scummvm/engines/m4/midi.cpp

365 lines
8.7 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
// FIXME: This is cribbed together from the SAGA music player. It needs cleanup
// and testing.
#include "m4/m4.h"
#include "m4/midi.h"
#include "common/stream.h"
namespace M4 {
MidiPlayer::MidiPlayer(M4Engine *vm, MidiDriver *driver) : _vm(vm), _midiData(NULL), _driver(driver), _isPlaying(false), _passThrough(false), _isGM(false) {
memset(_channel, 0, sizeof(_channel));
_masterVolume = 0;
_parser = MidiParser::createParser_SMF();
_parser->setMidiDriver(this);
_parser->setTimerRate(getBaseTempo());
open();
}
MidiPlayer::~MidiPlayer() {
_driver->setTimerCallback(NULL, NULL);
_parser->setMidiDriver(NULL);
stopMusic();
close();
delete _parser;
if (_midiData)
free(_midiData);
}
void MidiPlayer::setVolume(int volume) {
Common::StackLock lock(_mutex);
if (volume < 0)
volume = 0;
else if (volume > 255)
volume = 255;
if (_masterVolume == volume)
return;
_masterVolume = volume;
for (int i = 0; i < 16; ++i) {
if (_channel[i]) {
_channel[i]->volume(_channelVolume[i] * _masterVolume / 255);
}
}
}
int MidiPlayer::open() {
// Don't ever call open without first setting the output driver!
if (!_driver)
return 255;
int ret = _driver->open();
if (ret)
return ret;
_driver->setTimerCallback(this, &onTimer);
return 0;
}
void MidiPlayer::close() {
stopMusic();
if (_driver)
_driver->close();
_driver = 0;
}
void MidiPlayer::send(uint32 b) {
if (_passThrough) {
_driver->send(b);
return;
}
byte channel = (byte)(b & 0x0F);
if ((b & 0xFFF0) == 0x07B0) {
// Adjust volume changes by master volume
byte volume = (byte)((b >> 16) & 0x7F);
_channelVolume[channel] = volume;
volume = volume * _masterVolume / 255;
b = (b & 0xFF00FFFF) | (volume << 16);
} else if ((b & 0xF0) == 0xC0 && !_isGM && !_nativeMT32) {
b = (b & 0xFFFF00FF) | MidiDriver::_mt32ToGm[(b >> 8) & 0xFF] << 8;
}
else if ((b & 0xFFF0) == 0x007BB0) {
//Only respond to All Notes Off if this channel
//has currently been allocated
if (_channel[b & 0x0F])
return;
}
if (!_channel[channel])
_channel[channel] = (channel == 9) ? _driver->getPercussionChannel() : _driver->allocateChannel();
if (_channel[channel])
_channel[channel]->send(b);
}
void MidiPlayer::metaEvent(byte type, byte *data, uint16 length) {
switch (type) {
case 0x2F:
// End of track. (Not called when auto-looping.)
stopMusic();
break;
case 0x51:
// Set tempo. Handled by the standard MIDI parser already.
break;
default:
warning("Unhandled meta event: %02x", type);
break;
}
}
void MidiPlayer::onTimer(void *refCon) {
MidiPlayer *midi = (MidiPlayer *)refCon;
Common::StackLock lock(midi->_mutex);
if (midi->_isPlaying)
midi->_parser->onTimer();
}
void MidiPlayer::playMusic(const char *name, int32 vol, bool loop, int32 trigger, int32 scene) {
stopMusic();
char fullname[144];
_vm->res()->changeExtension(fullname, name, "HMP");
Common::SeekableReadStream *midiFile = _vm->res()->get(fullname);
byte *hmpData = new byte[midiFile->size()];
uint32 smfSize;
midiFile->read(hmpData, midiFile->size());
_midiData = convertHMPtoSMF(hmpData, midiFile->size(), smfSize);
delete[] hmpData;
_vm->res()->toss(fullname);
_vm->res()->purge();
if (_midiData) {
/*
FILE *out = fopen("music.mid", "wb");
fwrite(_midiData, smfSize, 1, out);
fclose(out);
*/
_parser->loadMusic(_midiData, smfSize);
_parser->property(MidiParser::mpAutoLoop, loop);
}
setVolume(255);
_isPlaying = true;
}
void MidiPlayer::stopMusic() {
Common::StackLock lock(_mutex);
_isPlaying = false;
if (_parser) {
_parser->unloadMusic();
}
if (_midiData) {
free(_midiData);
_midiData = NULL;
}
}
// This function will convert HMP music into type 1 SMF, which our SMF parser
// will be able to handle. It is based on Hans de Goede's HMP 2 MIDI file
// converter, which in turn is "based on the conversion algorithms found in
// d1x, d2x-xl and jjffe". Hans's original code is licensed under the LGPL.
//
// TODO: It would probably be nicer to write a MIDI parser class to deal with
// HMP data directly. Though the multi-track nature of HMP makes that tricky.
byte *MidiPlayer::convertHMPtoSMF(byte *data, uint32 inSize, uint32 &outSize) {
Common::MemoryReadStream readS(data, inSize);
Common::MemoryWriteStreamDynamic writeS;
byte buf[8];
readS.read(buf, sizeof(buf));
if (memcmp(buf, "HMIMIDIP", 8) != 0) {
warning("convertHMPtoSMF: Invalid HMP header");
return NULL;
}
// Read the number of tracks. Note that all the tracks are still part
// of the same song, just like in type 1 SMF files.
readS.seek(0x30);
uint32 numTracks = readS.readUint32LE();
// The first track starts on offset 0x300. It's currently unknown what
// the skipped data is for.
readS.seek(0x300);
// For some reason, we skip the first track entirely.
byte a = readS.readByte();
byte b = readS.readByte();
byte c = readS.readByte();
while (a != 0xFF || b != 0x2F || c != 0x00) {
a = b;
b = c;
c = readS.readByte();
}
// The beginning of the MIDI header
static const byte midiHeader1[] = { 'M', 'T', 'h', 'd', 0, 0, 0, 6, 0, 1 };
// The last 2 bytes of the midi header and track 0
static const byte midiHeader2[] = { 0, 0xC0, 'M', 'T', 'r', 'k', 0, 0, 0, 0x0B, 0, 0xFF, 0x51, 0x03, 0x18, 0x80, 0, 0, 0xFF, 0x2F, 0 };
// Write the MIDI header
writeS.write(midiHeader1, sizeof(midiHeader1));
// Write the number of tracks
writeS.writeUint16BE(numTracks);
// Write the rest of the MIDI header and track 0.
writeS.write(midiHeader2, sizeof(midiHeader2));
// Read and convert all the tracks
for (uint i = 1; i < numTracks; i++) {
if (readS.readUint32LE() != i) {
warning("convertHMPtoSMF: Invalid HMP track number");
delete[] writeS.getData();
return NULL;
}
uint32 trackLength = readS.readUint32LE() - 12;
readS.readUint32LE(); // Unused?
// Write the track header
writeS.write("MTrk", 4);
// This is where we will write the length of the track.
uint32 trackLengthPos = writeS.pos();
writeS.writeUint32LE(0);
// In the original, this is cleared once at the beginning of
// the function, but surely the last command does not carry
// over to the next track?
byte lastCmd = 0;
// Now we can finally convert the track
int32 endPos = readS.pos() + trackLength;
while (readS.pos() < endPos) {
// Convert the VLQ
byte vlq[4];
int j = -1;
do {
j++;
vlq[j] = readS.readByte();
} while (!(vlq[j] & 0x80));
for (int k = 0; k <= j; k++) {
a = vlq[j - k] & 0x7F;
if (k != j)
a |= 0x80;
writeS.writeByte(a);
}
a = readS.readByte();
if (a == 0xFF) {
// META event
b = readS.readByte();
c = readS.readByte();
writeS.writeByte(a);
writeS.writeByte(b);
writeS.writeByte(c);
if (c > 0) {
byte *metaBuf = new byte[c];
readS.read(metaBuf, c);
writeS.write(metaBuf, c);
delete[] metaBuf;
}
if (b == 0x2F) {
if (c != 0x00) {
warning("convertHMPtoSMF: End of track with non-zero size");
delete[] writeS.getData();
return NULL;
}
break;
}
} else {
if (a != lastCmd)
writeS.writeByte(a);
switch (a & 0xF0) {
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
case 0xE0:
b = readS.readByte();
c = readS.readByte();
writeS.writeByte(b);
writeS.writeByte(c);
break;
case 0xC0:
case 0xD0:
b = readS.readByte();
writeS.writeByte(b);
break;
default:
warning("convertHMPtoSMF: Invalid HMP command %02X", a);
delete[] writeS.getData();
return NULL;
}
lastCmd = a;
}
}
if (readS.pos() != endPos) {
warning("convertHMPtoSMF: Invalid track length");
delete[] writeS.getData();
return NULL;
}
WRITE_BE_UINT32(writeS.getData() + trackLengthPos, writeS.pos() - trackLengthPos - 4);
}
outSize = writeS.size();
return writeS.getData();
}
} // End of namespace M4