Create grade.slang

This commit is contained in:
Dogway 2020-06-22 14:40:53 +01:00
parent 4344f29d7d
commit 4260ef8f8b

949
misc/grade.slang Normal file
View File

@ -0,0 +1,949 @@
#version 450
layout(push_constant) uniform Push
{
float g_gamma_in;
float g_signal_type;
float g_gamma_type;
float g_crtgamut;
float g_space_out;
float g_hue_degrees;
float g_I_SHIFT;
float g_Q_SHIFT;
float g_I_MUL;
float g_Q_MUL;
float g_lum_fix;
float g_vignette;
float g_vstr;
float g_vpower;
float g_sat;
float g_vibr;
float g_lum;
float g_cntrst;
float g_mid;
float g_lift;
float blr;
float blg;
float blb;
float wlr;
float wlg;
float wlb;
float rg;
float rb;
float gr;
float gb;
float br;
float bg;
} params;
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
float wp_temperature;
float g_satr;
float g_satg;
float g_satb;
float LUT_Size1;
float LUT1_toggle;
float LUT_Size2;
float LUT2_toggle;
} global;
/*
Grade
> Ubershader grouping some monolithic color related shaders:
::color-mangler (hunterk), ntsc color tuning knobs (Doriphor), white_point (hunterk, Dogway), lut_x2 (Guest, Dr. Venom).
> and the addition of:
::analogue color emulation, phosphor gamut, color space + TRC support, vibrance, HUE vs SAT, vignette (shared by Syh), black level, rolled gain and sigmoidal contrast.
Author: Dogway
License: Public domain
**Thanks to those that helped me out keep motivated by continuous feedback and bug reports:
**Syh, Nesguy, hunterk, and the libretro forum members.
######################################...PRESETS...#######################################
##########################################################################################
### ###
### PAL ###
### Phosphor: EBU (#3) (or an EBU T3213 based CRT phosphor gamut) ###
### WP: D65 (6489K) (in practice more like ~7500K) ###
### TRC: 2.8 SMPTE-C Gamma ###
### Saturation: -0.02 ###
### ###
### NTSC-U ###
### Phosphor: P22/SMPTE-C (#1 #-1)(or a SMPTE-C based CRT phosphor gamut) ###
### WP: D65 (6504K) (in practice more like ~7500K) ###
### TRC: 2.22 SMPTE-C Gamma (in practice more like 2.35-2.55) ###
### ###
### NTSC-J (Default) ###
### Phosphor: NTSC-J (#2) (or a NTSC-J based CRT phosphor gamut) ###
### WP: 9300K+27MPCD (8942K) (CCT from x:0.281 y:0.311) ###
### TRC: 2.22 SMPTE-C Gamma (in practice more like 2.35-2.55) ###
### ###
### *Despite the standard of 2.22, a more faithful approximation to CRT... ###
### ...is to use a gamma (SMPTE-C type) with a value of 2.35-2.55. ###
### ###
### ###
##########################################################################################
##########################################################################################
*/
#pragma parameter g_gamma_in "CRT Gamma" 2.40 1.80 3.0 0.05
#pragma parameter g_signal_type "Signal Type (0:RGB 1:Composite)" 1.0 0.0 1.0 1.0
#pragma parameter g_gamma_type "Signal Gamma Type (0:sRGB 1:SMPTE-C)" 1.0 0.0 1.0 1.0
#pragma parameter g_crtgamut "Phosphor (1:NTSC-U 2:NTSC-J 3:PAL)" 2.0 -4.0 3.0 1.0
#pragma parameter g_space_out "Diplay Color Space (0:sRGB 1:DCI 2:2020 3:AdobeRGB)" 0.0 0.0 3.0 1.0
#pragma parameter g_hue_degrees "Hue" 0.0 -360.0 360.0 1.0
#pragma parameter g_I_SHIFT "I/U Shift" 0.0 -0.2 0.2 0.01
#pragma parameter g_Q_SHIFT "Q/V Shift" 0.0 -0.2 0.2 0.01
#pragma parameter g_I_MUL "I/U Multiplier" 1.0 0.0 2.0 0.01
#pragma parameter g_Q_MUL "Q/V Multiplier" 1.0 0.0 2.0 0.01
#pragma parameter g_lum_fix "Sega Luma Fix" 0.0 0.0 1.0 1.0
#pragma parameter g_vignette "Vignette Toggle" 1.0 0.0 1.0 1.0
#pragma parameter g_vstr "Vignette Strength" 40.0 0.0 50.0 1.0
#pragma parameter g_vpower "Vignette Power" 0.20 0.0 0.5 0.01
#pragma parameter g_lum "Brightness" 0.0 -0.5 1.0 0.01
#pragma parameter g_cntrst "Contrast" 0.0 -1.0 1.0 0.05
#pragma parameter g_mid "Contrast Pivot" 0.5 0.0 1.0 0.01
#pragma parameter wp_temperature "White Point" 6505.0 5005.0 12005.0 100.0
#pragma parameter g_sat "Saturation" 0.0 -1.0 2.0 0.01
#pragma parameter g_vibr "Dullness/Vibrance" 0.0 -1.0 1.0 0.05
#pragma parameter g_satr "Hue vs Sat Red" 0.0 -1.0 1.0 0.01
#pragma parameter g_satg "Hue vs Sat Green" 0.0 -1.0 1.0 0.01
#pragma parameter g_satb "Hue vs Sat Blue" 0.0 -1.0 1.0 0.01
#pragma parameter g_lift "Black Level" 0.0 -0.5 0.5 0.01
#pragma parameter blr "Black-Red Tint" 0.0 0.0 1.0 0.01
#pragma parameter blg "Black-Green Tint" 0.0 0.0 1.0 0.01
#pragma parameter blb "Black-Blue Tint" 0.0 0.0 1.0 0.01
#pragma parameter wlr "White-Red Tint" 1.0 0.0 2.0 0.01
#pragma parameter wlg "White-Green Tint" 1.0 0.0 2.0 0.01
#pragma parameter wlb "White-Blue Tint" 1.0 0.0 2.0 0.01
#pragma parameter rg "Red-Green Tint" 0.0 -1.0 1.0 0.005
#pragma parameter rb "Red-Blue Tint" 0.0 -1.0 1.0 0.005
#pragma parameter gr "Green-Red Tint" 0.0 -1.0 1.0 0.005
#pragma parameter gb "Green-Blue Tint" 0.0 -1.0 1.0 0.005
#pragma parameter br "Blue-Red Tint" 0.0 -1.0 1.0 0.005
#pragma parameter bg "Blue-Green Tint" 0.0 -1.0 1.0 0.005
#pragma parameter LUT_Size1 "LUT Size 1" 16.0 8.0 64.0 16.0
#pragma parameter LUT1_toggle "LUT 1 Toggle" 0.0 0.0 1.0 1.0
#pragma parameter LUT_Size2 "LUT Size 2" 64.0 0.0 64.0 16.0
#pragma parameter LUT2_toggle "LUT 2 Toggle" 0.0 0.0 1.0 1.0
#define M_PI 3.1415926535897932384626433832795
#define gamma_in params.g_gamma_in
#define signal params.g_signal_type
#define gamma_type params.g_gamma_type
#define crtgamut params.g_crtgamut
#define SPC params.g_space_out
#define hue_degrees params.g_hue_degrees
#define I_SHIFT params.g_I_SHIFT
#define Q_SHIFT params.g_Q_SHIFT
#define I_MUL params.g_I_MUL
#define Q_MUL params.g_Q_MUL
#define lum_fix params.g_lum_fix
#define vignette params.g_vignette
#define vstr params.g_vstr
#define vpower params.g_vpower
#define g_sat params.g_sat
#define vibr params.g_vibr
#define satr global.g_satr
#define satg global.g_satg
#define satb global.g_satb
#define lum params.g_lum
#define cntrst params.g_cntrst
#define mid params.g_mid
#define lift params.g_lift
#define blr params.blr
#define blg params.blg
#define blb params.blb
#define wlr params.wlr
#define wlg params.wlg
#define wlb params.wlb
#define rg params.rg
#define rb params.rb
#define gr params.gr
#define gb params.gb
#define br params.br
#define bg params.bg
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D SamplerLUT1;
layout(set = 0, binding = 4) uniform sampler2D SamplerLUT2;
///////////////////////// Color Space Transformations //////////////////////////
vec3 XYZ_to_RGB(vec3 XYZ, float CSPC){
// to sRGB
const mat3x3 sRGB = mat3x3(
3.24081254005432130, -0.969243049621582000, 0.055638398975133896,
-1.53730857372283940, 1.875966310501098600, -0.204007431864738460,
-0.49858659505844116, 0.041555050760507584, 1.057129383087158200);
// to DCI-P3 -D65-
const mat3x3 DCIP3 = mat3x3(
2.49339652061462400, -0.82948720455169680, 0.035850685089826584,
-0.93134605884552000, 1.76266026496887200, -0.076182708144187930,
-0.40269458293914795, 0.023624641820788383, 0.957014024257659900);
// to Rec.2020
const mat3x3 rec2020 = mat3x3(
1.71660947799682620, -0.66668272018432620, 0.017642205581068993,
-0.35566213726997375, 1.61647748947143550, -0.042776308953762054,
-0.25336012244224550, 0.01576850563287735, 0.942228555679321300);
// from AdobeRGB
const mat3x3 Adobe = mat3x3(
2.0415899753570557, -0.96924000978469850, 0.013439999893307686,
-0.5650100111961365, 1.87597000598907470, -0.118359997868537900,
-0.3447299897670746, 0.04156000167131424, 1.015169978141784700);
return (CSPC == 3.0) ? Adobe * XYZ : (CSPC == 2.0) ? rec2020 * XYZ : (CSPC == 1.0) ? DCIP3 * XYZ : sRGB * XYZ;
}
vec3 RGB_to_XYZ(vec3 RGB, float CSPC){
// from sRGB
const mat3x3 sRGB = mat3x3(
0.41241079568862915, 0.21264933049678802, 0.019331756979227066,
0.35758456587791443, 0.71516913175582890, 0.119194857776165010,
0.18045382201671600, 0.07218152284622192, 0.950390160083770800);
// from DCI-P3 -D65-
const mat3x3 DCIP3 = mat3x3(
0.48659050464630127, 0.22898375988006592, 0.00000000000000000,
0.26566821336746216, 0.69173991680145260, 0.04511347413063049,
0.19819043576717377, 0.07927616685628891, 1.04380297660827640);
// from Rec.2020
const mat3x3 rec2020 = mat3x3(
0.63697350025177000, 0.24840137362480164, 0.00000000000000000,
0.15294560790061950, 0.67799961566925050, 0.04253686964511871,
0.11785808950662613, 0.03913172334432602, 1.06084382534027100);
// from AdobeRGB
const mat3x3 Adobe = mat3x3(
0.57666999101638790, 0.2973400056362152, 0.02703000046312809,
0.18556000292301178, 0.6273599863052368, 0.07068999856710434,
0.18822999298572540, 0.0752900019288063, 0.9913399815559387);
return (CSPC == 3.0) ? Adobe * RGB : (CSPC == 2.0) ? rec2020 * RGB : (CSPC == 1.0) ? DCIP3 * RGB : sRGB * RGB;
}
vec3 XYZtoYxy(vec3 XYZ){
float XYZrgb = XYZ.r+XYZ.g+XYZ.b;
float Yxyg = (XYZrgb <= 0.0) ? 0.3805 : XYZ.r / XYZrgb;
float Yxyb = (XYZrgb <= 0.0) ? 0.3769 : XYZ.g / XYZrgb;
return vec3(XYZ.g, Yxyg, Yxyb);
}
vec3 YxytoXYZ(vec3 Yxy){
float Xs = Yxy.r * (Yxy.g/Yxy.b);
float Xsz = (Yxy.r <= 0.0) ? 0.0 : 1.0;
vec3 XYZ = vec3(Xsz,Xsz,Xsz) * vec3(Xs, Yxy.r, (Xs/Yxy.g)-Xs-Yxy.r);
return XYZ;
}
///////////////////////// White Point Mapping /////////////////////////
//
//
// From the first comment post (sRGB primaries and linear light compensated)
// >> http://www.zombieprototypes.com/?p=210#comment-4695029660
// Based on the Neil Bartlett's blog update
// >> http://www.zombieprototypes.com/?p=210
// Inspired itself by Tanner Helland's work
// >> http://www.tannerhelland.com/4435/convert-temperature-rgb-algorithm-code/
//
// PAL: D65 NTSC-U: D65 NTSC-J: CCT NTSC-J NTSC-FCC: C
// PAL: 6489K NTSC-U: 6504K NTSC-J: 8942K NTSC-FCC: 6780K
// 0.313 0.329 0.3127 0.3290 0.281 0.311 0.310, 0.316
vec3 wp_adjust(float temperature){
float temp = temperature / 100.;
float k = temperature / 10000.;
float lk = log(k);
vec3 wp = vec3(1.);
// calculate RED
wp.r = (temp <= 65.) ? 1. : 0.32068362618584273 + (0.19668730877673762 * pow(k - 0.21298613432655075, - 1.5139012907556737)) + (- 0.013883432789258415 * lk);
// calculate GREEN
float mg = 1.226916242502167 + (- 1.3109482654223614 * pow(k - 0.44267061967913873, 3.) * exp(- 5.089297600846147 * (k - 0.44267061967913873))) + (0.6453936305542096 * lk);
float pg = 0.4860175851734596 + (0.1802139719519286 * pow(k - 0.14573069517701578, - 1.397716496795082)) + (- 0.00803698899233844 * lk);
wp.g = (temp <= 65.5) ? ((temp <= 8.) ? 0. : mg) : pg;
// calculate BLUE
wp.b = (temp <= 19.) ? 0. : (temp >= 66.) ? 1. : 1.677499032830161 + (- 0.02313594016938082 * pow(k - 1.1367244820333684, 3.) * exp(- 4.221279555918655 * (k - 1.1367244820333684))) + (1.6550275798913296 * lk);
// clamp
wp.rgb = clamp(wp.rgb, vec3(0.), vec3(1.));
// Linear color input
return wp;
}
////////////////////////////////////////////////////////////////////////////////
// Monitor Curve Functions: https://github.com/ampas/aces-dev
//----------------------------------------------------------------------
float moncurve_f( float color, float gamma, float offs)
{
// Forward monitor curve
color = clamp(color, 0.0, 1.0);
float fs = (( gamma - 1.0) / offs) * pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
float xb = offs / ( gamma - 1.0);
color = ( color > xb) ? pow( ( color + offs) / ( 1.0 + offs), gamma) : color * fs;
return color;
}
vec3 moncurve_f_f3( vec3 color, float gamma, float offs)
{
color.r = moncurve_f( color.r, gamma, offs);
color.g = moncurve_f( color.g, gamma, offs);
color.b = moncurve_f( color.b, gamma, offs);
return color.rgb;
}
float moncurve_r( float color, float gamma, float offs)
{
// Reverse monitor curve
color = clamp(color, 0.0, 1.0);
float yb = pow( offs * gamma / ( ( gamma - 1.0) * ( 1.0 + offs)), gamma);
float rs = pow( ( gamma - 1.0) / offs, gamma - 1.0) * pow( ( 1.0 + offs) / gamma, gamma);
color = ( color > yb) ? ( 1.0 + offs) * pow( color, 1.0 / gamma) - offs : color * rs;
return color;
}
vec3 moncurve_r_f3( vec3 color, float gamma, float offs)
{
color.r = moncurve_r( color.r, gamma, offs);
color.g = moncurve_r( color.g, gamma, offs);
color.b = moncurve_r( color.b, gamma, offs);
return color.rgb;
}
//-------------------------- Luma Functions ----------------------------
// Performs better in gamma encoded space
float contrast_sigmoid(float color, float cont, float pivot){
cont = pow(cont + 1., 3.);
float knee = 1. / (1. + exp(cont * pivot));
float shldr = 1. / (1. + exp(cont * (pivot - 1.)));
color = (1. / (1. + exp(cont * (pivot - color))) - knee) / (shldr - knee);
return color;
}
// Performs better in gamma encoded space
float contrast_sigmoid_inv(float color, float cont, float pivot){
cont = pow(cont - 1., 3.);
float knee = 1. / (1. + exp (cont * pivot));
float shldr = 1. / (1. + exp (cont * (pivot - 1.)));
color = pivot - log(1. / (color * (shldr - knee) + knee) - 1.) / cont;
return color;
}
float rolled_gain(float color, float gain){
float gx = gain + 1.0;
float ax = (max(0.5 - (gx / 2.0), 0.5));
float cx = (gx > 0.0) ? (1.0 - gx + (gx / 2.0)) : abs(gx) / 2.0;
float gain_plus = ((color * gx) > ax) ? (ax + cx * tanh((color * gx - ax) / cx)) : (color * gx);
float ax_g = 1.0 - abs(gx);
float gain_minus = (color > ax_g) ? (ax_g + cx * tanh((color - ax_g) / cx)) : color;
color = (gx > 0.0) ? gain_plus : gain_minus;
return color;
}
vec4 rolled_gain_v4(vec4 color, float gain){
color.r = rolled_gain(color.r, gain);
color.g = rolled_gain(color.g, gain);
color.b = rolled_gain(color.b, gain);
return vec4(color.rgb, 1.0);
}
float SatMask(float color_r, float color_g, float color_b)
{
float max_rgb = max(color_r, max(color_g, color_b));
float min_rgb = min(color_r, min(color_g, color_b));
float msk = clamp((max_rgb - min_rgb) / (max_rgb + min_rgb), 0.0, 1.0);
return msk;
}
// This shouldn't be necessary but it seems some undefined values can
// creep in and each GPU vendor handles that differently. This keeps
// all values within a safe range
vec3 mixfix(vec3 a, vec3 b, float c)
{
return (a.z < 1.0) ? mix(a, b, c) : a;
}
vec4 mixfix_v4(vec4 a, vec4 b, float c)
{
return (a.z < 1.0) ? mix(a, b, c) : a;
}
//---------------------- Range Expansion/Compression -------------------
// to Studio Swing/Broadcast Safe/SMPTE legal/Limited Range
vec3 PCtoTV(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing, bool rgb_in)
{
col *= 255.;
Umax = (max_swing == 1.0) ? Umax * 224. : Umax * 239.;
Vmax = (max_swing == 1.0) ? Vmax * 224. : Vmax * 239.;
col.x = (luma_swing == 1.0) ? ((col.x * 219.) / 255.) + 16. : col.x;
col.y = (rgb_in == true) ? ((col.y * 219.) / 255.) + 16. : (((col.y - 128.) * (Umax * 2.)) / 255.) + Umax;
col.z = (rgb_in == true) ? ((col.z * 219.) / 255.) + 16. : (((col.z - 128.) * (Vmax * 2.)) / 255.) + Vmax;
return col.xyz / 255.;
}
// to Full Swing/Full Range
vec3 TVtoPC(vec3 col, float luma_swing, float Umax, float Vmax, float max_swing, bool rgb_in)
{
col *= 255.;
Umax = (max_swing == 1.0) ? Umax * 224. : Umax * 239.;
Vmax = (max_swing == 1.0) ? Vmax * 224. : Vmax * 239.;
float colx = (luma_swing == 1.0) ? ((col.x - 16.) / 219.) * 255. : col.x;
float coly = (rgb_in == true) ? ((col.y - 16.) / 219.) * 255. : (((col.y - Umax) / (Umax * 2.)) * 255.) + 128.;
float colz = (rgb_in == true) ? ((col.z - 16.) / 219.) * 255. : (((col.z - Vmax) / (Vmax * 2.)) * 255.) + 128.;
return vec3(colx,coly,colz) / 255.;
}
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
//--------------------- ITU-R BT.470/601 (M) (1953) --------------------
// FCC (Sanctioned) YIQ matrix
vec3 RGB_FCC(vec3 col)
{
const mat3 conv_mat = mat3(
0.299996928307425, 0.590001575542717, 0.110001496149858,
0.599002392519453, -0.277301256521204, -0.321701135998249,
0.213001700342824, -0.525101205289350, 0.312099504946526);
return col.rgb * conv_mat;
}
// FCC (Sanctioned) YIQ matrix (inverse)
vec3 FCC_RGB(vec3 col)
{
const mat3 conv_mat = mat3(
1.0000000, 0.946882217090069, 0.623556581986143,
1.0000000, -0.274787646298978, -0.635691079187380,
1.0000000, -1.108545034642030, 1.709006928406470);
return col.rgb * conv_mat;
}
//--------------------- SMPTE RP 145 (C), 170M (1987) ------------------
vec3 RGB_YIQ(vec3 col)
{
const mat3 conv_mat = mat3(
0.2990, 0.5870, 0.1140,
0.5959, -0.2746, -0.3213,
0.2115, -0.5227, 0.3112);
return col.rgb * conv_mat;
}
vec3 YIQ_RGB(vec3 col)
{
const mat3 conv_mat = mat3(
1.0000000, 0.956, 0.619,
1.0000000, -0.272, -0.647,
1.0000000, -1.106, 1.703);
return col.rgb * conv_mat;
}
//----------------------- ITU-R BT.470/601 (B/G) -----------------------
vec3 r601_YUV(vec3 RGB)
{
const mat3 conv_mat = mat3(
0.299000, 0.587000, 0.114000,
-0.147407, -0.289391, 0.436798,
0.614777, -0.514799, -0.099978);
return RGB.rgb * conv_mat;
}
vec3 YUV_r601(vec3 RGB)
{
const mat3 conv_mat = mat3(
1.0000000, 0.00000000000000000, 1.14025080204010000,
1.0000000, -0.39393067359924316, -0.58080917596817020,
1.0000000, 2.02839756011962900, -0.00000029356581166);
return RGB.rgb * conv_mat;
}
// Custom - not Standard
vec3 YUV_r709(vec3 YUV)
{
const mat3 conv_mat = mat3(
1.0000000, 0.0000000000000000, 1.14025092124938960,
1.0000000, -0.2047683298587799, -0.33895039558410645,
1.0000001, 2.0283975601196290, 0.00000024094399364);
return YUV.rgb * conv_mat;
}
// Custom - not Standard
vec3 r709_YUV(vec3 RGB)
{
const mat3 conv_mat = mat3(
0.2126000, 0.715200, 0.0722000,
-0.1048118, -0.3525936, 0.4574054,
0.6905498, -0.6272304, -0.0633194);
return RGB.rgb * conv_mat;
}
//------------------------- SMPTE-240M YPbPr --------------------------
// Umax 0.886
// Vmax 0.700
// RGB to YPbPr -full to limited range- with Rec.601 primaries
vec3 r601_YCC(vec3 RGB)
{
const mat3 conv_mat = mat3(
0.299, 0.587, 0.114,
-0.16873589164785553047, -0.33126410835214446953, 0.500,
0.500, -0.41868758915834522111, -0.08131241084165477889);
return RGB.rgb * conv_mat;
}
// YPbPr to RGB -limited to full range- with Rec.601 primaries
vec3 YCC_r601(vec3 YUV)
{
const mat3 conv_mat = mat3(
1.0000000, 0.000, 1.402,
1.0000000, -0.34413628620102214651, -0.71413628620102214651,
1.0000000, 1.772, 0.000);
return YUV.rgb * conv_mat;
}
// Umax 0.53890924768269023496443198965294
// Vmax 0.63500127000254000508001016002032
// RGB to YPbPr -full range in-gamut- with Rec.709 primaries
vec3 r709_YCC(vec3 RGB)
{
const mat3 conv_mat = mat3(
0.2126, 0.7152, 0.0722,
-0.11457210605733994395, -0.38542789394266005605, 0.5000,
0.5000, -0.45415290830581661163, -0.04584709169418338837);
return RGB.rgb * conv_mat;
}
// YPbPr to RGB -full range in-gamut- with Rec.709 primaries
vec3 YCC_r709(vec3 YUV)
{
const mat3 conv_mat = mat3(
1.0000000, 0.00000000000000000000, 1.5748,
1.0000000, -0.18732427293064876957, -0.46812427293064876957,
1.0000000, 1.8556, 0.00000000000000000000);
return YUV.rgb * conv_mat;
}
//------------------------- IPT --------------------------
const mat3 LMS =
mat3(
0.4002, 0.7076, -0.0808,
-0.2263, 1.1653, 0.0457,
0.0, 0.0, 0.9182);
const mat3 IPT =
mat3(
0.4000, 0.4000, 0.2000,
4.4550, -4.8510, 0.3960,
0.8056, 0.3572, -1.1628);
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
const mat3 C_D65_Brad =
mat3(
1.0062731504440308000, 0.0028941007331013680, -0.0070838485844433310,
0.0036507491022348404, 0.9992200732231140000, -0.0023814644664525986,
-0.0013438384048640728, 0.0022154981270432472, 0.9643852710723877000);
const mat3 D93_D65_Brad =
mat3(
1.074299335479736300, 0.03572637960314751, -0.042645290493965150,
0.050180613994598390, 0.97543668746948240, -0.015837108716368675,
-0.006000521592795849, 0.00851820595562458, 0.827671706676483200);
const mat3 PAL_D65_Brad =
mat3(
0.99919301271438600000, -0.00044559128582477570, 0.00027090078219771385,
-0.00065565120894461870, 1.00049483776092530000, 0.00011852011084556580,
1.3149343430995941e-05, 3.4691765904426575e-06, 1.00069344043731700000);
//----------------------------------------------------------------------
// ITU-R BT.470/601 (M) (proof of concept, actually never used)
// SMPTE 170M-1999
// NTSC-FCC 1953 Standard Phosphor (use with temperature C: 6780K)
const mat3 NTSC_FCC_transform =
mat3(
0.60699284076690670, 0.2989666163921356, 0.00000000000000000,
0.17344850301742554, 0.5864211320877075, 0.06607561558485031,
0.20057128369808197, 0.1146121546626091, 1.11746847629547120);
// ITU-R BT.470/601 (M)
// Conrac 7211N19 CRT Phosphor
const mat3 Conrac_transform =
mat3(
0.55842006206512450, 0.28580552339553833, 0.03517606481909752,
0.20613566040992737, 0.63714659214019780, 0.09369802474975586,
0.18589359521865845, 0.07704800367355347, 0.96004259586334230);
// NTSC-J (use with D93 white point)
// Sony Trinitron KV-20M20
const mat3 Sony20_20_transform =
mat3(
0.33989441394805910, 0.18490256369113922, 0.019034087657928467,
0.33497872948646545, 0.71182984113693240, 0.149544075131416320,
0.22866378724575043, 0.10326752066612244, 1.143318891525268600);
// SMPTE-C - Measured Average Phosphor (1979-1994)
const mat3 P22_transform =
mat3(
0.4665636420249939, 0.25661000609397890, 0.005832045804709196,
0.3039233088493347, 0.66820019483566280, 0.105618737637996670,
0.1799621731042862, 0.07518967241048813, 0.977465748786926300);
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
// SMPTE-C - Standard Phosphor
const mat3 SMPTE_transform =
mat3(
0.39354196190834045, 0.21238772571086884, 0.01874009333550930,
0.36525884270668030, 0.70106136798858640, 0.11193416267633438,
0.19164848327636720, 0.08655092865228653, 0.95824241638183590);
// SMPTE RP 145-1994 (SMPTE-C), 170M-1999
// NTSC-J - Standard Phosphor (use with D93 white point)
const mat3 NTSC_J_transform =
mat3(
0.39603787660598755, 0.22429330646991730, 0.02050681784749031,
0.31201449036598206, 0.67417418956756590, 0.12814880907535553,
0.24496731162071228, 0.10153251141309738, 1.26512730121612550);
// ITU-R BT.470/601 (B/G)
// EBU Tech.3213 PAL - Standard Phosphor for Studio Monitors
const mat3 EBU_transform =
mat3(
0.43194326758384705, 0.22272075712680817, 0.020247340202331543,
0.34123489260673523, 0.70600330829620360, 0.129433929920196530,
0.17818950116634370, 0.07127580046653748, 0.938464701175689700);
//*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/
void main()
{
// Retro Sega Systems: Genesis, 32x, CD and Saturn 2D had color palettes designed in TV levels to save on transformations.
float lum_exp = (lum_fix == 1.0) ? (255./239.) : 1.;
vec3 src = texture(Source, vTexCoord.xy).rgb;
src = (signal == 0.0) ? moncurve_f_f3(src * lum_exp, 2.40, 0.055) : \
moncurve_f_f3(src, 2.40, 0.055) ;
// SMPTE-C gamma at 2.222 approximates to a power law gamma of 2.0
vec3 gamma_fix = (gamma_type == 1.0) ? moncurve_r_f3(src, gamma_in + 0.0222, 0.099) : \
moncurve_r_f3(src, gamma_in - 0.1222, 0.055) ;
vec3 col = gamma_fix;
// make a YUV * NTSC Phosphor option too and a FCC * NTSC phosphor
col = (crtgamut == 3.0) ? r601_YUV(col*lum_exp) : \
(crtgamut == 2.0) ? RGB_YIQ(col*lum_exp) : \
(crtgamut == -3.0) ? RGB_FCC(col*lum_exp) : \
(crtgamut == -4.0) ? RGB_FCC(col*lum_exp) : \
RGB_YIQ(col*lum_exp) ;
// Clipping Logic / Gamut Limiting
vec2 UVmax = (crtgamut == 3.0) ? vec2(0.436798, 0.614777) : \
(crtgamut == -4.0) ? vec2(0.599002392519453, 0.52510120528935) : \
(crtgamut == -3.0) ? vec2(0.599002392519453, 0.52510120528935) : \
vec2(0.5959, 0.5227) ;
col = clamp(col.xyz, vec3(0.0, -UVmax.x, -UVmax.y), vec3(1.0, UVmax.x, UVmax.y));
col = (crtgamut == 3.0) ? col : \
(crtgamut == 2.0) ? col : \
(crtgamut == -3.0) ? PCtoTV(col, 1.0, UVmax.x, UVmax.y, 1.0, false) : \
(crtgamut == -4.0) ? PCtoTV(col, 1.0, UVmax.x, UVmax.y, 1.0, false) : \
PCtoTV(col, 1.0, UVmax.x, UVmax.y, 1.0, false) ;
// YIQ/YUV Analogue Color Controls (HUE + Color Shift + Color Burst)
float hue_radians = hue_degrees * (M_PI / 180.0);
float hue = atan(col.z, col.y) + hue_radians;
float chroma = sqrt(col.z * col.z + col.y * col.y);
col = vec3(col.x, chroma * cos(hue), chroma * sin(hue));
col.y = (mod((col.y + 1.0) + I_SHIFT, 2.0) - 1.0) * I_MUL;
col.z = (mod((col.z + 1.0) + Q_SHIFT, 2.0) - 1.0) * Q_MUL;
// Back to RGB
col = (crtgamut == 3.0) ? col : \
(crtgamut == 2.0) ? col : \
(crtgamut == -3.0) ? TVtoPC(col, 1.0, UVmax.x, UVmax.y, 1.0, false) : \
(crtgamut == -4.0) ? TVtoPC(col, 1.0, UVmax.x, UVmax.y, 1.0, false) : \
TVtoPC(col, 1.0, UVmax.x, UVmax.y, 1.0, false) ;
col = (crtgamut == 3.0) ? YUV_r601(col) : \
(crtgamut == 2.0) ? YIQ_RGB(col) : \
(crtgamut == -3.0) ? FCC_RGB(col) : \
(crtgamut == -4.0) ? FCC_RGB(col) : \
YIQ_RGB(col) ;
// Gamut Limiting
col = r601_YCC(clamp(col, 0.0, 1.0));
col = (signal == 0.0) ? gamma_fix : YCC_r601(clamp(col, vec3(0.0, -.886,-.700), vec3(1.0, .886,.700)));
//_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
// \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \
// OETF - Opto-Electronic Transfer Function
vec3 imgColor = (SPC == 3.0) ? clamp(pow(col, vec3(563./256.)), 0., 1.) : \
(SPC == 2.0) ? moncurve_f_f3(col, 2.20 + 0.022222, 0.0993) : \
(SPC == 1.0) ? clamp(pow(col, vec3(2.20 + 0.40)), 0., 1.) : \
moncurve_f_f3(col, 2.20 + 0.20, 0.055) ;
// Look LUT - (in sRGB space)
float red = (imgColor.r * (global.LUT_Size1 - 1.0) + 0.4999) / (global.LUT_Size1 * global.LUT_Size1);
float green = (imgColor.g * (global.LUT_Size1 - 1.0) + 0.4999) / global.LUT_Size1;
float blue1 = (floor(imgColor.b * (global.LUT_Size1 - 1.0)) / global.LUT_Size1) + red;
float blue2 = (ceil(imgColor.b * (global.LUT_Size1 - 1.0)) / global.LUT_Size1) + red;
float mixer = clamp(max((imgColor.b - blue1) / (blue2 - blue1), 0.0), 0.0, 32.0);
vec3 color1 = texture(SamplerLUT1, vec2(blue1, green)).rgb;
vec3 color2 = texture(SamplerLUT1, vec2(blue2, green)).rgb;
vec3 vcolor = (global.LUT1_toggle == 0.0) ? imgColor : mixfix(color1, color2, mixer);
vcolor = RGB_to_XYZ(vcolor, 0.);
// Sigmoidal Contrast
vec3 Yxy = XYZtoYxy(vcolor);
float toGamma = clamp(moncurve_r(Yxy.r, 2.40, 0.055), 0.0, 1.0);
toGamma = (Yxy.r > 0.5) ? contrast_sigmoid_inv(toGamma, 2.3, 0.5) : toGamma;
float sigmoid = (cntrst > 0.0) ? contrast_sigmoid(toGamma, cntrst, mid) : contrast_sigmoid_inv(toGamma, cntrst, mid);
vec3 contrast = vec3(moncurve_f(sigmoid, 2.40, 0.055), Yxy.g, Yxy.b);
vec3 XYZsrgb = clamp(XYZ_to_RGB(YxytoXYZ(contrast), SPC), 0.0, 1.0);
contrast = (cntrst == 0.0) ? XYZ_to_RGB(vcolor, SPC) : XYZsrgb;
// Vignetting & Black Level
vec2 vpos = vTexCoord*(global.OriginalSize.xy/global.SourceSize.xy);
vpos *= 1.0 - vpos.xy;
float vig = vpos.x * vpos.y * vstr;
vig = min(pow(vig, vpower), 1.0);
contrast *= (vignette == 1.0) ? vig : 1.0;
contrast += (lift / 20.0) * (1.0 - contrast);
// RGB Related Transforms
vec4 screen = vec4(max(contrast, 0.0), 1.0);
float sat = g_sat + 1.0;
// r g b alpha ; alpha does nothing for our purposes
mat4 color = mat4(wlr, rg, rb, 0.0, //red tint
gr, wlg, gb, 0.0, //green tint
br, bg, wlb, 0.0, //blue tint
blr/20., blg/20., blb/20., 0.0); //black tint
vec3 coeff = (SPC == 3.0) ? vec3(0.29734000563621520, 0.62735998630523680, 0.07529000192880630) : \
(SPC == 2.0) ? vec3(0.24840137362480164, 0.67799961566925050, 0.03913172334432602) : \
(SPC == 1.0) ? vec3(0.22898375988006592, 0.69173991680145260, 0.07927616685628891) : \
vec3(0.21264933049678802, 0.71516913175582890, 0.07218152284622192) ;
mat3 adjust = mat3((1.0 - sat) * coeff.x + sat, (1.0 - sat) * coeff.x, (1.0 - sat) * coeff.x,
(1.0 - sat) * coeff.y, (1.0 - sat) * coeff.y + sat, (1.0 - sat) * coeff.y,
(1.0 - sat) * coeff.z, (1.0 - sat) * coeff.z, (1.0 - sat) * coeff.z + sat);
screen = clamp(rolled_gain_v4(screen, lum * 2.0), 0.0, 1.0);
screen = color * screen;
// HUE vs SAT
vec3 src_h = RGB_to_XYZ(screen.rgb, SPC) * LMS;
src_h.x = src_h.x >= 0.0 ? pow(src_h.x, 0.43) : -pow(-src_h.x, 0.43);
src_h.y = src_h.y >= 0.0 ? pow(src_h.y, 0.43) : -pow(-src_h.y, 0.43);
src_h.z = src_h.z >= 0.0 ? pow(src_h.z, 0.43) : -pow(-src_h.z, 0.43);
src_h.xyz *= IPT;
float hue_at = atan(src_h.z, src_h.y);
chroma = sqrt(src_h.z * src_h.z + src_h.y * src_h.y);
// red -40º green 230º blue 100º
float hue_radians_r = -40.0 * (M_PI / 180.0);
float hue_r = clamp(chroma * cos(hue_at + hue_radians_r) * 2., 0.0, 1.0);
float hue_radians_g = 230.0 * (M_PI / 180.0);
float hue_g = clamp(chroma * cos(hue_at + hue_radians_g) * 2., 0.0, 1.0);
float hue_radians_b = 100.0 * (M_PI / 180.0);
float hue_b = clamp(chroma * cos(hue_at + hue_radians_b) * 2., 0.0, 1.0);
float msk = dot(vec3(hue_r, hue_g, hue_b), vec3(satr, satg, satb)*(-1.));
src_h = mixfix(screen.rgb, vec3(dot(coeff, screen.rgb)), msk);
float sat_msk = (vibr < 0.0) ? clamp(1.0 - abs(SatMask(src_h.x, src_h.y, src_h.z) - 1.0) * abs(vibr), 0.0, 1.0) : \
clamp(1.0 - (SatMask(src_h.x, src_h.y, src_h.z) * vibr), 0.0, 1.0) ;
src_h = mixfix(src_h, clamp(adjust * src_h, 0.0, 1.0), sat_msk);
// CRT Phosphor Gamut
mat3 m_in;
if (crtgamut == -4.0) { m_in = NTSC_FCC_transform; } else
if (crtgamut == -3.0) { m_in = Conrac_transform; } else
if (crtgamut == -2.0) { m_in = Sony20_20_transform; } else
if (crtgamut == -1.0) { m_in = SMPTE_transform; } else
if (crtgamut == 1.0) { m_in = P22_transform; } else
if (crtgamut == 2.0) { m_in = NTSC_J_transform; } else
if (crtgamut == 3.0) { m_in = EBU_transform; }
vec3 gamut = (crtgamut == -4.0) ? (m_in*src_h)*C_D65_Brad : \
(crtgamut == -3.0) ? (m_in*src_h)*C_D65_Brad : \
(crtgamut == -2.0) ? (m_in*src_h)*D93_D65_Brad : \
(crtgamut == 2.0) ? (m_in*src_h)*D93_D65_Brad : \
(crtgamut == 3.0) ? (m_in*src_h)*PAL_D65_Brad : \
m_in*src_h;
// White Point Mapping
vec3 wp = RGB_to_XYZ(wp_adjust(global.wp_temperature), 0.);
vec3 base = (crtgamut == 0.0) ? RGB_to_XYZ(src_h, SPC) : gamut;
base = XYZtoYxy(base);
vec3 adjusted = (crtgamut == 0.0) ? RGB_to_XYZ(src_h, SPC) * wp : gamut * wp;
adjusted = XYZtoYxy(adjusted);
adjusted = clamp(XYZ_to_RGB(YxytoXYZ(vec3(base.x , adjusted.y , adjusted.z)), SPC), 0.0, 1.0);
// Technical LUT - (in SPC space)
float red_2 = (adjusted.r * (global.LUT_Size2 - 1.0) + 0.4999) / (global.LUT_Size2 * global.LUT_Size2);
float green_2 = (adjusted.g * (global.LUT_Size2 - 1.0) + 0.4999) / global.LUT_Size2;
float blue1_2 = (floor(adjusted.b * (global.LUT_Size2 - 1.0)) / global.LUT_Size2) + red_2;
float blue2_2 = (ceil(adjusted.b * (global.LUT_Size2 - 1.0)) / global.LUT_Size2) + red_2;
float mixer_2 = clamp(max((adjusted.b - blue1_2) / (blue2_2 - blue1_2), 0.0), 0.0, 32.0);
vec3 color1_2 = texture(SamplerLUT2, vec2(blue1_2, green_2)).rgb;
vec3 color2_2 = texture(SamplerLUT2, vec2(blue2_2, green_2)).rgb;
vec3 LUT2_output = mixfix(color1_2, color2_2, mixer_2);
LUT2_output = (global.LUT2_toggle == 0.0) ? adjusted : LUT2_output;
// EOTF - Electro-Optical Transfer Function
vec3 TRC = (SPC == 3.0) ? clamp(pow(LUT2_output, vec3(1./(563./256.))), 0., 1.) : \
(SPC == 2.0) ? moncurve_r_f3(LUT2_output, 2.20 + 0.022222, 0.0993) : \
(SPC == 1.0) ? clamp(pow(LUT2_output, vec3(1./(2.20 + 0.40))), 0., 1.) : \
moncurve_r_f3(LUT2_output, 2.20 + 0.20, 0.0550) ;
FragColor = vec4(TRC, 1.0);
}