
error("Font file '%s' is missing", filename);
bool ret = fnt->load(*file);
fnt->setColorMap(_textColorsMap);
delete file;
return ret;
}
Screen::FontId Screen::setFont(FontId fontId) {
FontId prev = _currentFont;
_currentFont = fontId;
assert(_fonts[_currentFont]);
return prev;
}
int Screen::getFontHeight() const {
return _fonts[_currentFont]->getHeight();
}
int Screen::getFontWidth() const {
return _fonts[_currentFont]->getWidth();
}
int Screen::getCharWidth(uint16 c) const {
const int width = _fonts[_currentFont]->getCharWidth(c);
return width + ((_currentFont != FID_SJIS_FNT && _currentFont != FID_SJIS_LARGE_FNT && _currentFont != FID_SJIS_SMALL_FNT) ? _charSpacing : 0);
}
int Screen::getCharHeight(uint16 c) const {
return _fonts[_currentFont]->getCharHeight(c);
}
int Screen::getTextWidth(const char *str, bool nextWordOnly) {
int curLineLen = 0;
int maxLineLen = 0;
FontId curFont = _currentFont;
Font::Type curType = _fonts[curFont]->getType();
while (1) {
if (_sjisMixedFontMode && curType == Font::kASCII)
setFont((*str & 0x80) ? ((_vm->game() == GI_EOB2 && curFont == FID_6_FNT) ? FID_SJIS_SMALL_FNT : FID_SJIS_FNT) : curFont);
uint c = fetchChar(str);
if (c == 0 || (nextWordOnly && (c == 2 || c == 6 || c == 13 || c == 32 || c == 0x4081))) {
break;
} else if (c == '\r') {
if (curLineLen > maxLineLen)
maxLineLen = curLineLen;
else
curLineLen = 0;
} else {
curLineLen += getCharWidth(c);
}
}
return MAX(curLineLen, maxLineLen);
}
int Screen::getNumberOfCharacters(const char *str) {
int res = 0;
while (fetchChar(str))
++res;
return res;
}
void Screen::printText(const char *str, int x, int y, uint8 color1, uint8 color2, int pitch) {
uint16 cmap16[2];
if (_16bitPalette) {
cmap16[0] = color2 ? shade16bitColor(_16bitPalette[color2]) : 0xFFFF;
cmap16[1] = _16bitPalette[color1];
setTextColor16bit(cmap16);
}
uint8 cmap8[2];
cmap8[0] = color2;
cmap8[1] = color1;
setTextColor(cmap8, 0, 1);
FontId curFont = _currentFont;
Font::Type curType = _fonts[curFont]->getType();
if (x < 0)
x = 0;
else if (x >= SCREEN_W)
return;
int x_start = x;
if (y < 0)
y = 0;
else if (y >= _screenHeight)
return;
int charHeight = 0;
bool enableWordWrap = _isSegaCD && _vm->gameFlags().lang != Common::JA_JPN;
while (1) {
if (_sjisMixedFontMode && curType == Font::kASCII)
setFont((*str & 0x80) ? ((_vm->game() == GI_EOB2 && curFont == FID_6_FNT) ? FID_SJIS_SMALL_FNT : FID_SJIS_FNT) : curFont);
uint c = fetchChar(str);
charHeight = MAX<int>(charHeight, getCharHeight(c));
if (c == 0) {
break;
} else if (c == '\r') {
x = x_start;
y += (charHeight + _lineSpacing);
} else {
int charWidth = getCharWidth(c);
int needSpace = enableWordWrap ? getTextWidth(str, true) + charWidth : charWidth;
if (x + needSpace > _textMarginRight) {
x = x_start;
y += (charHeight + _lineSpacing);
if (enableWordWrap) {
// skip space at beginning of the line
c = fetchChar(str);
if (c == 0)
return;
charWidth = getCharWidth(c);
}
if (y >= _screenHeight)
break;
}
drawChar(c, x, y, pitch);
x += charWidth;
}
}
}
uint16 Screen::fetchChar(const char *&s) const {
if (_fonts[_currentFont]->getType() == Font::kASCII)
return (uint8)*s++;
uint16 ch = (uint8)*s++;
if (ch <= 0x7F || (ch >= 0xA1 && ch <= 0xDF))
return ch;
ch |= (uint8)(*s++) << 8;
return ch;
}
void Screen::drawChar(uint16 c, int x, int y, int pitch) {
Font *fnt = _fonts[_currentFont];
assert(fnt);
const bool useOverlay = fnt->usesOverlay();
const int charWidth = fnt->getCharWidth(c);
const int charHeight = fnt->getHeight();
if (x < 0 || y < 0)
return;
if (x + charWidth > SCREEN_W || y + charHeight > _screenHeight)
return;
if (_isSegaCD) {
fnt->drawChar(c, _textRenderBuffer + (((y >> 3) * pitch + (x >> 3)) << 5) + ((y & 7) << 2) + ((x & 7) >> 1), pitch, x & 7, y & 7);
} else if (useOverlay) {
uint8 *destPage = getOverlayPtr(_curPage);
if (!destPage) {
warning("trying to draw SJIS char on unsupported page %d", _curPage);
return;
}
int bpp = (_currentFont == Screen::FID_SJIS_LARGE_FNT) ? 2 : 1;
destPage += (y * 2) * 640 * bpp + (x * 2 * bpp);
fnt->drawChar(c, destPage, 640, bpp);
} else {
fnt->drawChar(c, getPagePtr(_curPage) + y * SCREEN_W * _bytesPerPixel + x * _bytesPerPixel, SCREEN_W, _bytesPerPixel);
}
if (!_isSegaCD && (_curPage == 0 || _curPage == 1))
addDirtyRect(x, y, charWidth, charHeight);
}
void Screen::drawShape(uint8 pageNum, const uint8 *shapeData, int x, int y, int sd, int flags, ...) {
if (!shapeData)
return;
if (_vm->gameFlags().useAltShapeHeader)
shapeData += 2;
if (*shapeData & 1)
flags |= 0x400;
va_list args;
va_start(args, flags);
static const int drawShapeVar2[] = {
1, 3, 2, 5, 4, 3, 2, 1
};
_dsShapeFadingTable = 0;
_dsShapeFadingLevel = 0;
_dsColorTable = 0;
_dsTransparencyTable1 = 0;
_dsTransparencyTable2 = 0;
_dsBackgroundFadingTable = 0;
_dsDrawLayer = 0;
if (flags & DSF_CUSTOM_PALETTE) {
_dsColorTable = va_arg(args, uint8 *);
}
if (flags & DSF_SHAPE_FADING) {
_dsShapeFadingTable = va_arg(args, uint8 *);
_dsShapeFadingLevel = va_arg(args, int);
if (!_dsShapeFadingLevel)
flags &= ~DSF_SHAPE_FADING;
}
if (flags & DSF_TRANSPARENCY) {
_dsTransparencyTable1 = va_arg(args, uint8 *);
_dsTransparencyTable2 = va_arg(args, uint8 *);
}
if (flags & 0x200) {
_drawShapeVar1 = (_drawShapeVar1 + 1) & 0x7;
_drawShapeVar3 = drawShapeVar2[_drawShapeVar1];
_drawShapeVar4 = 0;
_drawShapeVar5 = 256;
}
if (flags & 0x4000)
_drawShapeVar5 = va_arg(args, int);
if (flags & 0x800)
_dsDrawLayer = va_arg(args, int);
if (flags & DSF_SCALE) {
_dsScaleW = va_arg(args, int);
_dsScaleH = va_arg(args, int);
} else {
_dsScaleW = 0x100;
_dsScaleH = 0x100;
}
if ((flags & DSF_BACKGROUND_FADING) && _vm->game() != GI_KYRA1)
_dsBackgroundFadingTable = va_arg(args, uint8 *);
va_end(args);
static const DsMarginSkipFunc dsMarginFunc[] = {
&Screen::drawShapeMarginNoScaleUpwind,
&Screen::drawShapeMarginNoScaleDownwind,
&Screen::drawShapeMarginNoScaleUpwind,
&Screen::drawShapeMarginNoScaleDownwind,
&Screen::drawShapeMarginScaleUpwind,
&Screen::drawShapeMarginScaleDownwind,
&Screen::drawShapeMarginScaleUpwind,
&Screen::drawShapeMarginScaleDownwind
};
static const DsMarginSkipFunc dsSkipFunc[] = {
&Screen::drawShapeMarginNoScaleUpwind,
&Screen::drawShapeMarginNoScaleDownwind,
&Screen::drawShapeMarginNoScaleUpwind,
&Screen::drawShapeMarginNoScaleDownwind,
&Screen::drawShapeSkipScaleUpwind,
&Screen::drawShapeSkipScaleDownwind,
&Screen::drawShapeSkipScaleUpwind,
&Screen::drawShapeSkipScaleDownwind
};
static const DsLineFunc dsLineFunc[] = {
&Screen::drawShapeProcessLineNoScaleUpwind,
&Screen::drawShapeProcessLineNoScaleDownwind,
&Screen::drawShapeProcessLineNoScaleUpwind,
&Screen::drawShapeProcessLineNoScaleDownwind,
&Screen::drawShapeProcessLineScaleUpwind,
&Screen::drawShapeProcessLineScaleDownwind,
&Screen::drawShapeProcessLineScaleUpwind,
&Screen::drawShapeProcessLineScaleDownwind
};
static const DsPlotFunc dsPlotFunc[] = {
&Screen::drawShapePlotType0, // used by Kyra 1 + 2
&Screen::drawShapePlotType1, // used by Kyra 3
0,
&Screen::drawShapePlotType3_7, // used by Kyra 3 (shadow)
&Screen::drawShapePlotType4, // used by Kyra 1, 2 + 3
&Screen::drawShapePlotType5, // used by Kyra 1
&Screen::drawShapePlotType6, // used by Kyra 1 (invisibility)
&Screen::drawShapePlotType3_7, // used by Kyra 1 (invisibility)
&Screen::drawShapePlotType8, // used by Kyra 2
&Screen::drawShapePlotType9, // used by Kyra 1 + 3
0,
&Screen::drawShapePlotType11_15, // used by Kyra 1 (invisibility) + Kyra 3 (shadow)
&Screen::drawShapePlotType12, // used by Kyra 2
&Screen::drawShapePlotType13, // used by Kyra 1
&Screen::drawShapePlotType14, // used by Kyra 1 (invisibility)
&Screen::drawShapePlotType11_15, // used by Kyra 1 (invisibility)
&Screen::drawShapePlotType16, // used by LoL PC-98/16 Colors (teleporters),
0, 0, 0,
&Screen::drawShapePlotType20, // used by LoL (heal spell effect)
&Screen::drawShapePlotType21, // used by LoL (white tower spirits)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
&Screen::drawShapePlotType33, // used by LoL (blood spots on the floor)
0, 0, 0,
&Screen::drawShapePlotType37, // used by LoL (monsters)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
&Screen::drawShapePlotType48, // used by LoL (slime spots on the floor)
0, 0, 0,
&Screen::drawShapePlotType52, // used by LoL (projectiles)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0
};
int scaleCounterV = 0;
const int drawFunc = flags & 0x0F;
_dsProcessMargin = dsMarginFunc[drawFunc];
_dsScaleSkip = dsSkipFunc[drawFunc];
_dsProcessLine = dsLineFunc[drawFunc];
const int ppc = (flags >> 8) & 0x3F;
_dsPlot = dsPlotFunc[ppc];
DsPlotFunc dsPlot2 = dsPlotFunc[ppc], dsPlot3 = dsPlotFunc[ppc];
if (flags & 0x800)
dsPlot3 = dsPlotFunc[((flags >> 8) & 0xF7) & 0x3F];
if (!_dsPlot || !dsPlot2 || !dsPlot3) {
if (!dsPlot2)
warning("Missing drawShape plotting method type %d", ppc);
if (dsPlot3 != dsPlot2 && !dsPlot3)
warning("Missing drawShape plotting method type %d", (((flags >> 8) & 0xF7) & 0x3F));
return;
}
int curY = y;
const uint8 *src = shapeData;
uint8 *dst = _dsDstPage = getPagePtr(pageNum);
const ScreenDim *dsDim = getScreenDim(sd);
dst += (dsDim->sx << 3);
if (!(flags & 0x10))
x -= (dsDim->sx << 3);
int x2 = (dsDim->w << 3);
int y1 = dsDim->sy;
if (flags & 0x10)
y += y1;
int y2 = y1 + dsDim->h;
uint16 shapeFlags = READ_LE_UINT16(src); src += 2;
int shapeHeight = *src++;
uint16 shapeWidth = READ_LE_UINT16(src); src += 2;
int shpWidthScaled1 = shapeWidth;
int shpWidthScaled2 = shapeWidth;
if (flags & DSF_SCALE) {
shapeHeight = (shapeHeight * _dsScaleH) >> 8;
shpWidthScaled1 = shpWidthScaled2 = (shapeWidth * _dsScaleW) >> 8;
if (!shapeHeight || !shpWidthScaled1)
return;
}
if (flags & DSF_CENTER) {
x -= (shpWidthScaled1 >> 1);
y -= (shapeHeight >> 1);
}
src += 3;
uint16 frameSize = READ_LE_UINT16(src); src += 2;
int colorTableColors = ((_vm->game() != GI_KYRA1) && (shapeFlags & 4)) ? *src++ : 16;
if (!(flags & 0x8000) && (shapeFlags & 1))
_dsColorTable = src;
if (flags & 0x400)
src += colorTableColors;
if (!(shapeFlags & 2)) {
decodeFrame4(src, _animBlockPtr, frameSize);
src = _animBlockPtr;
}
int t = (flags & 2) ? y2 - y - shapeHeight : y - y1;
if (t < 0) {
shapeHeight += t;
if (shapeHeight <= 0) {
return;
}
t *= -1;
const uint8 *srcBackUp = 0;
do {
_dsOffscreenScaleVal1 = 0;
srcBackUp = src;
_dsTmpWidth = shapeWidth;
int cnt = shapeWidth;
(this->*_dsScaleSkip)(dst, src, cnt);
scaleCounterV += _dsScaleH;
if (scaleCounterV & 0xFF00) {
uint8 r = scaleCounterV >> 8;
scaleCounterV &= 0xFF;
t -= r;
}
} while (!(scaleCounterV & 0xFF00) && (t > 0));
if (t < 0) {
src = srcBackUp;
scaleCounterV += (-t << 8);
}
if (!(flags & 2))
y = y1;
}
t = (flags & 2) ? y + shapeHeight - y1 : y2 - y;
if (t <= 0)
return;
if (t < shapeHeight) {
shapeHeight = t;
if (flags & 2)
y = y1;
}
_dsOffscreenLeft = 0;
if (x < 0) {
shpWidthScaled1 += x;
_dsOffscreenLeft = -x;
if (_dsOffscreenLeft >= shpWidthScaled2)
return;
x = 0;
}
_dsOffscreenRight = 0;
t = x2 - x;
if (t <= 0)
return;
if (t < shpWidthScaled1) {
shpWidthScaled1 = t;
_dsOffscreenRight = shpWidthScaled2 - _dsOffscreenLeft - shpWidthScaled1;
}
int dsPitch = 320;
int ty = y;
if (flags & 2) {
dsPitch *= -1;
ty = ty - 1 + shapeHeight;
}
if (flags & DSF_X_FLIPPED) {
SWAP(_dsOffscreenLeft, _dsOffscreenRight);
dst += (shpWidthScaled1 - 1);
}
dst += (320 * ty + x);
if (flags & DSF_SCALE) {
_dsOffscreenRight = 0;
_dsOffscreenScaleVal2 = _dsOffscreenLeft;
_dsOffscreenLeft <<= 8;
_dsOffscreenScaleVal1 = (_dsOffscreenLeft % _dsScaleW) * -1;
_dsOffscreenLeft /= _dsScaleW;
}
if (shapeHeight <= 0 || shpWidthScaled1 <= 0)
return;
if (pageNum == 0 || pageNum == 1)
addDirtyRect(x, y, shpWidthScaled1, shapeHeight);
clearOverlayRect(pageNum, x, y, shpWidthScaled1, shapeHeight);
uint8 *d = dst;
bool normalPlot = true;
while (true) {
while (!(scaleCounterV & 0xFF00)) {
scaleCounterV += _dsScaleH;
if (!(scaleCounterV & 0xFF00)) {
_dsTmpWidth = shapeWidth;
int cnt = shapeWidth;
(this->*_dsScaleSkip)(d, src, cnt);
}
}
const uint8 *b_src = src;
do {
src = b_src;
_dsTmpWidth = shapeWidth;
int cnt = _dsOffscreenLeft;
int scaleState = (this->*_dsProcessMargin)(d, src, cnt);
if (_dsTmpWidth) {
cnt += shpWidthScaled1;
if (cnt > 0) {
if (flags & 0x800)
normalPlot = (curY > _maskMinY && curY < _maskMaxY);
_dsPlot = normalPlot ? dsPlot2 : dsPlot3;
(this->*_dsProcessLine)(d, src, cnt, scaleState);
}
cnt += _dsOffscreenRight;
if (cnt)
(this->*_dsScaleSkip)(d, src, cnt);
}
dst += dsPitch;
d = dst;
++curY;
if (!--shapeHeight)
return;
scaleCounterV -= 0x100;
} while (scaleCounterV & 0xFF00);
}
}
int Screen::drawShapeMarginNoScaleUpwind(uint8 *&dst, const uint8 *&src, int &cnt) {
while (cnt-- > 0) {
if (*src++)
continue;
cnt = cnt + 1 - (*src++);
}
cnt++;
dst -= cnt;
return 0;
}
int Screen::drawShapeMarginNoScaleDownwind(uint8 *&dst, const uint8 *&src, int &cnt) {
while (cnt-- > 0) {
if (*src++)
continue;
cnt = cnt + 1 - (*src++);
}
cnt++;
dst += cnt;
return 0;
}
int Screen::drawShapeMarginScaleUpwind(uint8 *&dst, const uint8 *&src, int &cnt) {
_dsTmpWidth -= cnt;
while (cnt > 0) {
--cnt;
if (*src++)
continue;
cnt = cnt + 1 - (*src++);
}
if (!cnt)
return _dsOffscreenScaleVal1;
_dsTmpWidth += cnt;
int i = (_dsOffscreenLeft - cnt) * _dsScaleW;
int res = i & 0xFF;
i >>= 8;
i -= _dsOffscreenScaleVal2;
dst += i;
cnt = -i;
return res;
}
int Screen::drawShapeMarginScaleDownwind(uint8 *&dst, const uint8 *&src, int &cnt) {
_dsTmpWidth -= cnt;
while (cnt > 0) {
--cnt;
if (*src++)
continue;
cnt = cnt + 1 - (*src++);
}
if (!cnt)
return _dsOffscreenScaleVal1;
_dsTmpWidth += cnt;
int i = (_dsOffscreenLeft - cnt) * _dsScaleW;
int res = i & 0xFF;
i >>= 8;
i -= _dsOffscreenScaleVal2;
dst -= i;
cnt = -i;
return res;
}
int Screen::drawShapeSkipScaleUpwind(uint8 *&dst, const uint8 *&src, int &cnt) {
cnt = _dsTmpWidth;
if (cnt <= 0)
return 0;
do {
--cnt;
if (*src++)
continue;
cnt = cnt + 1 - (*src++);
} while (cnt > 0);
return 0;
}
int Screen::drawShapeSkipScaleDownwind(uint8 *&dst, const uint8 *&src, int &cnt) {
cnt = _dsTmpWidth;
bool found = false;
if (cnt == 0)
return 0;
do {
--cnt;
if (*src++)
continue;
found = true;
cnt = cnt + 1 - (*src++);
} while (cnt > 0);
return found ? 0 : _dsOffscreenScaleVal1;
}
void Screen::drawShapeProcessLineNoScaleUpwind(uint8 *&dst, const uint8 *&src, int &cnt, int16) {
do {
uint8 c = *src++;
if (c) {
uint8 *d = dst++;
(this->*_dsPlot)(d, c);
cnt--;
} else {
c = *src++;
dst += c;
cnt -= c;
}
} while (cnt > 0);
}
void Screen::drawShapeProcessLineNoScaleDownwind(uint8 *&dst, const uint8 *&src, int &cnt, int16) {
do {
uint8 c = *src++;
if (c) {
uint8 *d = dst--;
(this->*_dsPlot)(d, c);
cnt--;
} else {
c = *src++;
dst -= c;
cnt -= c;
}
} while (cnt > 0);
}
void Screen::drawShapeProcessLineScaleUpwind(uint8 *&dst, const uint8 *&src, int &cnt, int16 scaleState) {
int c = 0;
do {
if ((scaleState & 0x8000) || !(scaleState & 0xFF00)) {
c = *src++;
_dsTmpWidth--;
if (c) {
scaleState += _dsScaleW;
} else {
_dsTmpWidth++;
c = *src++;
_dsTmpWidth -= c;
int r = c * _dsScaleW + scaleState;
dst += (r >> 8);
cnt -= (r >> 8);
scaleState = r & 0xFF;
}
} else if (scaleState) {
(this->*_dsPlot)(dst++, c);
scaleState -= 0x100;
cnt--;
}
} while (cnt > 0);
cnt = -1;
}
void Screen::drawShapeProcessLineScaleDownwind(uint8 *&dst, const uint8 *&src, int &cnt, int16 scaleState) {
int c = 0;
do {
if ((scaleState & 0x8000) || !(scaleState & 0xFF00)) {
c = *src++;
_dsTmpWidth--;
if (c) {
scaleState += _dsScaleW;
} else {
_dsTmpWidth++;
c = *src++;
_dsTmpWidth -= c;
int r = c * _dsScaleW + scaleState;
dst -= (r >> 8);
cnt -= (r >> 8);
scaleState = r & 0xFF;
}
} else {
(this->*_dsPlot)(dst--, c);
scaleState -= 0x100;
cnt--;
}
} while (cnt > 0);
cnt = -1;
}
void Screen::drawShapePlotType0(uint8 *dst, uint8 cmd) {
*dst = cmd;
}
void Screen::drawShapePlotType1(uint8 *dst, uint8 cmd) {
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType3_7(uint8 *dst, uint8 cmd) {
cmd = *dst;
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType4(uint8 *dst, uint8 cmd) {
*dst = _dsColorTable[cmd];
}
void Screen::drawShapePlotType5(uint8 *dst, uint8 cmd) {
cmd = _dsColorTable[cmd];
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType6(uint8 *dst, uint8 cmd) {
int t = _drawShapeVar4 + _drawShapeVar5;
if (t & 0xFF00) {
cmd = dst[_drawShapeVar3];
t &= 0xFF;
} else {
cmd = _dsColorTable[cmd];
}
_drawShapeVar4 = t;
*dst = cmd;
}
void Screen::drawShapePlotType8(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t)
cmd = _shapePages[1][relOffs];
*dst = cmd;
}
void Screen::drawShapePlotType9(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t) {
cmd = _shapePages[1][relOffs];
} else {
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
}
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType11_15(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t) {
cmd = _shapePages[1][relOffs];
} else {
cmd = *dst;
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
}
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType12(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t) {
cmd = _shapePages[1][relOffs];
} else {
cmd = _dsColorTable[cmd];
}
*dst = cmd;
}
void Screen::drawShapePlotType13(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t) {
cmd = _shapePages[1][relOffs];
} else {
cmd = _dsColorTable[cmd];
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
}
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType14(uint8 *dst, uint8 cmd) {
uint32 relOffs = dst - _dsDstPage;
int t = (_shapePages[0][relOffs] & 0x7F) & 0x87;
if (_dsDrawLayer < t) {
cmd = _shapePages[1][relOffs];
} else {
t = _drawShapeVar4 + _drawShapeVar5;
if (t & 0xFF00) {
cmd = dst[_drawShapeVar3];
t &= 0xFF;
} else {
cmd = _dsColorTable[cmd];
}
}
_drawShapeVar4 = t;
*dst = cmd;
}
void Screen::drawShapePlotType16(uint8 *dst, uint8 cmd) {
uint8 tOffs = _dsTransparencyTable1[cmd];
if (!(tOffs & 0x80))
cmd = _dsTransparencyTable2[tOffs << 8 | *dst];
*dst = cmd;
}
void Screen::drawShapePlotType20(uint8 *dst, uint8 cmd) {
cmd = _dsColorTable[cmd];
uint8 tOffs = _dsTransparencyTable1[cmd];
if (!(tOffs & 0x80))
cmd = _dsTransparencyTable2[tOffs << 8 | *dst];
*dst = cmd;
}
void Screen::drawShapePlotType21(uint8 *dst, uint8 cmd) {
cmd = _dsColorTable[cmd];
uint8 tOffs = _dsTransparencyTable1[cmd];
if (!(tOffs & 0x80))
cmd = _dsTransparencyTable2[tOffs << 8 | *dst];
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType33(uint8 *dst, uint8 cmd) {
if (cmd == 255) {
*dst = _dsBackgroundFadingTable[*dst];
} else {
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
if (cmd)
*dst = cmd;
}
}
void Screen::drawShapePlotType37(uint8 *dst, uint8 cmd) {
cmd = _dsColorTable[cmd];
if (cmd == 255) {
cmd = _dsBackgroundFadingTable[*dst];
} else {
for (int i = 0; i < _dsShapeFadingLevel; ++i)
cmd = _dsShapeFadingTable[cmd];
}
if (cmd)
*dst = cmd;
}
void Screen::drawShapePlotType48(uint8 *dst, uint8 cmd) {
uint8 offs = _dsTransparencyTable1[cmd];
if (!(offs & 0x80))
cmd = _dsTransparencyTable2[(offs << 8) | *dst];
*dst = cmd;
}
void Screen::drawShapePlotType52(uint8 *dst, uint8 cmd) {
cmd = _dsColorTable[cmd];
uint8 offs = _dsTransparencyTable1[cmd];
if (!(offs & 0x80))
cmd = _dsTransparencyTable2[(offs << 8) | *dst];
*dst = cmd;
}
void Screen::decodeFrame1(const uint8 *src, uint8 *dst, uint32 size) {
const uint8 *dstEnd = dst + size;
struct Pattern {
const uint8 *pos;
uint16 len;
};
Pattern *patterns = new Pattern[3840];
uint16 numPatterns = 0;
uint8 nib = 0;
uint16 code = decodeEGAGetCode(src, nib);
uint8 last = code & 0xFF;
uint8 *dstPrev = dst;
uint16 count = 1;
uint16 countPrev = 1;
*dst++ = last;
while (dst < dstEnd) {
code = decodeEGAGetCode(src, nib);
uint8 cmd = code >> 8;
if (cmd--) {
code = (cmd << 8) | (code & 0xFF);
uint8 *tmpDst = dst;
if (code < numPatterns) {
const uint8 *tmpSrc = patterns[code].pos;
countPrev = patterns[code].len;
last = *tmpSrc;
for (int i = 0; i < countPrev; i++)
*dst++ = *tmpSrc++;
} else {
const uint8 *tmpSrc = dstPrev;
count = countPrev;
for (int i = 0; i < countPrev; i++)
*dst++ = *tmpSrc++;
*dst++ = last;
countPrev++;
}
if (numPatterns < 3840) {
patterns[numPatterns].pos = dstPrev;
patterns[numPatterns++].len = ++count;
}
dstPrev = tmpDst;
count = countPrev;
} else {
*dst++ = last = (code & 0xFF);
if (numPatterns < 3840) {
patterns[numPatterns].pos = dstPrev;
patterns[numPatterns++].len = ++count;
}
dstPrev = dst - 1;
count = 1;
countPrev = 1;
}
}
delete[] patterns;
}
uint16 Screen::decodeEGAGetCode(const uint8 *&pos, uint8 &nib) {
uint16 res = READ_BE_UINT16(pos++);
if ((++nib) & 1) {
res >>= 4;
} else {
pos++;
res &= 0xFFF;
}
return res;
}
void Screen::decodeFrame3(const uint8 *src, uint8 *dst, uint32 size, bool isAmiga) {
const uint8 *dstEnd = dst + size;
while (dst < dstEnd) {
int8 code = *src++;
if (code == 0) {
uint16 sz = isAmiga ? READ_LE_UINT16(src) : READ_BE_UINT16(src);
src += 2;
memset(dst, *src++, sz);
dst += sz;
} else if (code < 0) {
memset(dst, *src++, -code);
dst -= code;
} else {
memcpy(dst, src, code);
dst += code;
src += code;
}
}
}
uint Screen::decodeFrame4(const uint8 *src, uint8 *dst, uint32 dstSize) {
uint8 *dstOrig = dst;
uint8 *dstEnd = dst + dstSize;
while (1) {
int count = dstEnd - dst;
if (count == 0)
break;
uint8 code = *src++;
if (!(code & 0x80)) { // 8th bit isn't set
int len = MIN(count, (code >> 4) + 3); //upper half of code is the length
int offs = ((code & 0xF) << 8) | *src++; //lower half of code as byte 2 of offset.
const uint8 *dstOffs = dst - offs;
while (len--)
*dst++ = *dstOffs++;
} else if (code & 0x40) { // 7th bit is set
int len = (code & 0x3F) + 3;
if (code == 0xFE) {
len = READ_LE_UINT16(src); src += 2;
if (len > count)
len = count;
memset(dst, *src++, len); dst += len;
} else {
if (code == 0xFF) {
len = READ_LE_UINT16(src);
src += 2;
}
int offs = READ_LE_UINT16(src); src += 2;
if (len > count)
len = count;
const uint8 *dstOffs = dstOrig + offs;
while (len--)
*dst++ = *dstOffs++;
}
} else if (code != 0x80) { // not just the 8th bit set.
//Copy some bytes from source to dest.
int len = MIN(count, code & 0x3F);
while (len--)
*dst++ = *src++;
} else {
break;
}
}
return dst - dstOrig;
}
void Screen::decodeFrameDelta(uint8 *dst, const uint8 *src, bool noXor) {
if (noXor)
wrapped_decodeFrameDelta<true>(dst, src);
else
wrapped_decodeFrameDelta<false>(dst, src);
}
template<bool noXor>
void Screen::wrapped_decodeFrameDelta(uint8 *dst, const uint8 *src) {
while (1) {
uint8 code = *src++;
if (code == 0) {
uint8 len = *src++;
code = *src++;
while (len--) {
if (noXor)
*dst++ = code;
else
*dst++ ^= code;
}
} else if (code & 0x80) {
code -= 0x80;
if (code != 0) {
dst += code;
} else {
uint16 subcode = READ_LE_UINT16(src); src += 2;
if (subcode == 0) {
break;
} else if (subcode & 0x8000) {
subcode -= 0x8000;
if (subcode & 0x4000) {
uint16 len = subcode - 0x4000;
code = *src++;
while (len--) {
if (noXor)
*dst++ = code;
else
*dst++ ^= code;
}
} else {
while (subcode--) {
if (noXor)
*dst++ = *src++;
else
*dst++ ^= *src++;
}
}
} else {
dst += subcode;
}
}
} else {
while (code--) {
if (noXor)
*dst++ = *src++;
else
*dst++ ^= *src++;
}
}
}
}
void Screen::decodeFrameDeltaPage(uint8 *dst, const uint8 *src, int pitch, bool noXor) {
if (noXor)
wrapped_decodeFrameDeltaPage<true>(dst, src, pitch);
else
wrapped_decodeFrameDeltaPage<false>(dst, src, pitch);
}
void Screen::convertAmigaGfx(uint8 *data, int w, int h, int depth, bool wsa, int bytesPerPlane) {
const int planeWidth = (bytesPerPlane == -1) ? (w + 7) / 8 : bytesPerPlane;
const int planeSize = planeWidth * h;
const uint imageSize = planeSize * depth;
// Our static buffer which holds the plane data. We need this
// because the "data" pointer is both source and destination pointer.
// The buffer has enough space to fit the AMIGA MSC files, which are
// the biggest graphics files found in the AMIGA version.
static uint8 temp[40320];
assert(imageSize <= sizeof(temp));
// WSA files store their graphics data in a little different format, than
// the usual AMIGA graphics format used in BitMaps. Thus we need to do
// some special handling for them here. Means we convert them into
// the usual format.
//
// TODO: We might think of moving this conversion into the WSAMovieAmiga
// class.
if (wsa) {
const byte *src = data;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < planeWidth; ++x)
for (int i = 0; i < depth; ++i)
temp[y * planeWidth + x + planeSize * i] = *src++;
}
} else {
memcpy(temp, data, imageSize);
}
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int bytePos = x / 8 + y * planeWidth;
const int bitPos = 7 - (x & 7); // x & 7 == x % 8
byte col = 0;
for (int i = 0; i < depth; ++i)
col |= ((temp[bytePos + planeSize * i] >> bitPos) & 1) << i;
*data++ = col;
}
}
}
void Screen::convertAmigaMsc(uint8 *data) {
// MSC files are always 320x144, thus we can safely assume
// this to be correct. Also they contain 7 planes instead
// of the normal 5 planes, which is used in 32 color mode.
// The need for 7 planes can be explained, because the MSC
// files have 6 bits for the layer number (bits 1 to 6)
// and one bit for the "blocked" flag (bit 0), and every
// plane contains one bit per pixel.
convertAmigaGfx(data, 320, 144, 7);
// We need to do some post conversion, since
// the AMIGA MSC format is different from the DOS
// one we use internally for our code.That is even
// after converting it from the AMIGA plane based
// approach to one byte per pixel approach.
for (int i = 0; i < 320 * 144; ++i) {
// The lowest bit indicates, whether the position
// is walkable or not. If the bit is set, the
// position is walkable, elsewise it is blocked.
if (data[i] & 1)
data[i] &= 0xFE;
else
data[i] |= 0x80;
// The graphics layer for the pixel is saved
// in the following format:
// The highest bit set indicates the number of
// the graphics layer. We count the first
// bit as 0 here, thus we need to add one,
// to get the correct number.
//
// Funnily since the first bit (bit 0) is
// resevered for testing whether the position
// is walkable or not, there is no possibility
// for layer 1 to be present.
int layer = 0;
for (int k = 0; k < 7; ++k)
if (data[i] & (1 << k))
layer = k + 1;
data[i] &= 0x80;
data[i] |= layer;
}
}
template<bool noXor>
void Screen::wrapped_decodeFrameDeltaPage(uint8 *dst, const uint8 *src, int pitch) {
int count = 0;
uint8 *dstNext = dst;
while (1) {
uint8 code = *src++;
if (code == 0) {
uint8 len = *src++;
code = *src++;
while (len--) {
if (noXor)
*dst++ = code;
else
*dst++ ^= code;
if (++count == pitch) {
count = 0;
dstNext += SCREEN_W;
dst = dstNext;
}
}
} else if (code & 0x80) {
code -= 0x80;
if (code != 0) {
dst += code;
count += code;
while (count >= pitch) {
count -= pitch;
dstNext += SCREEN_W;
dst = dstNext + count;
}
} else {
uint16 subcode = READ_LE_UINT16(src); src += 2;
if (subcode == 0) {
break;
} else if (subcode & 0x8000) {
subcode -= 0x8000;
if (subcode & 0x4000) {
uint16 len = subcode - 0x4000;
code = *src++;
while (len--) {
if (noXor)
*dst++ = code;
else
*dst++ ^= code;
if (++count == pitch) {
count = 0;
dstNext += SCREEN_W;
dst = dstNext;
}
}
} else {
while (subcode--) {
if (noXor)
*dst++ = *src++;
else
*dst++ ^= *src++;
if (++count == pitch) {
count = 0;
dstNext += SCREEN_W;
dst = dstNext;
}
}
}
} else {
dst += subcode;
count += subcode;
while (count >= pitch) {
count -= pitch;
dstNext += SCREEN_W;
dst = dstNext + count;
}
}
}
} else {
while (code--) {
if (noXor)
*dst++ = *src++;
else
*dst++ ^= *src++;
if (++count == pitch) {
count = 0;
dstNext += SCREEN_W;
dst = dstNext;
}
}
}
}
}
uint8 *Screen::encodeShape(int x, int y, int w, int h, int flags) {
uint8 *srcPtr = &_pagePtrs[_curPage][y * SCREEN_W + x];
int16 shapeSize = 0;
uint8 *tmp = srcPtr;
int xpos = w;
for (int i = h; i > 0; --i) {
uint8 *start = tmp;
shapeSize += w;
xpos = w;
while (xpos) {
uint8 value = *tmp++;
--xpos;
if (!value) {
shapeSize += 2;
int16 curX = xpos;
bool skip = false;
while (xpos) {
value = *tmp++;
--xpos;
if (value) {
skip = true;
break;
}
}
if (!skip)
++curX;
curX -= xpos;
shapeSize -= curX;
while (curX > 0xFF) {
curX -= 0xFF;
shapeSize += 2;
}
}
}
tmp = start + SCREEN_W;
}
int16 shapeSize2 = shapeSize;
if (_vm->gameFlags().useAltShapeHeader)
shapeSize += 12;
else
shapeSize += 10;
if (flags & 1)
shapeSize += 16;
uint8 table[274];
int tableIndex = 0;
uint8 *newShape = 0;
newShape = new uint8[shapeSize+16];
assert(newShape);
byte *dst = newShape;
if (_vm->gameFlags().useAltShapeHeader)
dst += 2;
WRITE_LE_UINT16(dst, (flags & 3)); dst += 2;
*dst = h; dst += 1;
WRITE_LE_UINT16(dst, w); dst += 2;
*dst = h; dst += 1;
WRITE_LE_UINT16(dst, shapeSize); dst += 2;
WRITE_LE_UINT16(dst, shapeSize2); dst += 2;
byte *src = srcPtr;
if (flags & 1) {
dst += 16;
memset(table, 0, sizeof(table));
tableIndex = 1;
}
for (int ypos = h; ypos > 0; --ypos) {
uint8 *srcBackUp = src;
xpos = w;
while (xpos) {
uint8 value = *src++;
if (value) {
if (flags & 1) {
if (!table[value]) {
if (tableIndex == 16) {
value = 1;
} else {
table[0x100+tableIndex] = value;
table[value] = tableIndex;
++tableIndex;
value = table[value];
}
} else {
value = table[value];
}
}
--xpos;
*dst++ = value;
} else {
int16 temp = 1;
--xpos;
while (xpos) {
if (*src)
break;
++src;
++temp;
--xpos;
}
while (temp > 0xFF) {
*dst++ = 0;
*dst++ = 0xFF;
temp -= 0xFF;
}
if (temp & 0xFF) {
*dst++ = 0;
*dst++ = temp & 0xFF;
}
}
}
src = srcBackUp + SCREEN_W;
}
if (!(flags & 2)) {
if (shapeSize > _animBlockSize) {
dst = newShape;
if (_vm->gameFlags().useAltShapeHeader)
dst += 2;
flags = READ_LE_UINT16(dst);
flags |= 2;
WRITE_LE_UINT16(dst, flags);
} else {
src = newShape;
if (_vm->gameFlags().useAltShapeHeader)
src += 2;
if (flags & 1)
src += 16;
src += 10;
uint8 *shapePtrBackUp = src;
dst = _animBlockPtr;
memcpy(dst, src, shapeSize2);
int16 size = encodeShapeAndCalculateSize(_animBlockPtr, shapePtrBackUp, shapeSize2);
if (size > shapeSize2) {
shapeSize -= shapeSize2 - size;
uint8 *newShape2 = new uint8[shapeSize];
assert(newShape2);
memcpy(newShape2, newShape, shapeSize);
delete[] newShape;
newShape = newShape2;
} else {
dst = shapePtrBackUp;
src = _animBlockPtr;
memcpy(dst, src, shapeSize2);
dst = newShape;
if (_vm->gameFlags().useAltShapeHeader)
dst += 2;
flags = READ_LE_UINT16(dst);
flags |= 2;
WRITE_LE_UINT16(dst, flags);
}
}
}
dst = newShape;
if (_vm->gameFlags().useAltShapeHeader)
dst += 2;
WRITE_LE_UINT16((dst + 6), shapeSize);
if (flags & 1) {
dst = newShape + 10;
if (_vm->gameFlags().useAltShapeHeader)
dst += 2;
src = &table[0x100];
memcpy(dst, src, sizeof(uint8)*16);
}
return newShape;
}
int16 Screen::encodeShapeAndCalculateSize(uint8 *from, uint8 *to, int size_to) {
byte *fromPtrEnd = from + size_to;
bool skipPixel = true;
byte *tempPtr = 0;
byte *toPtr = to;
byte *fromPtr = from;
byte *toPtr2 = to;
*to++ = 0x81;
*to++ = *from++;
while (from < fromPtrEnd) {
byte *curToPtr = to;
to = fromPtr;
int size = 1;
while (true) {
byte curPixel = *from;
if (curPixel == *(from+0x40)) {
byte *toBackUp = to;
to = from;
for (int i = 0; i < (fromPtrEnd - from); ++i) {
if (*to++ != curPixel)
break;
}
--to;
uint16 diffSize = (to - from);
if (diffSize >= 0x41) {
skipPixel = false;
from = to;
to = curToPtr;
*to++ = 0xFE;
WRITE_LE_UINT16(to, diffSize); to += 2;
*to++ = curPixel;
curToPtr = to;
to = toBackUp;
continue;
} else {
to = toBackUp;
}
}
bool breakLoop = false;
while (true) {
if ((from - to) == 0) {
breakLoop = true;
break;
}
for (int i = 0; i < (from - to); ++i) {
if (*to++ == curPixel)
break;
}
if (*(to-1) == curPixel) {
if (*(from+size-1) != *(to+size-2))
continue;
byte *fromBackUp = from;
byte *toBackUp = to;
--to;
const int checkSize = fromPtrEnd - from;
for (int i = 0; i < checkSize; ++i) {
if (*from++ != *to++)
break;
}
if (*(from - 1) == *(to - 1))
++to;
from = fromBackUp;
int temp = to - toBackUp;
to = toBackUp;
if (temp >= size) {
size = temp;
tempPtr = toBackUp - 1;
}
break;
} else {
breakLoop = true;
break;
}
}
if (breakLoop)
break;
}
to = curToPtr;
if (size > 2) {
uint16 word = 0;
if (size <= 0x0A) {
uint16 diffSize = from - tempPtr;
if (diffSize <= 0x0FFF) {
byte highByte = ((diffSize & 0xFF00) >> 8) + (((size & 0xFF) - 3) << 4);
word = ((diffSize & 0xFF) << 8) | highByte;
WRITE_LE_UINT16(to, word); to += 2;
from += size;
skipPixel = false;
continue;
}
}
if (size > 0x40) {
*to++ = 0xFF;
WRITE_LE_UINT16(to, size); to += 2;
} else {
*to++ = ((size & 0xFF) - 3) | 0xC0;
}
word = tempPtr - fromPtr;
WRITE_LE_UINT16(to, word); to += 2;
from += size;
skipPixel = false;
} else {
if (!skipPixel) {
toPtr2 = to;
*to++ = 0x80;
}
if (*toPtr2 == 0xBF) {
toPtr2 = to;
*to++ = 0x80;
}
++(*toPtr2);
*to++ = *from++;
skipPixel = true;
}
}
*to++ = 0x80;
return (to - toPtr);
}
uint16 Screen::shade16bitColor(uint16 col) {
uint8 r = (col & 0x1f);
uint8 g = (col & 0x3E0) >> 5;
uint8 b = (col & 0x7C00) >> 10;
r = (r > _16bitShadingLevel) ? r - _16bitShadingLevel : 0;
g = (g > _16bitShadingLevel) ? g - _16bitShadingLevel : 0;
b = (b > _16bitShadingLevel) ? b - _16bitShadingLevel : 0;
return (b << 10) | (g << 5) | r;
}
void Screen::hideMouse() {
++_mouseLockCount;
CursorMan.showMouse(false);
}
void Screen::showMouse() {
if (_mouseLockCount == 1) {
CursorMan.showMouse(true);
// We need to call OSystem::updateScreen here, else the mouse cursor
// will only be visible on mouse movment.
_system->updateScreen();
}
if (_mouseLockCount > 0)
_mouseLockCount--;
}
bool Screen::isMouseVisible() const {
return _mouseLockCount == 0;
}
void Screen::setShapePages(int page1, int page2, int minY, int maxY) {
_shapePages[0] = _pagePtrs[page1];
_shapePages[1] = _pagePtrs[page2];
_maskMinY = minY;
_maskMaxY = maxY;
}
void Screen::setMouseCursor(int x, int y, const byte *shape) {
if (!shape)
return;
if (_vm->gameFlags().useAltShapeHeader)
shape += 2;
int mouseHeight = *(shape + 2);
int mouseWidth = (READ_LE_UINT16(shape + 3)) + 2;
if (_vm->gameFlags().useAltShapeHeader)
shape -= 2;
if (_vm->gameFlags().useHiRes) {
x <<= 1;
y <<= 1;
mouseWidth <<= 1;
mouseHeight <<= 1;
}
uint8 *cursor = new uint8[mouseHeight * mouseWidth];
fillRect(0, 0, mouseWidth, mouseHeight, _cursorColorKey, 8);
drawShape(8, shape, 0, 0, 0, 0);
int xOffset = 0;
if (_vm->gameFlags().useHiRes) {
xOffset = mouseWidth;
scale2x<uint8, uint16>(getPagePtr(8) + mouseWidth, SCREEN_W, getPagePtr(8), SCREEN_W, mouseWidth, mouseHeight);
postProcessCursor(getPagePtr(8) + mouseWidth, mouseWidth, mouseHeight, SCREEN_W);
} else {
postProcessCursor(getPagePtr(8), mouseWidth, mouseHeight, SCREEN_W);
}
CursorMan.showMouse(false);
copyRegionToBuffer(8, xOffset, 0, mouseWidth, mouseHeight, cursor);
CursorMan.replaceCursor(cursor, mouseWidth, mouseHeight, x, y, _cursorColorKey);
if (isMouseVisible())
CursorMan.showMouse(true);
delete[] cursor;
// makes sure that the cursor is drawn
// we do not use Screen::updateScreen here
// so we can be sure that changes to page 0
// are NOT updated on the real screen here
_system->updateScreen();
}
Palette &Screen::getPalette(int num) {
assert(num >= 0 && (uint)num < _palettes.size());
return *_palettes[num];
}
void Screen::copyPalette(const int dst, const int src) {
getPalette(dst).copy(getPalette(src));
}
byte Screen::getShapeFlag1(int x, int y) {
uint8 color = _shapePages[0][y * SCREEN_W + x];
color &= 0x80;
color ^= 0x80;
if (color & 0x80)
return 1;
return 0;
}
byte Screen::getShapeFlag2(int x, int y) {
uint8 color = _shapePages[0][y * SCREEN_W + x];
color &= 0x7F;
color &= 0x87;
return color;
}
int Screen::getDrawLayer(int x, int y) {
int xpos = x - 8;
int ypos = y - 1;
int layer = 1;
for (int curX = xpos; curX < xpos + 16; ++curX) {
int tempLayer = getShapeFlag2(curX, ypos);
if (layer < tempLayer)
layer = tempLayer;
if (layer >= 7)
return 7;
}
return layer;
}
int Screen::getDrawLayer2(int x, int y, int height) {
int xpos = x - 8;
int ypos = y - 1;
int layer = 1;
for (int useX = xpos; useX < xpos + 16; ++useX) {
for (int useY = ypos - height; useY < ypos; ++useY) {
int tempLayer = getShapeFlag2(useX, useY);
if (tempLayer > layer)
layer = tempLayer;
if (tempLayer >= 7)
return 7;
}
}
return layer;
}
int Screen::setNewShapeHeight(uint8 *shape, int height) {
if (_vm->gameFlags().useAltShapeHeader)
shape += 2;
int oldHeight = shape[2];
shape[2] = height;
return oldHeight;
}
int Screen::resetShapeHeight(uint8 *shape) {
if (_vm->gameFlags().useAltShapeHeader)
shape += 2;
int oldHeight = shape[2];
shape[2] = shape[5];
return oldHeight;
}
void Screen::blockInRegion(int x, int y, int width, int height) {
assert(_shapePages[0]);
byte *toPtr = _shapePages[0] + (y * 320 + x);
for (int i = 0; i < height; ++i) {
byte *backUpTo = toPtr;
for (int i2 = 0; i2 < width; ++i2)
*toPtr++ &= 0x7F;
toPtr = (backUpTo + 320);
}
}
void Screen::blockOutRegion(int x, int y, int width, int height) {
assert(_shapePages[0]);
byte *toPtr = _shapePages[0] + (y * 320 + x);
for (int i = 0; i < height; ++i) {
byte *backUpTo = toPtr;
for (int i2 = 0; i2 < width; ++i2)
*toPtr++ |= 0x80;
toPtr = (backUpTo + 320);
}
}
void Screen::rectClip(int &x, int &y, int w, int h) {
if (x < 0)
x = 0;
else if (x + w >= 320)
x = 320 - w;
if (y < 0)
y = 0;
else if (y + h >= 200)
y = 200 - h;
}
void Screen::shakeScreen(int times) {
static const int8 _shakeParaPC[] = { 32, 0, -4, 32, 0, 0 };
static const int8 _shakeParaFMTOWNS[] = { 32, 0, -4, 48, 0, 4, 32, -4, 0, 32, 4, 0, 32, 0, 0 };
const int8 *shakeData = _shakeParaPC;
int steps = ARRAYSIZE(_shakeParaPC) / 3;
// The FM-TOWNS version has a slightly better shake animation
// TODO: check PC-98 version
if (_vm->gameFlags().platform == Common::kPlatformFMTowns) {
shakeData = _shakeParaFMTOWNS;
steps = ARRAYSIZE(_shakeParaFMTOWNS) / 3;
}
Common::Event event;
while (times--) {
const int8 *data = shakeData;
for (int i = 0; i < steps; ++i) {
// The original PC version did not need an artificial delay, but we do or the shake will be
// too fast to be actually seen.
uint32 end = _system->getMillis() + data[0];
_system->setShakePos(data[1], data[2]);
for (uint32 now = _system->getMillis(); now < end; ) {
// Update the event manager to keep smooth mouse pointer movement.
while (_vm->getEventManager()->pollEvent(event)) {
if (event.type == Common::EVENT_KEYDOWN) {
// This is really the only thing that should be handled.
if (event.kbd.keycode == Common::KEYCODE_q && event.kbd.hasFlags(Common::KBD_CTRL))
_vm->quitGame();
}
}
_system->updateScreen();
now = _system->getMillis();
_system->delayMillis(MIN<uint>(end - now, 10));
}
data += 3;
}
}
}
void Screen::loadBitmap(const char *filename, int tempPage, int dstPage, Palette *pal, bool skip) {
uint32 fileSize;
uint8 *srcData = _vm->resource()->fileData(filename, &fileSize);
if (!srcData) {
warning("couldn't load bitmap: '%s'", filename);
return;
}
if (skip)
srcData += 4;
const char *ext = filename + strlen(filename) - 3;
uint8 compType = srcData[2];
uint32 imgSize = (_vm->game() == GI_KYRA2 && !scumm_stricmp(ext, "CMP")) ? READ_LE_UINT16(srcData) : READ_LE_UINT32(srcData + 4);
uint16 palSize = READ_LE_UINT16(srcData + 8);
if (pal && palSize)
loadPalette(srcData + 10, *pal, palSize);
uint8 *srcPtr = srcData + 10 + palSize;
uint8 *dstData = getPagePtr(dstPage);
memset(dstData, 0, _screenPageSize);
if (dstPage == 0 || tempPage == 0)
_forceFullUpdate = true;
switch (compType) {
case 0:
memcpy(dstData, srcPtr, imgSize);
break;
case 1:
Screen::decodeFrame1(srcPtr, dstData, imgSize);
break;
case 3:
Screen::decodeFrame3(srcPtr, dstData, imgSize, _isAmiga);
break;
case 4:
Screen::decodeFrame4(srcPtr, dstData, imgSize);
break;
default:
error("Unhandled bitmap compression %d", compType);
}
if (skip)
srcData -= 4;
delete[] srcData;
}
bool Screen::loadPalette(const char *filename, Palette &pal) {
if (_renderMode == Common::kRenderCGA)
return true;
Common::SeekableReadStream *stream = _vm->resource()->createReadStream(filename);
if (!stream)
return false;
debugC(3, kDebugLevelScreen, "Screen::loadPalette('%s', %p)", filename, (const void *)&pal);
const int maxCols = _16bitPalette ? 256 : pal.getNumColors();
int numCols = 0;
if (_isAmiga) {
numCols = stream->size() / Palette::kAmigaBytesPerColor;
pal.loadAmigaPalette(*stream, 0, MIN(maxCols, numCols));
} else if (_vm->gameFlags().platform == Common::kPlatformPC98 && _use16ColorMode) {
numCols = stream->size() / Palette::kPC98BytesPerColor;
pal.loadPC98Palette(*stream, 0, MIN(maxCols, numCols));
} else if (_renderMode == Common::kRenderEGA) {
numCols = stream->size();
// There aren't any 16 color EGA palette files. So this shouldn't ever get triggered.
assert (numCols != 16);
numCols /= Palette::kVGABytesPerColor;
pal.loadVGAPalette(*stream, 0, numCols);
} else {
if (_bytesPerPixel == 2) {
numCols = stream->size() / 2;
pal.loadHiColorPalette(*stream, 0, numCols);
} else if (!_16bitPalette) {
numCols = stream->size() / Palette::kVGABytesPerColor;
pal.loadVGAPalette(*stream, 0, MIN(maxCols, numCols));
} else {
error("Screen::loadPalette(): Failed to load file '%s' with invalid size %d in HiColor mode", filename, stream->size());
}
}
if (numCols > maxCols)
warning("Palette file '%s' includes %d colors, but the target palette only support %d colors", filename, numCols, maxCols);
delete stream;
return true;
}
bool Screen::loadPaletteTable(const char *filename, int firstPalette) {
Common::SeekableReadStream *stream = _vm->resource()->createReadStream(filename);
if (!stream)
return false;
debugC(3, kDebugLevelScreen, "Screen::loadPaletteTable('%s', %d)", filename, firstPalette);
if (_isAmiga) {
const int numColors = getPalette(firstPalette).getNumColors();
const int palSize = getPalette(firstPalette).getNumColors() * Palette::kAmigaBytesPerColor;
const int numPals = stream->size() / palSize;
for (int i = 0; i < numPals; ++i)
getPalette(i + firstPalette).loadAmigaPalette(*stream, 0, numColors);
} else {
const int numColors = getPalette(firstPalette).getNumColors();
const int palSize = getPalette(firstPalette).getNumColors() * Palette::kVGABytesPerColor;
const int numPals = stream->size() / palSize;
for (int i = 0; i < numPals; ++i)
getPalette(i + firstPalette).loadVGAPalette(*stream, 0, numColors);
}
delete stream;
return true;
}
void Screen::loadPalette(const byte *data, Palette &pal, int bytes) {
Common::MemoryReadStream stream(data, bytes, DisposeAfterUse::NO);
if (_isAmiga) {
// EOB II Amiga sometimes has multiple palettes here one after
// the other (64 bytes each). We only load the first one here.
pal.loadAmigaPalette(stream, 0, MIN<int>(32, stream.size() / Palette::kAmigaBytesPerColor));
} else if (_vm->gameFlags().platform == Common::kPlatformPC98 && _use16ColorMode) {
pal.loadPC98Palette(stream, 0, stream.size() / Palette::kPC98BytesPerColor);
} else if (_renderMode == Common::kRenderEGA) {
// EOB II checks the number of palette bytes to distinguish between real EGA palettes
// and normal palettes (which are used to generate a color map).
if (stream.size() == 16)
pal.loadEGAPalette(stream, 0, stream.size());
else
pal.loadVGAPalette(stream, 0, stream.size() / Palette::kVGABytesPerColor);
} else
pal.loadVGAPalette(stream, 0, stream.size() / Palette::kVGABytesPerColor);
}
// dirty rect handling
void Screen::addDirtyRect(int x, int y, int w, int h) {
if (_dirtyRects.size() >= kMaxDirtyRects || _forceFullUpdate) {
_forceFullUpdate = true;
return;
}
Common::Rect r(x, y, x + w, y + h);
// Clip rectangle
r.clip(SCREEN_W, _screenHeight - _yTransOffs);
// If it is empty after clipping, we are done
if (r.isEmpty())
return;
// Check if the new rectangle is contained within another in the list
Common::List<Common::Rect>::iterator it;
for (it = _dirtyRects.begin(); it != _dirtyRects.end(); ) {
// If we find a rectangle which fully contains the new one,
// we can abort the search.
if (it->contains(r))
return;
// Conversely, if we find rectangles which are contained in
// the new one, we can remove them
if (r.contains(*it))
it = _dirtyRects.erase(it);
else
++it;
}
// If we got here, we can safely add r to the list of dirty rects.
_dirtyRects.push_back(r);
}
// overlay functions
byte *Screen::getOverlayPtr(int page) {
if (page == 0 || page == 1)
return _sjisOverlayPtrs[1];
else if (page == 2 || page == 3)
return _sjisOverlayPtrs[2];
if (_vm->game() == GI_KYRA2) {
if (page == 12 || page == 13)
return _sjisOverlayPtrs[3];
} else if (_vm->game() == GI_LOL) {
if (page == 4 || page == 5)
return _sjisOverlayPtrs[3];
if (page == 6 || page == 7)
return _sjisOverlayPtrs[4];
if (page == 12 || page == 13)
return _sjisOverlayPtrs[5];
}
return 0;
}
void Screen::clearOverlayPage(int page) {
byte *dst = getOverlayPtr(page);
if (!dst)
return;
memset(dst, _sjisInvisibleColor, SCREEN_OVL_SJIS_SIZE);
}
void Screen::clearOverlayRect(int page, int x, int y, int w, int h) {
byte *dst = getOverlayPtr(page);
if (!dst || w < 0 || h < 0)
return;
x <<= 1; y <<= 1;
w <<= 1; h <<= 1;
dst += y * 640 + x;
if (w == 640 && h == 400) {
memset(dst, _sjisInvisibleColor, SCREEN_OVL_SJIS_SIZE);
} else {
while (h--) {
memset(dst, _sjisInvisibleColor, w);
dst += 640;
}
}
}
void Screen::copyOverlayRegion(int x, int y, int x2, int y2, int w, int h, int srcPage, int dstPage) {
byte *dst = getOverlayPtr(dstPage);
const byte *src = getOverlayPtr(srcPage);
if (!dst || !src)
return;
x <<= 1; x2 <<= 1;
y <<= 1; y2 <<= 1;
w <<= 1; h <<= 1;
if (w == 640 && h == 400) {
memcpy(dst, src, SCREEN_OVL_SJIS_SIZE);
} else {
dst += y2 * 640 + x2;
src += y * 640 + x;
while (h--) {
for (x = 0; x < w; ++x)
memmove(dst, src, w);
dst += 640;
src += 640;
}
}
}
void Screen::crossFadeRegion(int x1, int y1, int x2, int y2, int w, int h, int srcPage, int dstPage) {
if (srcPage > 13 || dstPage > 13)
error("Screen::crossFadeRegion(): attempting to use temp page as source or dest page.");
hideMouse();
uint16 *wB = (uint16 *)_pagePtrs[14];
uint8 *hB = _pagePtrs[14] + 640 * _bytesPerPixel;
for (int i = 0; i < w; i++)
wB[i] = i;
for (int i = 0; i < h; i++)
hB[i] = i;
for (int i = 0; i < w; i++)
SWAP(wB[_vm->_rnd.getRandomNumberRng(0, w - 1)], wB[i]);
for (int i = 0; i < h; i++)
SWAP(hB[_vm->_rnd.getRandomNumberRng(0, h - 1)], hB[i]);
uint8 *s = _pagePtrs[srcPage];
uint8 *d = _pagePtrs[dstPage];
for (int i = 0; i < h; i++) {
int iH = i;
uint32 end = _system->getMillis() + 3;
for (int ii = 0; ii < w; ii++) {
int sX = (x1 + wB[ii]);
int sY = (y1 + hB[iH]);
int dX = (x2 + wB[ii]);
int dY = (y2 + hB[iH]);
if (++iH >= h)
iH = 0;
if (_bytesPerPixel == 2)
((uint16*)d)[dY * 320 + dX] = ((uint16*)s)[sY * 320 + sX];
else
d[dY * 320 + dX] = s[sY * 320 + sX];
addDirtyRect(dX, dY, 1, 1);
}
// This tries to speed things up, to get similiar speeds as in DOSBox etc.
// We can't write single pixels directly into the video memory like the original did.
// We also (unlike the original) want to aim at similiar speeds for all platforms.
if (!(i % 10))
updateScreen();
uint32 cur = _system->getMillis();
if (end > cur)
_system->delayMillis(end - cur);
}
updateScreen();
showMouse();
}
#pragma mark -
DOSFont::DOSFont() {
_data = _widthTable = _heightTable = 0;
_colorMap = 0;
_width = _height = _numGlyphs = 0;
_bitmapOffsets = 0;
}
bool DOSFont::load(Common::SeekableReadStream &file) {
unload();
_data = new uint8[file.size()];
assert(_data);
file.read(_data, file.size());
if (file.err())
return false;
const uint16 fontSig = READ_LE_UINT16(_data + 2);
if (fontSig != 0x0500) {
warning("DOSFont: invalid font: %.04X)", fontSig);
return false;
}
const uint16 descOffset = READ_LE_UINT16(_data + 4);
_width = _data[descOffset + 5];
_height = _data[descOffset + 4];
_numGlyphs = _data[descOffset + 3] + 1;
_bitmapOffsets = (uint16 *)(_data + READ_LE_UINT16(_data + 6));
_widthTable = _data + READ_LE_UINT16(_data + 8);
_heightTable = _data + READ_LE_UINT16(_data + 12);
for (int i = 0; i < _numGlyphs; ++i)
_bitmapOffsets[i] = READ_LE_UINT16(&_bitmapOffsets[i]);
return true;
}
int DOSFont::getCharWidth(uint16 c) const {
if (c >= _numGlyphs)
return 0;
return _widthTable[c];
}
void DOSFont::drawChar(uint16 c, byte *dst, int pitch, int) const {
if (c >= _numGlyphs)
return;
if (!_bitmapOffsets[c])
return;
const uint8 *src = _data + _bitmapOffsets[c];
const uint8 charWidth = _widthTable[c];
if (!charWidth)
return;
pitch -= charWidth;
uint8 charH1 = _heightTable[c * 2 + 0];
uint8 charH2 = _heightTable[c * 2 + 1];
uint8 charH0 = _height - (charH1 + charH2);
while (charH1--) {
uint8 col = _colorMap[0];
for (int i = 0; i < charWidth; ++i) {
if (col != 0)
*dst = col;
++dst;
}
dst += pitch;
}
while (charH2--) {
uint8 b = 0;
for (int i = 0; i < charWidth; ++i) {
uint8 col;
if (i & 1) {
col = _colorMap[b >> 4];
} else {
b = *src++;
col = _colorMap[b & 0xF];
}
if (col != 0) {
*dst = col;
}
++dst;
}
dst += pitch;
}
while (charH0--) {
uint8 col = _colorMap[0];
for (int i = 0; i < charWidth; ++i) {
if (col != 0)
*dst = col;
++dst;
}
dst += pitch;
}
}
void DOSFont::unload() {
delete[] _data;
_data = _widthTable = _heightTable = 0;
_colorMap = 0;
_width = _height = _numGlyphs = 0;
_bitmapOffsets = 0;
}
AMIGAFont::AMIGAFont() {
_width = _height = 0;
memset(_chars, 0, sizeof(_chars));
}
bool AMIGAFont::load(Common::SeekableReadStream &file) {
const uint16 dataSize = file.readUint16BE();
if (dataSize + 2 != file.size())
return false;
_width = file.readByte();
_height = file.readByte();
// Read the character definition offset table
uint16 offsets[ARRAYSIZE(_chars)];
for (int i = 0; i < ARRAYSIZE(_chars); ++i)
offsets[i] = file.readUint16BE() + 4;
if (file.err())
return false;
for (int i = 0; i < ARRAYSIZE(_chars); ++i) {
file.seek(offsets[i], SEEK_SET);
_chars[i].yOffset = file.readByte();
_chars[i].xOffset = file.readByte();
_chars[i].width = file.readByte();
file.readByte(); // unused
// If the y offset is 255, then the character
// does not have any bitmap representation
if (_chars[i].yOffset != 255) {
Character::Graphics &g = _chars[i].graphics;
g.width = file.readUint16BE();
g.height = file.readUint16BE();
int depth = file.readByte();
int specialWidth = file.readByte();
int flags = file.readByte();
int bytesPerPlane = file.readByte();
assert(depth != 0 && specialWidth == 0 && flags == 0 && bytesPerPlane != 0);
// Allocate a temporary buffer to store the plane data
const int planesSize = bytesPerPlane * g.height * depth;
uint8 *tempData = new uint8[MAX(g.width * g.height, planesSize)];
assert(tempData);
file.read(tempData, planesSize);
// Convert the plane based graphics to our graphic format
Screen::convertAmigaGfx(tempData, g.width, g.height, depth, false, bytesPerPlane);
// Create a buffer perfectly fitting the character
g.bitmap = new uint8[g.width * g.height];
assert(g.bitmap);
memcpy(g.bitmap, tempData, g.width * g.height);
delete[] tempData;
}
if (file.err())
return false;
}
return !file.err();
}
int AMIGAFont::getCharWidth(uint16 c) const {
if (c >= 255)
return 0;
return _chars[c].width;
}
void AMIGAFont::drawChar(uint16 c, byte *dst, int pitch, int) const {
if (c >= 255)
return;
if (_chars[c].yOffset == 255)
return;
dst += _chars[c].yOffset * pitch;
dst += _chars[c].xOffset;
pitch -= _chars[c].graphics.width;
const uint8 *src = _chars[c].graphics.bitmap;
assert(src);
for (int y = 0; y < _chars[c].graphics.height; ++y) {
for (int x = 0; x < _chars[c].graphics.width; ++x) {
if (*src)
*dst = *src;
++src;
++dst;
}
dst += pitch;
}
}
void AMIGAFont::unload() {
_width = _height = 0;
for (int i = 0; i < ARRAYSIZE(_chars); ++i)
delete[] _chars[i].graphics.bitmap;
memset(_chars, 0, sizeof(_chars));
}
SJISFont::SJISFont(Common::SharedPtr<Graphics::FontSJIS> &font, const uint8 invisColor, bool is16Color, bool drawOutline, int extraSpacing)
: _colorMap(0), _font(font), _invisColor(invisColor), _isTextMode(is16Color), _style(kStyleNone), _drawOutline(drawOutline), _sjisWidthOffset(extraSpacing) {
assert(_font);
_sjisWidth = _font->getMaxFontWidth() >> 1;
_fontHeight = _font->getFontHeight() >> 1;
_asciiWidth = _font->getCharWidth('a') >> 1;
}
int SJISFont::getHeight() const {
return _fontHeight;
}
int SJISFont::getWidth() const {
return _sjisWidth + _sjisWidthOffset;
}
int SJISFont::getCharWidth(uint16 c) const {
if (c <= 0x7F || (c >= 0xA1 && c <= 0xDF))
return _asciiWidth;
else
return _sjisWidth + _sjisWidthOffset;
}
void SJISFont::setColorMap(const uint8 *src) {
_colorMap = src;
}
void SJISFont::drawChar(uint16 c, byte *dst, int pitch, int) const {
uint8 color1, color2;
if (_isTextMode) {
// PC98 16 color games specify a color value which is for the
// PC98 text mode palette, thus we need to remap it.
color1 = ((_colorMap[1] >> 5) & 0x7) + 16;
color2 = ((_colorMap[0] >> 5) & 0x7) + 16;
} else {
color1 = _colorMap[1];
color2 = _colorMap[0];
}
if (!_isTextMode && _colorMap[0] == _invisColor)
_font->setDrawingMode(Graphics::FontSJIS::kDefaultMode);
else
_font->setDrawingMode(_drawOutline ? Graphics::FontSJIS::kOutlineMode : Graphics::FontSJIS::kDefaultMode);
_font->toggleFatPrint(_style == kStyleFat);
_font->drawChar(dst, c, 640, 1, color1, color2, 640, 400);
}
#pragma mark -
Palette::Palette(const int numColors) : _palData(0), _numColors(numColors) {
_palData = new uint8[numColors * 3];
assert(_palData);
memset(_palData, 0, numColors * 3);
}
Palette::~Palette() {
delete[] _palData;
_palData = 0;
}
void Palette::loadVGAPalette(Common::ReadStream &stream, int startIndex, int colors) {
assert(startIndex + colors <= _numColors);
uint8 *pos = _palData + startIndex * 3;
for (int i = 0 ; i < colors * 3; i++)
*pos++ = stream.readByte() & 0x3F;
}
void Palette::loadHiColorPalette(Common::ReadStream &stream, int startIndex, int colors) {
uint16 *pos = (uint16*)(_palData + startIndex * 2);
Graphics::PixelFormat currentFormat = g_system->getScreenFormat();
Graphics::PixelFormat originalFormat(2, 5, 5, 5, 0, 5, 10, 0, 0);
for (int i = 0; i < colors; i++) {
uint8 r, g, b;
originalFormat.colorToRGB(stream.readUint16LE(), r, g, b);
*pos++ = currentFormat.RGBToColor(r, g, b);
}
}
void Palette::loadEGAPalette(Common::ReadStream &stream, int startIndex, int colors) {
assert(startIndex + colors <= 16);
uint8 *dst = _palData + startIndex * 3;
for (int i = 0; i < colors; i++) {
uint8 index = stream.readByte();
assert(index < _egaNumColors);
memcpy(dst, &_egaColors[index * 3], 3);
dst += 3;
}
}
void Palette::setCGAPalette(int palIndex, CGAIntensity intensity) {
assert(_numColors >= _cgaNumColors);
assert(!(palIndex & ~1));
memcpy(_palData, _cgaColors[palIndex * 2 + intensity], _cgaNumColors * 3);
}
void Palette::loadAmigaPalette(Common::ReadStream &stream, int startIndex, int colors) {
assert(startIndex + colors <= _numColors);
for (int i = 0; i < colors; ++i) {
uint16 col = stream.readUint16BE();
_palData[(i + startIndex) * 3 + 2] = ((col & 0xF) * 0x3F) / 0xF; col >>= 4;
_palData[(i + startIndex) * 3 + 1] = ((col & 0xF) * 0x3F) / 0xF; col >>= 4;
_palData[(i + startIndex) * 3 + 0] = ((col & 0xF) * 0x3F) / 0xF; col >>= 4;
}
}
void Palette::loadPC98Palette(Common::ReadStream &stream, int startIndex, int colors) {
assert(startIndex + colors <= _numColors);
for (int i = 0; i < colors; ++i) {
const byte g = stream.readByte(), r = stream.readByte(), b = stream.readByte();
_palData[(i + startIndex) * 3 + 0] = ((r & 0xF) * 0x3F) / 0xF;
_palData[(i + startIndex) * 3 + 1] = ((g & 0xF) * 0x3F) / 0xF;
_palData[(i + startIndex) * 3 + 2] = ((b & 0xF) * 0x3F) / 0xF;
}
}
void Palette::clear() {
memset(_palData, 0, _numColors * 3);
}
void Palette::fill(int firstCol, int numCols, uint8 value) {
assert(firstCol >= 0 && firstCol + numCols <= _numColors);
memset(_palData + firstCol * 3, CLIP<int>(value, 0, 63), numCols * 3);
}
void Palette::copy(const Palette &source, int firstCol, int numCols, int dstStart) {
if (numCols == -1)
numCols = MIN(source.getNumColors(), _numColors) - firstCol;
if (dstStart == -1)
dstStart = firstCol;
assert(numCols >= 0 && numCols <= _numColors);
assert(firstCol >= 0 && firstCol <= source.getNumColors());
assert(dstStart >= 0 && dstStart + numCols <= _numColors);
memmove(_palData + dstStart * 3, source._palData + firstCol * 3, numCols * 3);
}
void Palette::copy(const uint8 *source, int firstCol, int numCols, int dstStart) {
if (dstStart == -1)
dstStart = firstCol;
assert(numCols >= 0 && numCols <= _numColors);
assert(firstCol >= 0);
assert(dstStart >= 0 && dstStart + numCols <= _numColors);
memmove(_palData + dstStart * 3, source + firstCol * 3, numCols * 3);
}
uint8 *Palette::fetchRealPalette() const {
uint8 *buffer = new uint8[_numColors * 3];
assert(buffer);
uint8 *dst = buffer;
const uint8 *palData = _palData;
for (int i = 0; i < _numColors; ++i) {
dst[0] = (palData[0] << 2) | (palData[0] & 3);
dst[1] = (palData[1] << 2) | (palData[1] & 3);
dst[2] = (palData[2] << 2) | (palData[2] & 3);
dst += 3;
palData += 3;
}
return buffer;
}
const uint8 Palette::_egaColors[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0xAA, 0x00, 0xAA, 0x00, 0x00, 0xAA, 0xAA,
0xAA, 0x00, 0x00, 0xAA, 0x00, 0xAA, 0xAA, 0x55, 0x00, 0xAA, 0xAA, 0xAA,
0x55, 0x55, 0x55, 0x55, 0x55, 0xFF, 0x55, 0xFF, 0x55, 0x55, 0xFF, 0xFF,
0xFF, 0x55, 0x55, 0xFF, 0x55, 0xFF, 0xFF, 0xFF, 0x55, 0xFF, 0xFF, 0xFF
};
const int Palette::_egaNumColors = ARRAYSIZE(_egaColors) / 3;
const uint8 Palette::_cgaColors[4][12] = {
{ 0x00, 0x00, 0x00, 0x00, 0x2A, 0x00, 0x2A, 0x00, 0x00, 0x2A, 0x15, 0x00 },
{ 0x00, 0x00, 0x00, 0x15, 0x3F, 0x15, 0x3F, 0x15, 0x15, 0x3F, 0x3F, 0x15 },
{ 0x00, 0x00, 0x00, 0x00, 0x2A, 0x2A, 0x2A, 0x00, 0x2A, 0x2A, 0x2A, 0x2A },
{ 0x00, 0x00, 0x00, 0x15, 0x3F, 0x3F, 0x3F, 0x15, 0x3F, 0x3F, 0x3F, 0x3F }
};
const int Palette::_cgaNumColors = ARRAYSIZE(_cgaColors[0]) / 3;
} // End of namespace Kyra