mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-16 14:50:17 +00:00
263 lines
8.7 KiB
C++
263 lines
8.7 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#include "common/scummsys.h"
|
|
|
|
#include "zvision/render_table.h"
|
|
|
|
#include "common/rect.h"
|
|
|
|
#include "graphics/colormasks.h"
|
|
|
|
|
|
namespace ZVision {
|
|
|
|
RenderTable::RenderTable(uint numColumns, uint numRows)
|
|
: _numRows(numRows),
|
|
_numColumns(numColumns),
|
|
_renderState(FLAT) {
|
|
assert(numRows != 0 && numColumns != 0);
|
|
|
|
_internalBuffer = new Common::Point[numRows * numColumns];
|
|
}
|
|
|
|
RenderTable::~RenderTable() {
|
|
delete[] _internalBuffer;
|
|
}
|
|
|
|
void RenderTable::setRenderState(RenderState newState) {
|
|
_renderState = newState;
|
|
|
|
switch (newState) {
|
|
case PANORAMA:
|
|
_panoramaOptions.fieldOfView = 27.0f;
|
|
_panoramaOptions.linearScale = 0.55f;
|
|
_panoramaOptions.reverse = false;
|
|
break;
|
|
case TILT:
|
|
_tiltOptions.fieldOfView = 27.0f;
|
|
_tiltOptions.linearScale = 0.55f;
|
|
_tiltOptions.reverse = false;
|
|
break;
|
|
case FLAT:
|
|
// Intentionally left empty
|
|
break;
|
|
}
|
|
}
|
|
|
|
const Common::Point RenderTable::convertWarpedCoordToFlatCoord(const Common::Point &point) {
|
|
// If we're outside the range of the RenderTable, no warping is happening. Return the maximum image coords
|
|
if (point.x >= (int16)_numColumns || point.y >= (int16)_numRows || point.x < 0 || point.y < 0) {
|
|
int16 x = CLIP<int16>(point.x, 0, (int16)_numColumns);
|
|
int16 y = CLIP<int16>(point.y, 0, (int16)_numRows);
|
|
return Common::Point(x, y);
|
|
}
|
|
|
|
uint32 index = point.y * _numColumns + point.x;
|
|
|
|
Common::Point newPoint(point);
|
|
newPoint.x += _internalBuffer[index].x;
|
|
newPoint.y += _internalBuffer[index].y;
|
|
|
|
return newPoint;
|
|
}
|
|
|
|
uint16 mixTwoRGB(uint16 colorOne, uint16 colorTwo, float percentColorOne) {
|
|
assert(percentColorOne < 1.0f);
|
|
|
|
float rOne = float((colorOne & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
|
|
float rTwo = float((colorTwo & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift);
|
|
float gOne = float((colorOne & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
|
|
float gTwo = float((colorTwo & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift);
|
|
float bOne = float((colorOne & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
|
|
float bTwo = float((colorTwo & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift);
|
|
|
|
float rFinal = rOne * percentColorOne + rTwo * (1.0f - percentColorOne);
|
|
float gFinal = gOne * percentColorOne + gTwo * (1.0f - percentColorOne);
|
|
float bFinal = bOne * percentColorOne + bTwo * (1.0f - percentColorOne);
|
|
|
|
uint16 returnColor = (byte(rFinal + 0.5f) << Graphics::ColorMasks<555>::kRedShift) |
|
|
(byte(gFinal + 0.5f) << Graphics::ColorMasks<555>::kGreenShift) |
|
|
(byte(bFinal + 0.5f) << Graphics::ColorMasks<555>::kBlueShift);
|
|
|
|
return returnColor;
|
|
}
|
|
|
|
void RenderTable::mutateImage(uint16 *sourceBuffer, uint16 *destBuffer, uint32 destWidth, const Common::Rect &subRect) {
|
|
uint32 destOffset = 0;
|
|
|
|
for (int16 y = subRect.top; y < subRect.bottom; ++y) {
|
|
uint32 sourceOffset = y * _numColumns;
|
|
|
|
for (int16 x = subRect.left; x < subRect.right; ++x) {
|
|
uint32 normalizedX = x - subRect.left;
|
|
uint32 index = sourceOffset + x;
|
|
|
|
// RenderTable only stores offsets from the original coordinates
|
|
uint32 sourceYIndex = y + _internalBuffer[index].y;
|
|
uint32 sourceXIndex = x + _internalBuffer[index].x;
|
|
|
|
destBuffer[destOffset + normalizedX] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex];
|
|
}
|
|
|
|
destOffset += destWidth;
|
|
}
|
|
}
|
|
|
|
void RenderTable::mutateImage(Graphics::Surface *dstBuf, Graphics::Surface *srcBuf) {
|
|
uint32 destOffset = 0;
|
|
|
|
uint16 *sourceBuffer = (uint16 *)srcBuf->getPixels();
|
|
uint16 *destBuffer = (uint16 *)dstBuf->getPixels();
|
|
|
|
for (int16 y = 0; y < srcBuf->h; ++y) {
|
|
uint32 sourceOffset = y * _numColumns;
|
|
|
|
for (int16 x = 0; x < srcBuf->w; ++x) {
|
|
uint32 index = sourceOffset + x;
|
|
|
|
// RenderTable only stores offsets from the original coordinates
|
|
uint32 sourceYIndex = y + _internalBuffer[index].y;
|
|
uint32 sourceXIndex = x + _internalBuffer[index].x;
|
|
|
|
destBuffer[destOffset] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex];
|
|
destOffset++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderTable::generateRenderTable() {
|
|
switch (_renderState) {
|
|
case ZVision::RenderTable::PANORAMA:
|
|
generatePanoramaLookupTable();
|
|
break;
|
|
case ZVision::RenderTable::TILT:
|
|
generateTiltLookupTable();
|
|
break;
|
|
case ZVision::RenderTable::FLAT:
|
|
// Intentionally left empty
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RenderTable::generatePanoramaLookupTable() {
|
|
memset(_internalBuffer, 0, _numRows * _numColumns * sizeof(uint16));
|
|
|
|
float halfWidth = (float)_numColumns / 2.0f;
|
|
float halfHeight = (float)_numRows / 2.0f;
|
|
|
|
float fovInRadians = (_panoramaOptions.fieldOfView * M_PI / 180.0f);
|
|
float cylinderRadius = halfHeight / tan(fovInRadians);
|
|
|
|
for (uint x = 0; x < _numColumns; ++x) {
|
|
// Add an offset of 0.01 to overcome zero tan/atan issue (vertical line on half of screen)
|
|
// Alpha represents the horizontal angle between the viewer at the center of a cylinder and x
|
|
float alpha = atan(((float)x - halfWidth + 0.01f) / cylinderRadius);
|
|
|
|
// To get x in cylinder coordinates, we just need to calculate the arc length
|
|
// We also scale it by _panoramaOptions.linearScale
|
|
int32 xInCylinderCoords = int32(floor((cylinderRadius * _panoramaOptions.linearScale * alpha) + halfWidth));
|
|
|
|
float cosAlpha = cos(alpha);
|
|
|
|
for (uint y = 0; y < _numRows; ++y) {
|
|
// To calculate y in cylinder coordinates, we can do similar triangles comparison,
|
|
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
|
|
int32 yInCylinderCoords = int32(floor(halfHeight + ((float)y - halfHeight) * cosAlpha));
|
|
|
|
uint32 index = y * _numColumns + x;
|
|
|
|
// Only store the (x,y) offsets instead of the absolute positions
|
|
_internalBuffer[index].x = xInCylinderCoords - x;
|
|
_internalBuffer[index].y = yInCylinderCoords - y;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderTable::generateTiltLookupTable() {
|
|
float halfWidth = (float)_numColumns / 2.0f;
|
|
float halfHeight = (float)_numRows / 2.0f;
|
|
|
|
float fovInRadians = (_tiltOptions.fieldOfView * M_PI / 180.0f);
|
|
float cylinderRadius = halfWidth / tan(fovInRadians);
|
|
|
|
for (uint y = 0; y < _numRows; ++y) {
|
|
|
|
// Add an offset of 0.01 to overcome zero tan/atan issue (horizontal line on half of screen)
|
|
// Alpha represents the vertical angle between the viewer at the center of a cylinder and y
|
|
float alpha = atan(((float)y - halfHeight + 0.01f) / cylinderRadius);
|
|
|
|
// To get y in cylinder coordinates, we just need to calculate the arc length
|
|
// We also scale it by _tiltOptions.linearScale
|
|
int32 yInCylinderCoords = int32(floor((cylinderRadius * _tiltOptions.linearScale * alpha) + halfHeight));
|
|
|
|
float cosAlpha = cos(alpha);
|
|
uint32 columnIndex = y * _numColumns;
|
|
|
|
for (uint x = 0; x < _numColumns; ++x) {
|
|
// To calculate x in cylinder coordinates, we can do similar triangles comparison,
|
|
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
|
|
int32 xInCylinderCoords = int32(floor(halfWidth + ((float)x - halfWidth) * cosAlpha));
|
|
|
|
uint32 index = columnIndex + x;
|
|
|
|
// Only store the (x,y) offsets instead of the absolute positions
|
|
_internalBuffer[index].x = xInCylinderCoords - x;
|
|
_internalBuffer[index].y = yInCylinderCoords - y;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderTable::setPanoramaFoV(float fov) {
|
|
assert(fov > 0.0f);
|
|
|
|
_panoramaOptions.fieldOfView = fov;
|
|
}
|
|
|
|
void RenderTable::setPanoramaScale(float scale) {
|
|
assert(scale > 0.0f);
|
|
|
|
_panoramaOptions.linearScale = scale;
|
|
}
|
|
|
|
void RenderTable::setPanoramaReverse(bool reverse) {
|
|
_panoramaOptions.reverse = reverse;
|
|
}
|
|
|
|
void RenderTable::setTiltFoV(float fov) {
|
|
assert(fov > 0.0f);
|
|
|
|
_tiltOptions.fieldOfView = fov;
|
|
}
|
|
|
|
void RenderTable::setTiltScale(float scale) {
|
|
assert(scale > 0.0f);
|
|
|
|
_tiltOptions.linearScale = scale;
|
|
}
|
|
|
|
void RenderTable::setTiltReverse(bool reverse) {
|
|
_tiltOptions.reverse = reverse;
|
|
}
|
|
|
|
} // End of namespace ZVision
|