scummvm/engines/m4/ws_machine.cpp
2009-03-07 19:24:31 +00:00

423 lines
12 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "m4/woodscript.h"
namespace M4 {
bool (Machine::*machineCommandsTable[])(Instruction &instruction) = {
NULL,
NULL,//TODO: nop
&Machine::m1_gotoState,
&Machine::m1_jump,
&Machine::m1_terminate,
&Machine::m1_startSequence,
&Machine::m1_pauseSequence,
&Machine::m1_resumeSequence,
&Machine::m1_storeValue,
&Machine::m1_sendMessage,
&Machine::m1_broadcastMessage,
&Machine::m1_replyMessage,
&Machine::m1_sendSystemMessage,
&Machine::m1_createMachine,
&Machine::m1_createMachineEx,
&Machine::m1_clearVars
};
void (Machine::*machineConditionalsTable[])(Instruction &instruction) = {
NULL,//TODO: after
&Machine::m1_onEndSequence,
&Machine::m1_onMessage,
NULL,//TODO: on_p_msg
&Machine::m1_switchLt,
&Machine::m1_switchLe,
&Machine::m1_switchEq,
&Machine::m1_switchNe,
&Machine::m1_switchGe,
&Machine::m1_switchGt,
};
Machine::Machine(WoodScript *ws, int32 machineHash, Sequence *parentSeq, int32 dataHash,
int32 dataRowIndex, int callbackHandler, Common::String machineName, int32 id) {
_ws = ws;
_machHash = machineHash;
_name = machineName;
_id = id;
// initialize the machine's bytecode
MachineAsset *machineAsset = _ws->assets()->getMachine(_machHash);
byte *code;
uint32 codeSize;
machineAsset->getCode(code, codeSize);
_code = new Bytecode(_ws, code, codeSize, NULL);
// initialize the machine's data
if (dataHash >= 0) {
DataAsset *dataAsset = _ws->assets()->getData(dataHash);
_dataRow = dataAsset->getRow(dataRowIndex);
} else {
_dataRow = NULL;
}
_recursionLevel = 0;
_currentState = 0;
_sequence = NULL;
_parentSequence = parentSeq;
_targetCount = 0;
}
Machine::~Machine() {
delete _code;
}
void Machine::clearMessages() {
}
void Machine::clearPersistentMessages() {
}
void Machine::restorePersistentMessages() {
}
void Machine::sendMessage(uint32 messageHash, long messageValue, Machine *sender) {
}
void Machine::resetSwitchTime() {
}
bool Machine::changeSequenceProgram(int32 sequenceHash) {
return _sequence->changeProgram(sequenceHash);
}
bool Machine::searchMessages(uint32 messageHash, uint32 messageValue, Machine *sender) {
return false;
}
bool Machine::searchPersistentMessages(uint32 messageHash, uint32 messageValue, Machine *sender) {
return false;
}
void Machine::enterState() {
MachineAsset *machineAsset = _ws->assets()->getMachine(_machHash);
_code->jumpAbsolute(machineAsset->getStateOffset(_currentState));
int32 instruction = -1;
_recursionLevel++;
int32 oldId = _id;
int32 oldRecursionLevel = _recursionLevel;
while (instruction && instruction != 4 && _id == oldId && _recursionLevel == oldRecursionLevel) {
instruction = execInstruction();
}
if (instruction != 4 && _id == oldId && _recursionLevel == oldRecursionLevel) {
_recursionLevel--;
}
}
int32 Machine::execInstruction() {
//printf("Machine::execInstruction()\n"); fflush(stdout);
bool done = false;
Instruction instruction;
//Sequence *sequence;
int32 machID = _id;
_code->loadInstruction(instruction);
if (instruction.instr >= 64) {
if (machineConditionalsTable[instruction.instr - 64] != NULL)
(this->*machineConditionalsTable[instruction.instr - 64])(instruction);
/* The next line is to yield on unimplemented opcodes */
else { fflush(stdout); g_system->delayMillis(5000); }
} else if (instruction.instr > 0) {
if (machineCommandsTable[instruction.instr] != NULL)
done = !(this->*machineCommandsTable[instruction.instr])(instruction);
/* The next line is to yield on unimplemented opcodes */
else { fflush(stdout); g_system->delayMillis(5000); }
if (done) {
if (_id == machID) {
//TODO: Cancel all requests
if (_currentState == -1) {
// TODO: Set terminated flag and delete machine in WoodScript update
}
else {
// initialize new state
enterState();
}
}
}
}
return instruction.instr;
}
void Machine::execBlock(int32 offset, int32 count) {
// MachineAsset *machineAsset = _ws->assets()->getMachine(_machHash);
int32 startOffset = offset, endOffset = offset + count;
_recursionLevel++;
int32 oldId = _id;
int32 oldRecursionLevel = _recursionLevel;
_code->jumpAbsolute(offset);
int32 instruction = -1;
//printf("---------------------------------------\n"); fflush(stdout);
while (instruction && instruction != 4 && _id == oldId && _recursionLevel == oldRecursionLevel &&
_code->pos() >= (uint32)startOffset && _code->pos() < (uint32)endOffset) {
instruction = execInstruction();
//g_system->delayMillis(500);
}
//printf("---------------------------------------\n"); fflush(stdout);
if (instruction == 3) {
execInstruction();
}
if (instruction != 4 && _id == oldId && _recursionLevel == oldRecursionLevel) {
_recursionLevel--;
}
}
bool Machine::m1_gotoState(Instruction &instruction) {
//printf("Machine::m1_gotoState() state = %d\n", (int32)instruction.argv[0] >> 16);
_currentState = (int32)instruction.argv[0] >> 16;
_recursionLevel = 0;
return false;
}
bool Machine::m1_jump(Instruction &instruction) {
//printf("Machine::m1_jump() ofs = %08X\n", (int32)instruction.argv[0] >> 16);
_code->jumpRelative((int32)instruction.argv[0] >> 16);
return true;
}
bool Machine::m1_terminate(Instruction &instruction) {
//printf("Machine::m1_terminate()\n"); fflush(stdout);
_currentState = -1;
_recursionLevel = 0;
return false;
}
bool Machine::m1_startSequence(Instruction &instruction) {
//printf("Machine::m1_startSequence() sequence hash = %d\n", (uint32)instruction.argv[0] >> 16); fflush(stdout);
int32 sequenceHash = instruction.argv[0] >> 16;
if (_sequence == NULL) {
//printf("Machine::m1_startSequence() creating new sequence\n");
_sequence = _ws->createSequence(this, sequenceHash);
_code->setSequence(_sequence);
} else {
//printf("Machine::m1_startSequence() using existing sequence\n");
_sequence->changeProgram(sequenceHash);
//_code->setSequence(_sequence);
}
return true;
}
bool Machine::m1_pauseSequence(Instruction &instruction) {
//printf("Machine::m1_pauseSequence()\n"); fflush(stdout);
_sequence->pause();
return true;
}
bool Machine::m1_resumeSequence(Instruction &instruction) {
//printf("Machine::m1_resumeSequence()\n"); fflush(stdout);
_sequence->resume();
return true;
}
bool Machine::m1_storeValue(Instruction &instruction) {
//printf("Machine::m1_storeValue() %p = %d (%08X)\n", (void*)instruction.argp[0], (uint32)instruction.argv[1], (uint32)instruction.argv[1]);
*instruction.argp[0] = instruction.getValue();
return true;
}
bool Machine::m1_sendMessage(Instruction &instruction) {
//printf("Machine::m1_sendMessage() %p = %d (%08X)\n", (void*)instruction.argp[0], (uint32)instruction.argv[1], (uint32)instruction.argv[1]);
#if 0
//TODO
long messageValue;
if (instruction.argc == 3) {
messageValue = instruction.argv[2];
} else {
messageValue = 0;
}
//_ws->sendMessage((uint32)instruction.argv[1], messageValue, (uint32)instruction.argv[0] >> 16);
//void SendWSMessage(uint32 msgHash, long msgValue, machine *recvM, uint32 machHash, machine *sendM, int32 msgCount) {
#endif
return true;
}
bool Machine::m1_broadcastMessage(Instruction &instruction) {
//printf("Machine::m1_broadcastMessage() %p = %d (%08X)\n", (void*)instruction.argp[0], (uint32)instruction.argv[1], (uint32)instruction.argv[1]);
#if 0
//TODO
long messageValue;
if (instruction.argc == 3) {
messageValue = instruction.argv[2];
} else {
messageValue = 0;
}
//_ws->sendMessage((uint32)instruction.argv[1], messageValue, (uint32)instruction.argv[0] >> 16);
#endif
return true;
}
bool Machine::m1_replyMessage(Instruction &instruction) {
//printf("Machine::m1_replyMessage() messageHash = %d; messageValue = %d\n", (uint32)instruction.argv[0], (uint32)instruction.argv[1]);
#if 0
if (myArg2) {
msgValue = *myArg2;
}
else {
msgValue = 0;
}
SendWSMessage(*myArg1, msgValue, m->msgReplyXM, 0, m, 1);
#endif
return true;
}
bool Machine::m1_sendSystemMessage(Instruction &instruction) {
//printf("Machine::m1_sendSystemMessage() messageValue = %d\n", (uint32)instruction.argv[0]);
#if 0
#endif
return true;
}
bool Machine::m1_createMachine(Instruction &instruction) {
//printf("Machine::m1_createMachine()\n");
#if 0
#endif
return true;
}
bool Machine::m1_createMachineEx(Instruction &instruction) {
//printf("Machine::m1_createMachineEx()\n");
#if 0
#endif
return true;
}
bool Machine::m1_clearVars(Instruction &instruction) {
//printf("Machine::m1_clearVars()\n"); fflush(stdout);
_sequence->clearVars();
return true;
}
void Machine::m1_onEndSequence(Instruction &instruction) {
//printf("Machine::m1_onEndSequence() count = %08X\n", (uint32)instruction.argv[0] >> 16); fflush(stdout);
int32 count = instruction.argv[0] >> 16;
_sequence->issueEndOfSequenceRequest(_code->pos(), count);
_code->jumpRelative(count);
}
void Machine::m1_onMessage(Instruction &instruction) {
//printf("Machine::m1_onEndSequence() count = %08X\n", (uint32)instruction.argv[0] >> 16); fflush(stdout);
// TODO: Add message to list
int32 count = instruction.argv[0] >> 16;
_code->jumpRelative(count);
}
void Machine::m1_switchLt(Instruction &instruction) {
//printf("Machine::m1_switchLt() %d < %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] >= instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
void Machine::m1_switchLe(Instruction &instruction) {
//printf("Machine::m1_switchLe() %d <= %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] > instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
void Machine::m1_switchEq(Instruction &instruction) {
//printf("Machine::m1_switchEq() %d == %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] != instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
void Machine::m1_switchNe(Instruction &instruction) {
//printf("Machine::m1_switchNe() %d != %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] == instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
void Machine::m1_switchGe(Instruction &instruction) {
//printf("Machine::m1_switchGe() %d >= %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] < instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
void Machine::m1_switchGt(Instruction &instruction) {
//printf("Machine::m1_switchGt() %d > %d -> %08X\n", (uint32)instruction.argv[1], (uint32)instruction.argv[2], (uint32)instruction.argv[0] >> 16); fflush(stdout);
if (instruction.argv[1] <= instruction.argv[2])
_code->jumpRelative(instruction.argv[0] >> 16);
}
}