mirror of
https://github.com/libretro/slang-shaders.git
synced 2024-11-23 16:30:05 +00:00
add SMAA shader
This commit is contained in:
parent
5ca4d88071
commit
b8ce1d7a9d
BIN
anti-aliasing/shaders/smaa/AreaTex.png
Normal file
BIN
anti-aliasing/shaders/smaa/AreaTex.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
BIN
anti-aliasing/shaders/smaa/SearchTex.png
Normal file
BIN
anti-aliasing/shaders/smaa/SearchTex.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.8 KiB |
667
anti-aliasing/shaders/smaa/msaa.slang
Normal file
667
anti-aliasing/shaders/smaa/msaa.slang
Normal file
@ -0,0 +1,667 @@
|
||||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 SourceSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 OutputSize;
|
||||
uint FrameCount;
|
||||
} params;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
} global;
|
||||
|
||||
/**
|
||||
* Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
|
||||
* Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
|
||||
* Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
|
||||
* Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
|
||||
* Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* this software and associated documentation files (the "Software"), to deal in
|
||||
* the Software without restriction, including without limitation the rights to
|
||||
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
* of the Software, and to permit persons to whom the Software is furnished to
|
||||
* do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software. As clarification, there
|
||||
* is no requirement that the copyright notice and permission be included in
|
||||
* binary distributions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* _______ ___ ___ ___ ___
|
||||
* / || \/ | / \ / \
|
||||
* | (---- | \ / | / ^ \ / ^ \
|
||||
* \ \ | |\/| | / /_\ \ / /_\ \
|
||||
* ----) | | | | | / _____ \ / _____ \
|
||||
* |_______/ |__| |__| /__/ \__\ /__/ \__\
|
||||
*
|
||||
* E N H A N C E D
|
||||
* S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
|
||||
*
|
||||
* http://www.iryoku.com/smaa/
|
||||
*
|
||||
* Hi, welcome aboard!
|
||||
*
|
||||
* Here you'll find instructions to get the shader up and running as fast as
|
||||
* possible.
|
||||
*
|
||||
* IMPORTANTE NOTICE: when updating, remember to update both this file and the
|
||||
* precomputed textures! They may change from version to version.
|
||||
*
|
||||
* The shader has three passes, chained together as follows:
|
||||
*
|
||||
* |input|------------------?
|
||||
* v |
|
||||
* [ SMAA*EdgeDetection ] |
|
||||
* v |
|
||||
* |edgesTex| |
|
||||
* v |
|
||||
* [ SMAABlendingWeightCalculation ] |
|
||||
* v |
|
||||
* |blendTex| |
|
||||
* v |
|
||||
* [ SMAANeighborhoodBlending ] <------?
|
||||
* v
|
||||
* |output|
|
||||
*
|
||||
* Note that each [pass] has its own vertex and pixel shader. Remember to use
|
||||
* oversized triangles instead of quads to avoid overshading along the
|
||||
* diagonal.
|
||||
*
|
||||
* You've three edge detection methods to choose from: luma, color or depth.
|
||||
* They represent different quality/performance and anti-aliasing/sharpness
|
||||
* tradeoffs, so our recommendation is for you to choose the one that best
|
||||
* suits your particular scenario:
|
||||
*
|
||||
* - Depth edge detection is usually the fastest but it may miss some edges.
|
||||
*
|
||||
* - Luma edge detection is usually more expensive than depth edge detection,
|
||||
* but catches visible edges that depth edge detection can miss.
|
||||
*
|
||||
* - Color edge detection is usually the most expensive one but catches
|
||||
* chroma-only edges.
|
||||
*
|
||||
* For quickstarters: just use luma edge detection.
|
||||
*
|
||||
* The general advice is to not rush the integration process and ensure each
|
||||
* step is done correctly (don't try to integrate SMAA T2x with predicated edge
|
||||
* detection from the start!). Ok then, let's go!
|
||||
*
|
||||
* 1. The first step is to create two RGBA temporal render targets for holding
|
||||
* |edgesTex| and |blendTex|.
|
||||
*
|
||||
* In DX10 or DX11, you can use a RG render target for the edges texture.
|
||||
* In the case of NVIDIA GPUs, using RG render targets seems to actually be
|
||||
* slower.
|
||||
*
|
||||
* On the Xbox 360, you can use the same render target for resolving both
|
||||
* |edgesTex| and |blendTex|, as they aren't needed simultaneously.
|
||||
*
|
||||
* 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared
|
||||
* each frame. Do not forget to clear the alpha channel!
|
||||
*
|
||||
* 3. The next step is loading the two supporting precalculated textures,
|
||||
* 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
|
||||
* C++ headers, and also as regular DDS files. They'll be needed for the
|
||||
* 'SMAABlendingWeightCalculation' pass.
|
||||
*
|
||||
* If you use the C++ headers, be sure to load them in the format specified
|
||||
* inside of them.
|
||||
*
|
||||
* You can also compress 'areaTex' and 'searchTex' using BC5 and BC4
|
||||
* respectively, if you have that option in your content processor pipeline.
|
||||
* When compressing then, you get a non-perceptible quality decrease, and a
|
||||
* marginal performance increase.
|
||||
*
|
||||
* 4. All samplers must be set to linear filtering and clamp.
|
||||
*
|
||||
* After you get the technique working, remember that 64-bit inputs have
|
||||
* half-rate linear filtering on GCN.
|
||||
*
|
||||
* If SMAA is applied to 64-bit color buffers, switching to point filtering
|
||||
* when accesing them will increase the performance. Search for
|
||||
* 'SMAASamplePoint' to see which textures may benefit from point
|
||||
* filtering, and where (which is basically the color input in the edge
|
||||
* detection and resolve passes).
|
||||
*
|
||||
* 5. All texture reads and buffer writes must be non-sRGB, with the exception
|
||||
* of the input read and the output write in
|
||||
* 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
|
||||
* this last pass are not possible, the technique will work anyway, but
|
||||
* will perform antialiasing in gamma space.
|
||||
*
|
||||
* IMPORTANT: for best results the input read for the color/luma edge
|
||||
* detection should *NOT* be sRGB.
|
||||
*
|
||||
* 6. Before including SMAA.h you'll have to setup the render target metrics,
|
||||
* the target and any optional configuration defines. Optionally you can
|
||||
* use a preset.
|
||||
*
|
||||
* You have the following targets available:
|
||||
* SMAA_HLSL_3
|
||||
* SMAA_HLSL_4
|
||||
* SMAA_HLSL_4_1
|
||||
* SMAA_GLSL_3 *
|
||||
* SMAA_GLSL_4 *
|
||||
*
|
||||
* * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below).
|
||||
*
|
||||
* And four presets:
|
||||
* SMAA_PRESET_LOW (%60 of the quality)
|
||||
* SMAA_PRESET_MEDIUM (%80 of the quality)
|
||||
* SMAA_PRESET_HIGH (%95 of the quality)
|
||||
* SMAA_PRESET_ULTRA (%99 of the quality)
|
||||
*
|
||||
* For example:
|
||||
* #define SMAA_RT_METRICS vec4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
|
||||
* #define SMAA_GLSL_4
|
||||
* #define SMAA_PRESET_HIGH
|
||||
* #include "SMAA.h"
|
||||
*
|
||||
* Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a
|
||||
* uniform variable. The code is designed to minimize the impact of not
|
||||
* using a constant value, but it is still better to hardcode it.
|
||||
*
|
||||
* Depending on how you encoded 'areaTex' and 'searchTex', you may have to
|
||||
* add (and customize) the following defines before including SMAA.h:
|
||||
* #define SMAA_AREATEX_SELECT(sample) sample.rg
|
||||
* #define SMAA_SEARCHTEX_SELECT(sample) sample.r
|
||||
*
|
||||
* If your engine is already using porting macros, you can define
|
||||
* SMAA_CUSTOM_SL, and define the porting functions by yourself.
|
||||
*
|
||||
* 7. Then, you'll have to setup the passes as indicated in the scheme above.
|
||||
* You can take a look into SMAA.fx, to see how we did it for our demo.
|
||||
* Checkout the function wrappers, you may want to copy-paste them!
|
||||
*
|
||||
* 8. It's recommended to validate the produced |edgesTex| and |blendTex|.
|
||||
* You can use a screenshot from your engine to compare the |edgesTex|
|
||||
* and |blendTex| produced inside of the engine with the results obtained
|
||||
* with the reference demo.
|
||||
*
|
||||
* 9. After you get the last pass to work, it's time to optimize. You'll have
|
||||
* to initialize a stencil buffer in the first pass (discard is already in
|
||||
* the code), then mask execution by using it the second pass. The last
|
||||
* pass should be executed in all pixels.
|
||||
*
|
||||
*
|
||||
* After this point you can choose to enable predicated thresholding,
|
||||
* temporal supersampling and motion blur integration:
|
||||
*
|
||||
* a) If you want to use predicated thresholding, take a look into
|
||||
* SMAA_PREDICATION; you'll need to pass an extra texture in the edge
|
||||
* detection pass.
|
||||
*
|
||||
* b) If you want to enable temporal supersampling (SMAA T2x):
|
||||
*
|
||||
* 1. The first step is to render using subpixel jitters. I won't go into
|
||||
* detail, but it's as simple as moving each vertex position in the
|
||||
* vertex shader, you can check how we do it in our DX10 demo.
|
||||
*
|
||||
* 2. Then, you must setup the temporal resolve. You may want to take a look
|
||||
* into SMAAResolve for resolving 2x modes. After you get it working, you'll
|
||||
* probably see ghosting everywhere. But fear not, you can enable the
|
||||
* CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
|
||||
* Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded.
|
||||
*
|
||||
* 3. The next step is to apply SMAA to each subpixel jittered frame, just as
|
||||
* done for 1x.
|
||||
*
|
||||
* 4. At this point you should already have something usable, but for best
|
||||
* results the proper area textures must be set depending on current jitter.
|
||||
* For this, the parameter 'subsampleIndices' of
|
||||
* 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
|
||||
* mode:
|
||||
*
|
||||
* @SUBSAMPLE_INDICES
|
||||
*
|
||||
* | S# | Camera Jitter | subsampleIndices |
|
||||
* +----+------------------+---------------------+
|
||||
* | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) |
|
||||
* | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) |
|
||||
*
|
||||
* These jitter positions assume a bottom-to-top y axis. S# stands for the
|
||||
* sample number.
|
||||
*
|
||||
* More information about temporal supersampling here:
|
||||
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
|
||||
*
|
||||
* c) If you want to enable spatial multisampling (SMAA S2x):
|
||||
*
|
||||
* 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
|
||||
* created with:
|
||||
* - DX10: see below (*)
|
||||
* - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
|
||||
* - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
|
||||
*
|
||||
* This allows to ensure that the subsample order matches the table in
|
||||
* @SUBSAMPLE_INDICES.
|
||||
*
|
||||
* (*) In the case of DX10, we refer the reader to:
|
||||
* - SMAA::detectMSAAOrder and
|
||||
* - SMAA::msaaReorder
|
||||
*
|
||||
* These functions allow to match the standard multisample patterns by
|
||||
* detecting the subsample order for a specific GPU, and reordering
|
||||
* them appropriately.
|
||||
*
|
||||
* 2. A shader must be run to output each subsample into a separate buffer
|
||||
* (DX10 is required). You can use SMAASeparate for this purpose, or just do
|
||||
* it in an existing pass (for example, in the tone mapping pass, which has
|
||||
* the advantage of feeding tone mapped subsamples to SMAA, which will yield
|
||||
* better results).
|
||||
*
|
||||
* 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
|
||||
* the results in the final buffer. The second run should alpha blend with
|
||||
* the existing final buffer using a blending factor of 0.5.
|
||||
* 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
|
||||
* b).
|
||||
*
|
||||
* d) If you want to enable temporal supersampling on top of SMAA S2x
|
||||
* (which actually is SMAA 4x):
|
||||
*
|
||||
* 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
|
||||
* to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
|
||||
* must be set as follows:
|
||||
*
|
||||
* | F# | S# | Camera Jitter | Net Jitter | subsampleIndices |
|
||||
* +----+----+--------------------+-------------------+----------------------+
|
||||
* | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) |
|
||||
* | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) |
|
||||
* +----+----+--------------------+-------------------+----------------------+
|
||||
* | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) |
|
||||
* | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) |
|
||||
*
|
||||
* These jitter positions assume a bottom-to-top y axis. F# stands for the
|
||||
* frame number. S# stands for the sample number.
|
||||
*
|
||||
* 2. After calculating SMAA S2x for current frame (with the new subsample
|
||||
* indices), previous frame must be reprojected as in SMAA T2x mode (see
|
||||
* point b).
|
||||
*
|
||||
* e) If motion blur is used, you may want to do the edge detection pass
|
||||
* together with motion blur. This has two advantages:
|
||||
*
|
||||
* 1. Pixels under heavy motion can be omitted from the edge detection process.
|
||||
* For these pixels we can just store "no edge", as motion blur will take
|
||||
* care of them.
|
||||
* 2. The center pixel tap is reused.
|
||||
*
|
||||
* Note that in this case depth testing should be used instead of stenciling,
|
||||
* as we have to write all the pixels in the motion blur pass.
|
||||
*
|
||||
* That's it!
|
||||
*/
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// SMAA Presets
|
||||
|
||||
/**
|
||||
* Note that if you use one of these presets, the following configuration
|
||||
* macros will be ignored if set in the "Configurable Defines" section.
|
||||
*/
|
||||
|
||||
#if defined(SMAA_PRESET_LOW)
|
||||
#define SMAA_THRESHOLD 0.15
|
||||
#define SMAA_MAX_SEARCH_STEPS 4
|
||||
#define SMAA_DISABLE_DIAG_DETECTION
|
||||
#define SMAA_DISABLE_CORNER_DETECTION
|
||||
#elif defined(SMAA_PRESET_MEDIUM)
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#define SMAA_MAX_SEARCH_STEPS 8
|
||||
#define SMAA_DISABLE_DIAG_DETECTION
|
||||
#define SMAA_DISABLE_CORNER_DETECTION
|
||||
#elif defined(SMAA_PRESET_HIGH)
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#define SMAA_MAX_SEARCH_STEPS 16
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#elif defined(SMAA_PRESET_ULTRA)
|
||||
#define SMAA_THRESHOLD 0.05
|
||||
#define SMAA_MAX_SEARCH_STEPS 32
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Configurable Defines
|
||||
|
||||
/**
|
||||
* SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
|
||||
* Lowering this value you will be able to detect more edges at the expense of
|
||||
* performance.
|
||||
*
|
||||
* Range: [0, 0.5]
|
||||
* 0.1 is a reasonable value, and allows to catch most visible edges.
|
||||
* 0.05 is a rather overkill value, that allows to catch 'em all.
|
||||
*
|
||||
* If temporal supersampling is used, 0.2 could be a reasonable value, as low
|
||||
* contrast edges are properly filtered by just 2x.
|
||||
*/
|
||||
#ifndef SMAA_THRESHOLD
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
|
||||
*
|
||||
* Range: depends on the depth range of the scene.
|
||||
*/
|
||||
#ifndef SMAA_DEPTH_THRESHOLD
|
||||
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
|
||||
* horizontal/vertical pattern searches, at each side of the pixel.
|
||||
*
|
||||
* In number of pixels, it's actually the double. So the maximum line length
|
||||
* perfectly handled by, for example 16, is 64 (by perfectly, we meant that
|
||||
* longer lines won't look as good, but still antialiased).
|
||||
*
|
||||
* Range: [0, 112]
|
||||
*/
|
||||
#ifndef SMAA_MAX_SEARCH_STEPS
|
||||
#define SMAA_MAX_SEARCH_STEPS 16
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
|
||||
* diagonal pattern searches, at each side of the pixel. In this case we jump
|
||||
* one pixel at time, instead of two.
|
||||
*
|
||||
* Range: [0, 20]
|
||||
*
|
||||
* On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
|
||||
* steps), but it can have a significant impact on older machines.
|
||||
*
|
||||
* Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing.
|
||||
*/
|
||||
#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
|
||||
*
|
||||
* Range: [0, 100]
|
||||
*
|
||||
* Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing.
|
||||
*/
|
||||
#ifndef SMAA_CORNER_ROUNDING
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#endif
|
||||
|
||||
/**
|
||||
* If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times
|
||||
* bigger contrast than current edge, current edge will be discarded.
|
||||
*
|
||||
* This allows to eliminate spurious crossing edges, and is based on the fact
|
||||
* that, if there is too much contrast in a direction, that will hide
|
||||
* perceptually contrast in the other neighbors.
|
||||
*/
|
||||
#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
|
||||
#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Predicated thresholding allows to better preserve texture details and to
|
||||
* improve performance, by decreasing the number of detected edges using an
|
||||
* additional buffer like the light accumulation buffer, object ids or even the
|
||||
* depth buffer (the depth buffer usage may be limited to indoor or short range
|
||||
* scenes).
|
||||
*
|
||||
* It locally decreases the luma or color threshold if an edge is found in an
|
||||
* additional buffer (so the global threshold can be higher).
|
||||
*
|
||||
* This method was developed by Playstation EDGE MLAA team, and used in
|
||||
* Killzone 3, by using the light accumulation buffer. More information here:
|
||||
* http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION
|
||||
#define SMAA_PREDICATION 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Threshold to be used in the additional predication buffer.
|
||||
*
|
||||
* Range: depends on the input, so you'll have to find the magic number that
|
||||
* works for you.
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_THRESHOLD
|
||||
#define SMAA_PREDICATION_THRESHOLD 0.01
|
||||
#endif
|
||||
|
||||
/**
|
||||
* How much to scale the global threshold used for luma or color edge
|
||||
* detection when using predication.
|
||||
*
|
||||
* Range: [1, 5]
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_SCALE
|
||||
#define SMAA_PREDICATION_SCALE 2.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* How much to locally decrease the threshold.
|
||||
*
|
||||
* Range: [0, 1]
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_STRENGTH
|
||||
#define SMAA_PREDICATION_STRENGTH 0.4
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Temporal reprojection allows to remove ghosting artifacts when using
|
||||
* temporal supersampling. We use the CryEngine 3 method which also introduces
|
||||
* velocity weighting. This feature is of extreme importance for totally
|
||||
* removing ghosting. More information here:
|
||||
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
|
||||
*
|
||||
* Note that you'll need to setup a velocity buffer for enabling reprojection.
|
||||
* For static geometry, saving the previous depth buffer is a viable
|
||||
* alternative.
|
||||
*/
|
||||
#ifndef SMAA_REPROJECTION
|
||||
#define SMAA_REPROJECTION 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
|
||||
* remove ghosting trails behind the moving object, which are not removed by
|
||||
* just using reprojection. Using low values will exhibit ghosting, while using
|
||||
* high values will disable temporal supersampling under motion.
|
||||
*
|
||||
* Behind the scenes, velocity weighting removes temporal supersampling when
|
||||
* the velocity of the subsamples differs (meaning they are different objects).
|
||||
*
|
||||
* Range: [0, 80]
|
||||
*/
|
||||
#ifndef SMAA_REPROJECTION_WEIGHT_SCALE
|
||||
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* On some compilers, discard cannot be used in vertex shaders. Thus, they need
|
||||
* to be compiled separately.
|
||||
*/
|
||||
#ifndef SMAA_INCLUDE_VS
|
||||
#define SMAA_INCLUDE_VS 1
|
||||
#endif
|
||||
#ifndef SMAA_INCLUDE_PS
|
||||
#define SMAA_INCLUDE_PS 1
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Texture Access Defines
|
||||
|
||||
#ifndef SMAA_AREATEX_SELECT
|
||||
#if defined(SMAA_HLSL_3)
|
||||
#define SMAA_AREATEX_SELECT(sample) sample.ra
|
||||
#else
|
||||
#define SMAA_AREATEX_SELECT(sample) sample.rg
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef SMAA_SEARCHTEX_SELECT
|
||||
#define SMAA_SEARCHTEX_SELECT(sample) sample.r
|
||||
#endif
|
||||
|
||||
#ifndef SMAA_DECODE_VELOCITY
|
||||
#define SMAA_DECODE_VELOCITY(sample) sample.rg
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Non-Configurable Defines
|
||||
|
||||
#define SMAA_AREATEX_MAX_DISTANCE 16
|
||||
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
|
||||
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0))
|
||||
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
|
||||
#define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0)
|
||||
#define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0)
|
||||
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Porting Functions
|
||||
|
||||
#if defined(SMAA_HLSL_3)
|
||||
#define SMAATexture2D(tex) sampler2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0))
|
||||
#define SMAASample(tex, coord) tex2D(tex, coord)
|
||||
#define SMAASamplePoint(tex, coord) tex2D(tex, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy)
|
||||
#define SMAA_FLATTEN [flatten]
|
||||
#define SMAA_BRANCH [branch]
|
||||
#endif
|
||||
#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1)
|
||||
SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
|
||||
SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
|
||||
#define SMAATexture2D(tex) Texture2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
|
||||
#define SMAASample(tex, coord) tex.Sample(LinearSampler, coord)
|
||||
#define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset)
|
||||
#define SMAA_FLATTEN [flatten]
|
||||
#define SMAA_BRANCH [branch]
|
||||
#define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex
|
||||
#define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
|
||||
#if defined(SMAA_HLSL_4_1)
|
||||
#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
|
||||
#endif
|
||||
#endif
|
||||
#if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4)
|
||||
#define SMAATexture2D(tex) sampler2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
|
||||
#define SMAASample(tex, coord) texture(tex, coord)
|
||||
#define SMAASamplePoint(tex, coord) texture(tex, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
|
||||
#define SMAA_FLATTEN
|
||||
#define SMAA_BRANCH
|
||||
#define lerp(a, b, t) mix(a, b, t)
|
||||
#define saturate(a) clamp(a, 0.0, 1.0)
|
||||
#if defined(SMAA_GLSL_4)
|
||||
#define mad(a, b, c) fma(a, b, c)
|
||||
#define SMAAGather(tex, coord) textureGather(tex, coord)
|
||||
#else
|
||||
#define mad(a, b, c) (a * b + c)
|
||||
#endif
|
||||
#define float2 vec2
|
||||
#define float3 vec3
|
||||
#define float4 vec4
|
||||
#define int2 ivec2
|
||||
#define int3 ivec3
|
||||
#define int4 ivec4
|
||||
#define bool2 bvec2
|
||||
#define bool3 bvec3
|
||||
#define bool4 bvec4
|
||||
#endif
|
||||
|
||||
#define SMAA_GLSL_4
|
||||
#define SMAA_PRESET_MEDIUM
|
||||
//#include "SMAA.h"
|
||||
#define SMAA_RT_METRICS vec4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
|
||||
|
||||
#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL)
|
||||
#error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Gathers current pixel, and the top-left neighbors.
|
||||
*/
|
||||
vec3 SMAAGatherNeighbours(vec2 coord, vec4 offset[3], sampler2D tex)
|
||||
{
|
||||
float P = texture(tex, coord).r;
|
||||
float Pleft = texture(tex, offset[0].xy).r;
|
||||
float Ptop = texture(tex, offset[0].zw).r;
|
||||
return vec3(P, Pleft, Ptop);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjusts the threshold by means of predication.
|
||||
*/
|
||||
vec3 SMAACalculatePredicatedThreshold(vec2 coord, vec4 offset[3], sampler2D predicationTex)
|
||||
{
|
||||
vec3 neighbours = SMAAGatherNeighbours(coord, offset, predicationTex);
|
||||
vec2 delta = abs(neighbours.xx - neighbours.yz);
|
||||
vec2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
|
||||
return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Conditional move:
|
||||
*/
|
||||
void SMAAMovc(bvec2 cond, inout vec2 variable, vec2 value) {
|
||||
if (cond.x) variable.x = value.x;
|
||||
if (cond.y) variable.y = value.y;
|
||||
}
|
||||
|
||||
void SMAAMovc(bvec4 cond, inout vec4 variable, vec4 value) {
|
||||
SMAAMovc(cond.xy, variable.xy, value.xy);
|
||||
SMAAMovc(cond.zw, variable.zw, value.zw);
|
||||
}
|
||||
|
||||
#pragma stage vertex
|
||||
layout(location = 0) in vec4 Position;
|
||||
layout(location = 1) in vec2 TexCoord;
|
||||
layout(location = 0) out vec2 vTexCoord;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = global.MVP * Position;
|
||||
vTexCoord = TexCoord;
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
layout(location = 0) in vec2 vTexCoord;
|
||||
layout(location = 0) out vec4 FragColor;
|
||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = vec4(texture(Source, vTexCoord).rgb, 1.0);
|
||||
}
|
469
anti-aliasing/shaders/smaa/smaa-blend-weight-calculation.slang
Normal file
469
anti-aliasing/shaders/smaa/smaa-blend-weight-calculation.slang
Normal file
@ -0,0 +1,469 @@
|
||||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 SourceSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 OutputSize;
|
||||
uint FrameCount;
|
||||
} params;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
} global;
|
||||
|
||||
#include "smaa-common.h"
|
||||
|
||||
#pragma stage vertex
|
||||
layout(location = 0) in vec4 Position;
|
||||
layout(location = 1) in vec2 TexCoord;
|
||||
layout(location = 0) out vec2 texcoord;
|
||||
layout(location = 1) out vec2 pixcoord;
|
||||
layout(location = 2) out vec4 offset[3];
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = global.MVP * Position;
|
||||
texcoord = TexCoord;
|
||||
|
||||
pixcoord = texcoord * SMAA_RT_METRICS.zw;
|
||||
|
||||
// We will use these offsets for the searches later on (see @PSEUDO_GATHER4):
|
||||
offset[0] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy);
|
||||
offset[1] = fma(SMAA_RT_METRICS.xyxy, vec4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy);
|
||||
|
||||
// And these for the searches, they indicate the ends of the loops:
|
||||
offset[2] = fma(SMAA_RT_METRICS.xxyy,
|
||||
vec4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS),
|
||||
vec4(offset[0].xz, offset[1].yw));
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
layout(location = 0) in vec2 texcoord;
|
||||
layout(location = 1) in vec2 pixcoord;
|
||||
layout(location = 2) in vec4 offset[3];
|
||||
layout(location = 0) out vec4 FragColor;
|
||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||
layout(set = 0, binding = 3) uniform sampler2D areaTex;
|
||||
layout(set = 0, binding = 4) uniform sampler2D searchTex;
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Blending Weight Calculation Pixel Shader (Second Pass)
|
||||
|
||||
/**
|
||||
* Allows to decode two binary values from a bilinear-filtered access.
|
||||
*/
|
||||
vec2 SMAADecodeDiagBilinearAccess(vec2 e) {
|
||||
// Bilinear access for fetching 'e' have a 0.25 offset, and we are
|
||||
// interested in the R and G edges:
|
||||
//
|
||||
// +---G---+-------+
|
||||
// | x o R x |
|
||||
// +-------+-------+
|
||||
//
|
||||
// Then, if one of these edge is enabled:
|
||||
// Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0
|
||||
// Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0
|
||||
//
|
||||
// This function will unpack the values (mad + mul + round):
|
||||
// wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1
|
||||
e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75);
|
||||
return round(e);
|
||||
}
|
||||
|
||||
vec4 SMAADecodeDiagBilinearAccess(vec4 e) {
|
||||
e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75);
|
||||
return round(e);
|
||||
}
|
||||
|
||||
/**
|
||||
* These functions allows to perform diagonal pattern searches.
|
||||
*/
|
||||
vec2 SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) {
|
||||
vec4 coord = vec4(texcoord, -1.0, 1.0);
|
||||
vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0);
|
||||
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
||||
coord.w > 0.9) {
|
||||
coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz);
|
||||
e = textureLod(edgesTex, coord.xy, 0.0).rg;
|
||||
coord.w = dot(e, vec2(0.5, 0.5));
|
||||
}
|
||||
return coord.zw;
|
||||
}
|
||||
|
||||
vec2 SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, out vec2 e) {
|
||||
vec4 coord = vec4(texcoord, -1.0, 1.0);
|
||||
coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization
|
||||
vec3 t = vec3(SMAA_RT_METRICS.xy, 1.0);
|
||||
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) &&
|
||||
coord.w > 0.9) {
|
||||
coord.xyz = fma(t, vec3(dir, 1.0), coord.xyz);
|
||||
|
||||
// @SearchDiag2Optimization
|
||||
// Fetch both edges at once using bilinear filtering:
|
||||
e = textureLod(edgesTex, coord.xy, 0.0).rg;
|
||||
e = SMAADecodeDiagBilinearAccess(e);
|
||||
|
||||
// Non-optimized version:
|
||||
// e.g = textureLod(edgesTex, coord.xy, 0.0).g;
|
||||
// e.r = textureLod(edgesTex, coord.xy, ivec2(1, 0)).r;
|
||||
|
||||
coord.w = dot(e, vec2(0.5, 0.5));
|
||||
}
|
||||
return coord.zw;
|
||||
}
|
||||
|
||||
/**
|
||||
* Similar to SMAAArea, this calculates the area corresponding to a certain
|
||||
* diagonal distance and crossing edges 'e'.
|
||||
*/
|
||||
vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) {
|
||||
vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
|
||||
|
||||
// We do a scale and bias for mapping to texel space:
|
||||
texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
||||
|
||||
// Diagonal areas are on the second half of the texture:
|
||||
texcoord.x += 0.5;
|
||||
|
||||
// Move to proper place, according to the subpixel offset:
|
||||
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
|
||||
|
||||
// Do it!
|
||||
return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0));
|
||||
}
|
||||
|
||||
/**
|
||||
* This searches for diagonal patterns and returns the corresponding weights.
|
||||
*/
|
||||
vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, vec4 subsampleIndices) {
|
||||
vec2 weights = vec2(0.0, 0.0);
|
||||
|
||||
// Search for the line ends:
|
||||
vec4 d;
|
||||
vec2 end;
|
||||
if (e.r > 0.0) {
|
||||
d.xz = SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), end);
|
||||
d.x += float(end.y > 0.9);
|
||||
} else
|
||||
d.xz = vec2(0.0, 0.0);
|
||||
d.yw = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), end);
|
||||
|
||||
// SMAA_BRANCH
|
||||
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
||||
// Fetch the crossing edges:
|
||||
vec4 coords = fma(vec4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
||||
vec4 c;
|
||||
c.xy = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).rg;
|
||||
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).rg;
|
||||
c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw);
|
||||
|
||||
// Non-optimized version:
|
||||
// vec4 coords = fma(vec4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
||||
// vec4 c;
|
||||
// c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
||||
// c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, 0)).r;
|
||||
// c.z = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).g;
|
||||
// c.w = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, -1)).r;
|
||||
|
||||
// Merge crossing edges at each side into a single value:
|
||||
vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw);
|
||||
|
||||
// Remove the crossing edge if we didn't found the end of the line:
|
||||
SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0));
|
||||
|
||||
// Fetch the areas for this line:
|
||||
weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.z);
|
||||
}
|
||||
|
||||
// Search for the line ends:
|
||||
d.xz = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), end);
|
||||
if (textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r > 0.0) {
|
||||
d.yw = SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), end);
|
||||
d.y += float(end.y > 0.9);
|
||||
} else
|
||||
d.yw = vec2(0.0, 0.0);
|
||||
|
||||
// SMAA_BRANCH
|
||||
if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3
|
||||
// Fetch the crossing edges:
|
||||
vec4 coords = fma(vec4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
|
||||
vec4 c;
|
||||
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
||||
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, -1)).r;
|
||||
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).gr;
|
||||
vec2 cc = fma(vec2(2.0, 2.0), c.xz, c.yw);
|
||||
|
||||
// Remove the crossing edge if we didn't found the end of the line:
|
||||
SMAAMovc(bvec2(step(0.9, d.zw)), cc, vec2(0.0, 0.0));
|
||||
|
||||
// Fetch the areas for this line:
|
||||
weights += SMAAAreaDiag(areaTex, d.xy, cc, subsampleIndices.w).gr;
|
||||
}
|
||||
|
||||
return weights;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Horizontal/Vertical Search Functions
|
||||
|
||||
/**
|
||||
* This allows to determine how much length should we add in the last step
|
||||
* of the searches. It takes the bilinearly interpolated edge (see
|
||||
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
|
||||
* crossing edges are active.
|
||||
*/
|
||||
float SMAASearchLength(sampler2D searchTex, vec2 e, float offset) {
|
||||
// The texture is flipped vertically, with left and right cases taking half
|
||||
// of the space horizontally:
|
||||
vec2 scale = SMAA_SEARCHTEX_SIZE * vec2(0.5, -1.0);
|
||||
vec2 bias = SMAA_SEARCHTEX_SIZE * vec2(offset, 1.0);
|
||||
|
||||
// Scale and bias to access texel centers:
|
||||
scale += vec2(-1.0, 1.0);
|
||||
bias += vec2( 0.5, -0.5);
|
||||
|
||||
// Convert from pixel coordinates to texcoords:
|
||||
// (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped)
|
||||
scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
||||
bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE;
|
||||
|
||||
// Lookup the search texture:
|
||||
return SMAA_SEARCHTEX_SELECT(textureLod(searchTex, fma(scale, e, bias), 0.0));
|
||||
}
|
||||
|
||||
/**
|
||||
* Horizontal/vertical search functions for the 2nd pass.
|
||||
*/
|
||||
float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
||||
/**
|
||||
* @PSEUDO_GATHER4
|
||||
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
|
||||
* sample between edge, thus fetching four edges in a row.
|
||||
* Sampling with different offsets in each direction allows to disambiguate
|
||||
* which edges are active from the four fetched ones.
|
||||
*/
|
||||
vec2 e = vec2(0.0, 1.0);
|
||||
while (texcoord.x > end &&
|
||||
e.g > 0.8281 && // Is there some edge not activated?
|
||||
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
||||
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
||||
texcoord = fma(-vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
||||
}
|
||||
|
||||
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.0), 3.25);
|
||||
return fma(SMAA_RT_METRICS.x, offset, texcoord.x);
|
||||
|
||||
// Non-optimized version:
|
||||
// We correct the previous (-0.25, -0.125) offset we applied:
|
||||
// texcoord.x += 0.25 * SMAA_RT_METRICS.x;
|
||||
|
||||
// The searches are bias by 1, so adjust the coords accordingly:
|
||||
// texcoord.x += SMAA_RT_METRICS.x;
|
||||
|
||||
// Disambiguate the length added by the last step:
|
||||
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step
|
||||
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * SMAASearchLength(searchTex, e, 0.0);
|
||||
// return fma(SMAA_RT_METRICS.x, offset, texcoord.x);
|
||||
}
|
||||
|
||||
float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
||||
vec2 e = vec2(0.0, 1.0);
|
||||
while (texcoord.x < end &&
|
||||
e.g > 0.8281 && // Is there some edge not activated?
|
||||
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
||||
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
||||
texcoord = fma(vec2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord);
|
||||
}
|
||||
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e, 0.5), 3.25);
|
||||
return fma(-SMAA_RT_METRICS.x, offset, texcoord.x);
|
||||
}
|
||||
|
||||
float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
||||
vec2 e = vec2(1.0, 0.0);
|
||||
while (texcoord.y > end &&
|
||||
e.r > 0.8281 && // Is there some edge not activated?
|
||||
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
||||
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
||||
texcoord = fma(-vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
||||
}
|
||||
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.0), 3.25);
|
||||
return fma(SMAA_RT_METRICS.y, offset, texcoord.y);
|
||||
}
|
||||
|
||||
float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
||||
vec2 e = vec2(1.0, 0.0);
|
||||
while (texcoord.y < end &&
|
||||
e.r > 0.8281 && // Is there some edge not activated?
|
||||
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
||||
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
||||
texcoord = fma(vec2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord);
|
||||
}
|
||||
float offset = fma(-(255.0 / 127.0), SMAASearchLength(searchTex, e.gr, 0.5), 3.25);
|
||||
return fma(-SMAA_RT_METRICS.y, offset, texcoord.y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ok, we have the distance and both crossing edges. So, what are the areas
|
||||
* at each side of current edge?
|
||||
*/
|
||||
vec2 SMAAArea(sampler2D areaTex, vec2 dist, float e1, float e2, float offset) {
|
||||
// Rounding prevents precision errors of bilinear filtering:
|
||||
vec2 texcoord = fma(vec2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), round(4.0 * vec2(e1, e2)), dist);
|
||||
|
||||
// We do a scale and bias for mapping to texel space:
|
||||
texcoord = fma(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
||||
|
||||
// Move to proper place, according to the subpixel offset:
|
||||
texcoord.y = fma(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
|
||||
|
||||
// Do it!
|
||||
return SMAA_AREATEX_SELECT(textureLod(areaTex, texcoord, 0.0));
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Corner Detection Functions
|
||||
|
||||
void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) {
|
||||
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
||||
vec2 leftRight = step(d.xy, d.yx);
|
||||
vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
||||
|
||||
rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line.
|
||||
|
||||
vec2 factor = vec2(1.0, 1.0);
|
||||
factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, 1)).r;
|
||||
factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, 1)).r;
|
||||
factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(0, -2)).r;
|
||||
factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(1, -2)).r;
|
||||
|
||||
weights *= clamp(factor, 0.0, 1.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec4 texcoord, vec2 d) {
|
||||
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
|
||||
vec2 leftRight = step(d.xy, d.yx);
|
||||
vec2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight;
|
||||
|
||||
rounding /= leftRight.x + leftRight.y;
|
||||
|
||||
vec2 factor = vec2(1.0, 1.0);
|
||||
factor.x -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2( 1, 0)).g;
|
||||
factor.x -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2( 1, 1)).g;
|
||||
factor.y -= rounding.x * textureLodOffset(edgesTex, texcoord.xy, 0.0, ivec2(-2, 0)).g;
|
||||
factor.y -= rounding.y * textureLodOffset(edgesTex, texcoord.zw, 0.0, ivec2(-2, 1)).g;
|
||||
|
||||
weights *= clamp(factor, 0.0, 1.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
vec4 SMAABlendingWeightCalculationPS(vec2 texcoord,
|
||||
vec2 pixcoord,
|
||||
vec4 offset[3],
|
||||
sampler2D edgesTex,
|
||||
sampler2D areaTex,
|
||||
sampler2D searchTex,
|
||||
vec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
|
||||
vec4 weights = vec4(0.0, 0.0, 0.0, 0.0);
|
||||
|
||||
vec2 e = texture(edgesTex, texcoord).rg;
|
||||
|
||||
// SMAA_BRANCH
|
||||
if (e.g > 0.0) { // Edge at north
|
||||
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
||||
// Diagonals have both north and west edges, so searching for them in
|
||||
// one of the boundaries is enough.
|
||||
weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);
|
||||
|
||||
// We give priority to diagonals, so if we find a diagonal we skip
|
||||
// horizontal/vertical processing.
|
||||
// SMAA_BRANCH
|
||||
if (weights.r == -weights.g) { // weights.r + weights.g == 0.0
|
||||
#endif
|
||||
|
||||
vec2 d;
|
||||
|
||||
// Find the distance to the left:
|
||||
vec3 coords;
|
||||
coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
|
||||
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
|
||||
d.x = coords.x;
|
||||
|
||||
// Now fetch the left crossing edges, two at a time using bilinear
|
||||
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
|
||||
// discern what value each edge has:
|
||||
float e1 = textureLod(edgesTex, coords.xy, 0.0).r;
|
||||
|
||||
// Find the distance to the right:
|
||||
coords.z = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
|
||||
d.y = coords.z;
|
||||
|
||||
// We want the distances to be in pixel units (doing this here allow to
|
||||
// better interleave arithmetic and memory accesses):
|
||||
d = abs(round(fma(SMAA_RT_METRICS.zz, d, -pixcoord.xx)));
|
||||
|
||||
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
||||
// quadratically:
|
||||
vec2 sqrt_d = sqrt(d);
|
||||
|
||||
// Fetch the right crossing edges:
|
||||
float e2 = textureLodOffset(edgesTex, coords.zy, 0.0, ivec2(1, 0)).r;
|
||||
|
||||
// Ok, we know how this pattern looks like, now it is time for getting
|
||||
// the actual area:
|
||||
weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.y);
|
||||
|
||||
// Fix corners:
|
||||
coords.y = texcoord.y;
|
||||
SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, coords.xyzy, d);
|
||||
|
||||
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
|
||||
} else
|
||||
e.r = 0.0; // Skip vertical processing.
|
||||
#endif
|
||||
}
|
||||
|
||||
// SMAA_BRANCH
|
||||
if (e.r > 0.0) { // Edge at west
|
||||
vec2 d;
|
||||
|
||||
// Find the distance to the top:
|
||||
vec3 coords;
|
||||
coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
|
||||
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
|
||||
d.x = coords.y;
|
||||
|
||||
// Fetch the top crossing edges:
|
||||
float e1 = textureLod(edgesTex, coords.xy, 0.0).g;
|
||||
|
||||
// Find the distance to the bottom:
|
||||
coords.z = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
|
||||
d.y = coords.z;
|
||||
|
||||
// We want the distances to be in pixel units:
|
||||
d = abs(round(fma(SMAA_RT_METRICS.ww, d, -pixcoord.yy)));
|
||||
|
||||
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
||||
// quadratically:
|
||||
vec2 sqrt_d = sqrt(d);
|
||||
|
||||
// Fetch the bottom crossing edges:
|
||||
float e2 = textureLodOffset(edgesTex, coords.xz, 0.0, ivec2(0, 1)).g;
|
||||
|
||||
// Get the area for this direction:
|
||||
weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, subsampleIndices.x);
|
||||
|
||||
// Fix corners:
|
||||
coords.x = texcoord.x;
|
||||
SMAADetectVerticalCornerPattern(edgesTex, weights.ba, coords.xyxz, d);
|
||||
}
|
||||
|
||||
return weights;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, Source, areaTex, searchTex, vec4(0.0));
|
||||
}
|
631
anti-aliasing/shaders/smaa/smaa-common.h
Normal file
631
anti-aliasing/shaders/smaa/smaa-common.h
Normal file
@ -0,0 +1,631 @@
|
||||
/**
|
||||
* Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com)
|
||||
* Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com)
|
||||
* Copyright (C) 2013 Belen Masia (bmasia@unizar.es)
|
||||
* Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com)
|
||||
* Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es)
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* this software and associated documentation files (the "Software"), to deal in
|
||||
* the Software without restriction, including without limitation the rights to
|
||||
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
* of the Software, and to permit persons to whom the Software is furnished to
|
||||
* do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software. As clarification, there
|
||||
* is no requirement that the copyright notice and permission be included in
|
||||
* binary distributions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#define SMAA_GLSL_4
|
||||
#define SMAA_PRESET_HIGH
|
||||
//#include "SMAA.h"
|
||||
#define SMAA_RT_METRICS vec4(params.SourceSize.z, params.SourceSize.w, params.SourceSize.x, params.SourceSize.y)
|
||||
|
||||
/**
|
||||
* _______ ___ ___ ___ ___
|
||||
* / || \/ | / \ / \
|
||||
* | (---- | \ / | / ^ \ / ^ \
|
||||
* \ \ | |\/| | / /_\ \ / /_\ \
|
||||
* ----) | | | | | / _____ \ / _____ \
|
||||
* |_______/ |__| |__| /__/ \__\ /__/ \__\
|
||||
*
|
||||
* E N H A N C E D
|
||||
* S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
|
||||
*
|
||||
* http://www.iryoku.com/smaa/
|
||||
*
|
||||
* Hi, welcome aboard!
|
||||
*
|
||||
* Here you'll find instructions to get the shader up and running as fast as
|
||||
* possible.
|
||||
*
|
||||
* IMPORTANTE NOTICE: when updating, remember to update both this file and the
|
||||
* precomputed textures! They may change from version to version.
|
||||
*
|
||||
* The shader has three passes, chained together as follows:
|
||||
*
|
||||
* |input|------------------?
|
||||
* v |
|
||||
* [ SMAA*EdgeDetection ] |
|
||||
* v |
|
||||
* |edgesTex| |
|
||||
* v |
|
||||
* [ SMAABlendingWeightCalculation ] |
|
||||
* v |
|
||||
* |blendTex| |
|
||||
* v |
|
||||
* [ SMAANeighborhoodBlending ] <------?
|
||||
* v
|
||||
* |output|
|
||||
*
|
||||
* Note that each [pass] has its own vertex and pixel shader. Remember to use
|
||||
* oversized triangles instead of quads to avoid overshading along the
|
||||
* diagonal.
|
||||
*
|
||||
* You've three edge detection methods to choose from: luma, color or depth.
|
||||
* They represent different quality/performance and anti-aliasing/sharpness
|
||||
* tradeoffs, so our recommendation is for you to choose the one that best
|
||||
* suits your particular scenario:
|
||||
*
|
||||
* - Depth edge detection is usually the fastest but it may miss some edges.
|
||||
*
|
||||
* - Luma edge detection is usually more expensive than depth edge detection,
|
||||
* but catches visible edges that depth edge detection can miss.
|
||||
*
|
||||
* - Color edge detection is usually the most expensive one but catches
|
||||
* chroma-only edges.
|
||||
*
|
||||
* For quickstarters: just use luma edge detection.
|
||||
*
|
||||
* The general advice is to not rush the integration process and ensure each
|
||||
* step is done correctly (don't try to integrate SMAA T2x with predicated edge
|
||||
* detection from the start!). Ok then, let's go!
|
||||
*
|
||||
* 1. The first step is to create two RGBA temporal render targets for holding
|
||||
* |edgesTex| and |blendTex|.
|
||||
*
|
||||
* In DX10 or DX11, you can use a RG render target for the edges texture.
|
||||
* In the case of NVIDIA GPUs, using RG render targets seems to actually be
|
||||
* slower.
|
||||
*
|
||||
* On the Xbox 360, you can use the same render target for resolving both
|
||||
* |edgesTex| and |blendTex|, as they aren't needed simultaneously.
|
||||
*
|
||||
* 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared
|
||||
* each frame. Do not forget to clear the alpha channel!
|
||||
*
|
||||
* 3. The next step is loading the two supporting precalculated textures,
|
||||
* 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
|
||||
* C++ headers, and also as regular DDS files. They'll be needed for the
|
||||
* 'SMAABlendingWeightCalculation' pass.
|
||||
*
|
||||
* If you use the C++ headers, be sure to load them in the format specified
|
||||
* inside of them.
|
||||
*
|
||||
* You can also compress 'areaTex' and 'searchTex' using BC5 and BC4
|
||||
* respectively, if you have that option in your content processor pipeline.
|
||||
* When compressing then, you get a non-perceptible quality decrease, and a
|
||||
* marginal performance increase.
|
||||
*
|
||||
* 4. All samplers must be set to linear filtering and clamp.
|
||||
*
|
||||
* After you get the technique working, remember that 64-bit inputs have
|
||||
* half-rate linear filtering on GCN.
|
||||
*
|
||||
* If SMAA is applied to 64-bit color buffers, switching to point filtering
|
||||
* when accesing them will increase the performance. Search for
|
||||
* 'SMAASamplePoint' to see which textures may benefit from point
|
||||
* filtering, and where (which is basically the color input in the edge
|
||||
* detection and resolve passes).
|
||||
*
|
||||
* 5. All texture reads and buffer writes must be non-sRGB, with the exception
|
||||
* of the input read and the output write in
|
||||
* 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
|
||||
* this last pass are not possible, the technique will work anyway, but
|
||||
* will perform antialiasing in gamma space.
|
||||
*
|
||||
* IMPORTANT: for best results the input read for the color/luma edge
|
||||
* detection should *NOT* be sRGB.
|
||||
*
|
||||
* 6. Before including SMAA.h you'll have to setup the render target metrics,
|
||||
* the target and any optional configuration defines. Optionally you can
|
||||
* use a preset.
|
||||
*
|
||||
* You have the following targets available:
|
||||
* SMAA_HLSL_3
|
||||
* SMAA_HLSL_4
|
||||
* SMAA_HLSL_4_1
|
||||
* SMAA_GLSL_3 *
|
||||
* SMAA_GLSL_4 *
|
||||
*
|
||||
* * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below).
|
||||
*
|
||||
* And four presets:
|
||||
* SMAA_PRESET_LOW (%60 of the quality)
|
||||
* SMAA_PRESET_MEDIUM (%80 of the quality)
|
||||
* SMAA_PRESET_HIGH (%95 of the quality)
|
||||
* SMAA_PRESET_ULTRA (%99 of the quality)
|
||||
*
|
||||
* For example:
|
||||
* #define SMAA_RT_METRICS vec4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
|
||||
* #define SMAA_GLSL_4
|
||||
* #define SMAA_PRESET_HIGH
|
||||
* #include "SMAA.h"
|
||||
*
|
||||
* Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a
|
||||
* uniform variable. The code is designed to minimize the impact of not
|
||||
* using a constant value, but it is still better to hardcode it.
|
||||
*
|
||||
* Depending on how you encoded 'areaTex' and 'searchTex', you may have to
|
||||
* add (and customize) the following defines before including SMAA.h:
|
||||
* #define SMAA_AREATEX_SELECT(sample) sample.rg
|
||||
* #define SMAA_SEARCHTEX_SELECT(sample) sample.r
|
||||
*
|
||||
* If your engine is already using porting macros, you can define
|
||||
* SMAA_CUSTOM_SL, and define the porting functions by yourself.
|
||||
*
|
||||
* 7. Then, you'll have to setup the passes as indicated in the scheme above.
|
||||
* You can take a look into SMAA.fx, to see how we did it for our demo.
|
||||
* Checkout the function wrappers, you may want to copy-paste them!
|
||||
*
|
||||
* 8. It's recommended to validate the produced |edgesTex| and |blendTex|.
|
||||
* You can use a screenshot from your engine to compare the |edgesTex|
|
||||
* and |blendTex| produced inside of the engine with the results obtained
|
||||
* with the reference demo.
|
||||
*
|
||||
* 9. After you get the last pass to work, it's time to optimize. You'll have
|
||||
* to initialize a stencil buffer in the first pass (discard is already in
|
||||
* the code), then mask execution by using it the second pass. The last
|
||||
* pass should be executed in all pixels.
|
||||
*
|
||||
*
|
||||
* After this point you can choose to enable predicated thresholding,
|
||||
* temporal supersampling and motion blur integration:
|
||||
*
|
||||
* a) If you want to use predicated thresholding, take a look into
|
||||
* SMAA_PREDICATION; you'll need to pass an extra texture in the edge
|
||||
* detection pass.
|
||||
*
|
||||
* b) If you want to enable temporal supersampling (SMAA T2x):
|
||||
*
|
||||
* 1. The first step is to render using subpixel jitters. I won't go into
|
||||
* detail, but it's as simple as moving each vertex position in the
|
||||
* vertex shader, you can check how we do it in our DX10 demo.
|
||||
*
|
||||
* 2. Then, you must setup the temporal resolve. You may want to take a look
|
||||
* into SMAAResolve for resolving 2x modes. After you get it working, you'll
|
||||
* probably see ghosting everywhere. But fear not, you can enable the
|
||||
* CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
|
||||
* Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded.
|
||||
*
|
||||
* 3. The next step is to apply SMAA to each subpixel jittered frame, just as
|
||||
* done for 1x.
|
||||
*
|
||||
* 4. At this point you should already have something usable, but for best
|
||||
* results the proper area textures must be set depending on current jitter.
|
||||
* For this, the parameter 'subsampleIndices' of
|
||||
* 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
|
||||
* mode:
|
||||
*
|
||||
* @SUBSAMPLE_INDICES
|
||||
*
|
||||
* | S# | Camera Jitter | subsampleIndices |
|
||||
* +----+------------------+---------------------+
|
||||
* | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) |
|
||||
* | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) |
|
||||
*
|
||||
* These jitter positions assume a bottom-to-top y axis. S# stands for the
|
||||
* sample number.
|
||||
*
|
||||
* More information about temporal supersampling here:
|
||||
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
|
||||
*
|
||||
* c) If you want to enable spatial multisampling (SMAA S2x):
|
||||
*
|
||||
* 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
|
||||
* created with:
|
||||
* - DX10: see below (*)
|
||||
* - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
|
||||
* - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
|
||||
*
|
||||
* This allows to ensure that the subsample order matches the table in
|
||||
* @SUBSAMPLE_INDICES.
|
||||
*
|
||||
* (*) In the case of DX10, we refer the reader to:
|
||||
* - SMAA::detectMSAAOrder and
|
||||
* - SMAA::msaaReorder
|
||||
*
|
||||
* These functions allow to match the standard multisample patterns by
|
||||
* detecting the subsample order for a specific GPU, and reordering
|
||||
* them appropriately.
|
||||
*
|
||||
* 2. A shader must be run to output each subsample into a separate buffer
|
||||
* (DX10 is required). You can use SMAASeparate for this purpose, or just do
|
||||
* it in an existing pass (for example, in the tone mapping pass, which has
|
||||
* the advantage of feeding tone mapped subsamples to SMAA, which will yield
|
||||
* better results).
|
||||
*
|
||||
* 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
|
||||
* the results in the final buffer. The second run should alpha blend with
|
||||
* the existing final buffer using a blending factor of 0.5.
|
||||
* 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
|
||||
* b).
|
||||
*
|
||||
* d) If you want to enable temporal supersampling on top of SMAA S2x
|
||||
* (which actually is SMAA 4x):
|
||||
*
|
||||
* 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
|
||||
* to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
|
||||
* must be set as follows:
|
||||
*
|
||||
* | F# | S# | Camera Jitter | Net Jitter | subsampleIndices |
|
||||
* +----+----+--------------------+-------------------+----------------------+
|
||||
* | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) |
|
||||
* | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) |
|
||||
* +----+----+--------------------+-------------------+----------------------+
|
||||
* | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) |
|
||||
* | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) |
|
||||
*
|
||||
* These jitter positions assume a bottom-to-top y axis. F# stands for the
|
||||
* frame number. S# stands for the sample number.
|
||||
*
|
||||
* 2. After calculating SMAA S2x for current frame (with the new subsample
|
||||
* indices), previous frame must be reprojected as in SMAA T2x mode (see
|
||||
* point b).
|
||||
*
|
||||
* e) If motion blur is used, you may want to do the edge detection pass
|
||||
* together with motion blur. This has two advantages:
|
||||
*
|
||||
* 1. Pixels under heavy motion can be omitted from the edge detection process.
|
||||
* For these pixels we can just store "no edge", as motion blur will take
|
||||
* care of them.
|
||||
* 2. The center pixel tap is reused.
|
||||
*
|
||||
* Note that in this case depth testing should be used instead of stenciling,
|
||||
* as we have to write all the pixels in the motion blur pass.
|
||||
*
|
||||
* That's it!
|
||||
*/
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// SMAA Presets
|
||||
|
||||
/**
|
||||
* Note that if you use one of these presets, the following configuration
|
||||
* macros will be ignored if set in the "Configurable Defines" section.
|
||||
*/
|
||||
|
||||
#if defined(SMAA_PRESET_LOW)
|
||||
#define SMAA_THRESHOLD 0.15
|
||||
#define SMAA_MAX_SEARCH_STEPS 4
|
||||
#define SMAA_DISABLE_DIAG_DETECTION
|
||||
#define SMAA_DISABLE_CORNER_DETECTION
|
||||
#elif defined(SMAA_PRESET_MEDIUM)
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#define SMAA_MAX_SEARCH_STEPS 8
|
||||
#define SMAA_DISABLE_DIAG_DETECTION
|
||||
#define SMAA_DISABLE_CORNER_DETECTION
|
||||
#elif defined(SMAA_PRESET_HIGH)
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#define SMAA_MAX_SEARCH_STEPS 16
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#elif defined(SMAA_PRESET_ULTRA)
|
||||
#define SMAA_THRESHOLD 0.05
|
||||
#define SMAA_MAX_SEARCH_STEPS 32
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Configurable Defines
|
||||
|
||||
/**
|
||||
* SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
|
||||
* Lowering this value you will be able to detect more edges at the expense of
|
||||
* performance.
|
||||
*
|
||||
* Range: [0, 0.5]
|
||||
* 0.1 is a reasonable value, and allows to catch most visible edges.
|
||||
* 0.05 is a rather overkill value, that allows to catch 'em all.
|
||||
*
|
||||
* If temporal supersampling is used, 0.2 could be a reasonable value, as low
|
||||
* contrast edges are properly filtered by just 2x.
|
||||
*/
|
||||
#ifndef SMAA_THRESHOLD
|
||||
#define SMAA_THRESHOLD 0.1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
|
||||
*
|
||||
* Range: depends on the depth range of the scene.
|
||||
*/
|
||||
#ifndef SMAA_DEPTH_THRESHOLD
|
||||
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
|
||||
* horizontal/vertical pattern searches, at each side of the pixel.
|
||||
*
|
||||
* In number of pixels, it's actually the double. So the maximum line length
|
||||
* perfectly handled by, for example 16, is 64 (by perfectly, we meant that
|
||||
* longer lines won't look as good, but still antialiased).
|
||||
*
|
||||
* Range: [0, 112]
|
||||
*/
|
||||
#ifndef SMAA_MAX_SEARCH_STEPS
|
||||
#define SMAA_MAX_SEARCH_STEPS 16
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
|
||||
* diagonal pattern searches, at each side of the pixel. In this case we jump
|
||||
* one pixel at time, instead of two.
|
||||
*
|
||||
* Range: [0, 20]
|
||||
*
|
||||
* On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
|
||||
* steps), but it can have a significant impact on older machines.
|
||||
*
|
||||
* Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing.
|
||||
*/
|
||||
#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
|
||||
#define SMAA_MAX_SEARCH_STEPS_DIAG 8
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
|
||||
*
|
||||
* Range: [0, 100]
|
||||
*
|
||||
* Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing.
|
||||
*/
|
||||
#ifndef SMAA_CORNER_ROUNDING
|
||||
#define SMAA_CORNER_ROUNDING 25
|
||||
#endif
|
||||
|
||||
/**
|
||||
* If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times
|
||||
* bigger contrast than current edge, current edge will be discarded.
|
||||
*
|
||||
* This allows to eliminate spurious crossing edges, and is based on the fact
|
||||
* that, if there is too much contrast in a direction, that will hide
|
||||
* perceptually contrast in the other neighbors.
|
||||
*/
|
||||
#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
|
||||
#define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Predicated thresholding allows to better preserve texture details and to
|
||||
* improve performance, by decreasing the number of detected edges using an
|
||||
* additional buffer like the light accumulation buffer, object ids or even the
|
||||
* depth buffer (the depth buffer usage may be limited to indoor or short range
|
||||
* scenes).
|
||||
*
|
||||
* It locally decreases the luma or color threshold if an edge is found in an
|
||||
* additional buffer (so the global threshold can be higher).
|
||||
*
|
||||
* This method was developed by Playstation EDGE MLAA team, and used in
|
||||
* Killzone 3, by using the light accumulation buffer. More information here:
|
||||
* http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION
|
||||
#define SMAA_PREDICATION 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Threshold to be used in the additional predication buffer.
|
||||
*
|
||||
* Range: depends on the input, so you'll have to find the magic number that
|
||||
* works for you.
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_THRESHOLD
|
||||
#define SMAA_PREDICATION_THRESHOLD 0.01
|
||||
#endif
|
||||
|
||||
/**
|
||||
* How much to scale the global threshold used for luma or color edge
|
||||
* detection when using predication.
|
||||
*
|
||||
* Range: [1, 5]
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_SCALE
|
||||
#define SMAA_PREDICATION_SCALE 2.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* How much to locally decrease the threshold.
|
||||
*
|
||||
* Range: [0, 1]
|
||||
*/
|
||||
#ifndef SMAA_PREDICATION_STRENGTH
|
||||
#define SMAA_PREDICATION_STRENGTH 0.4
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Temporal reprojection allows to remove ghosting artifacts when using
|
||||
* temporal supersampling. We use the CryEngine 3 method which also introduces
|
||||
* velocity weighting. This feature is of extreme importance for totally
|
||||
* removing ghosting. More information here:
|
||||
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
|
||||
*
|
||||
* Note that you'll need to setup a velocity buffer for enabling reprojection.
|
||||
* For static geometry, saving the previous depth buffer is a viable
|
||||
* alternative.
|
||||
*/
|
||||
#ifndef SMAA_REPROJECTION
|
||||
#define SMAA_REPROJECTION 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
|
||||
* remove ghosting trails behind the moving object, which are not removed by
|
||||
* just using reprojection. Using low values will exhibit ghosting, while using
|
||||
* high values will disable temporal supersampling under motion.
|
||||
*
|
||||
* Behind the scenes, velocity weighting removes temporal supersampling when
|
||||
* the velocity of the subsamples differs (meaning they are different objects).
|
||||
*
|
||||
* Range: [0, 80]
|
||||
*/
|
||||
#ifndef SMAA_REPROJECTION_WEIGHT_SCALE
|
||||
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* On some compilers, discard cannot be used in vertex shaders. Thus, they need
|
||||
* to be compiled separately.
|
||||
*/
|
||||
#ifndef SMAA_INCLUDE_VS
|
||||
#define SMAA_INCLUDE_VS 1
|
||||
#endif
|
||||
#ifndef SMAA_INCLUDE_PS
|
||||
#define SMAA_INCLUDE_PS 1
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Texture Access Defines
|
||||
|
||||
#ifndef SMAA_AREATEX_SELECT
|
||||
#if defined(SMAA_HLSL_3)
|
||||
#define SMAA_AREATEX_SELECT(sample) sample.ra
|
||||
#else
|
||||
#define SMAA_AREATEX_SELECT(sample) sample.rg
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef SMAA_SEARCHTEX_SELECT
|
||||
#define SMAA_SEARCHTEX_SELECT(sample) sample.r
|
||||
#endif
|
||||
|
||||
#ifndef SMAA_DECODE_VELOCITY
|
||||
#define SMAA_DECODE_VELOCITY(sample) sample.rg
|
||||
#endif
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Non-Configurable Defines
|
||||
|
||||
#define SMAA_AREATEX_MAX_DISTANCE 16
|
||||
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
|
||||
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0))
|
||||
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
|
||||
#define SMAA_SEARCHTEX_SIZE vec2(66.0, 33.0)
|
||||
#define SMAA_SEARCHTEX_PACKED_SIZE vec2(64.0, 16.0)
|
||||
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Porting Functions
|
||||
|
||||
#if defined(SMAA_HLSL_3)
|
||||
#define SMAATexture2D(tex) sampler2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0))
|
||||
#define SMAASample(tex, coord) tex2D(tex, coord)
|
||||
#define SMAASamplePoint(tex, coord) tex2D(tex, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy)
|
||||
#define SMAA_FLATTEN [flatten]
|
||||
#define SMAA_BRANCH [branch]
|
||||
#endif
|
||||
#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1)
|
||||
SamplerState LinearSampler { Filter = MIN_MAG_LINEAR_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
|
||||
SamplerState PointSampler { Filter = MIN_MAG_MIP_POINT; AddressU = Clamp; AddressV = Clamp; };
|
||||
#define SMAATexture2D(tex) Texture2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
|
||||
#define SMAASample(tex, coord) tex.Sample(LinearSampler, coord)
|
||||
#define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset)
|
||||
#define SMAA_FLATTEN [flatten]
|
||||
#define SMAA_BRANCH [branch]
|
||||
#define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex
|
||||
#define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
|
||||
#if defined(SMAA_HLSL_4_1)
|
||||
#define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
|
||||
#endif
|
||||
#endif
|
||||
#if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4)
|
||||
#define SMAATexture2D(tex) sampler2D tex
|
||||
#define SMAATexturePass2D(tex) tex
|
||||
#define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
|
||||
#define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
|
||||
#define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
|
||||
#define SMAASample(tex, coord) texture(tex, coord)
|
||||
#define SMAASamplePoint(tex, coord) texture(tex, coord)
|
||||
#define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
|
||||
#define SMAA_FLATTEN
|
||||
#define SMAA_BRANCH
|
||||
#define lerp(a, b, t) mix(a, b, t)
|
||||
#define saturate(a) clamp(a, 0.0, 1.0)
|
||||
#if defined(SMAA_GLSL_4)
|
||||
#define mad(a, b, c) fma(a, b, c)
|
||||
#define SMAAGather(tex, coord) textureGather(tex, coord)
|
||||
#define SMAAGather(tex, coord) textureGather(tex, coord)
|
||||
#else
|
||||
#define mad(a, b, c) (a * b + c)
|
||||
#endif
|
||||
#define float2 vec2
|
||||
#define float3 vec3
|
||||
#define float4 vec4
|
||||
#define int2 ivec2
|
||||
#define int3 ivec3
|
||||
#define int4 ivec4
|
||||
#define bool2 bvec2
|
||||
#define bool3 bvec3
|
||||
#define bool4 bvec4
|
||||
#endif
|
||||
|
||||
#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL)
|
||||
#error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Gathers current pixel, and the top-left neighbors.
|
||||
*/
|
||||
vec3 SMAAGatherNeighbours(vec2 coord, vec4 offset[3], sampler2D tex)
|
||||
{
|
||||
float P = texture(tex, coord).r;
|
||||
float Pleft = texture(tex, offset[0].xy).r;
|
||||
float Ptop = texture(tex, offset[0].zw).r;
|
||||
return vec3(P, Pleft, Ptop);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adjusts the threshold by means of predication.
|
||||
*/
|
||||
vec3 SMAACalculatePredicatedThreshold(vec2 coord, vec4 offset[3], sampler2D predicationTex)
|
||||
{
|
||||
vec3 neighbours = SMAAGatherNeighbours(coord, offset, predicationTex);
|
||||
vec2 delta = abs(neighbours.xx - neighbours.yz);
|
||||
vec2 edges = step(SMAA_PREDICATION_THRESHOLD, delta);
|
||||
return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Conditional move:
|
||||
*/
|
||||
void SMAAMovc(bvec2 cond, inout vec2 variable, vec2 value) {
|
||||
if (cond.x) variable.x = value.x;
|
||||
if (cond.y) variable.y = value.y;
|
||||
}
|
||||
|
||||
void SMAAMovc(bvec4 cond, inout vec4 variable, vec4 value) {
|
||||
SMAAMovc(cond.xy, variable.xy, value.xy);
|
||||
SMAAMovc(cond.zw, variable.zw, value.zw);
|
||||
}
|
185
anti-aliasing/shaders/smaa/smaa-edge-detection.slang
Normal file
185
anti-aliasing/shaders/smaa/smaa-edge-detection.slang
Normal file
@ -0,0 +1,185 @@
|
||||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 SourceSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 OutputSize;
|
||||
uint FrameCount;
|
||||
} params;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
} global;
|
||||
|
||||
#include "smaa-common.h"
|
||||
|
||||
#pragma stage vertex
|
||||
layout(location = 0) in vec4 Position;
|
||||
layout(location = 1) in vec2 TexCoord;
|
||||
layout(location = 0) out vec2 texcoord;
|
||||
layout(location = 1) out vec4 offset[3];
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = global.MVP * Position;
|
||||
texcoord = TexCoord;
|
||||
offset[0] = fma(SMAA_RT_METRICS.xyxy, vec4(-1.0, 0.0, 0.0, -1.0), texcoord.xyxy);
|
||||
offset[1] = fma(SMAA_RT_METRICS.xyxy, vec4( 1.0, 0.0, 0.0, 1.0), texcoord.xyxy);
|
||||
offset[2] = fma(SMAA_RT_METRICS.xyxy, vec4(-2.0, 0.0, 0.0, -2.0), texcoord.xyxy);
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
layout(location = 0) in vec2 texcoord;
|
||||
layout(location = 1) in vec4 offset[3];
|
||||
layout(location = 0) out vec4 FragColor;
|
||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||
|
||||
/**
|
||||
* Luma Edge Detection
|
||||
*
|
||||
* IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
|
||||
* thus 'colorTex' should be a non-sRGB texture.
|
||||
*/
|
||||
vec2 SMAALumaEdgeDetectionPS(vec2 texcoord, vec4 offset[3], sampler2D colorTex
|
||||
#if SMAA_PREDICATION
|
||||
, SMAATexture2D(predicationTex)
|
||||
#endif
|
||||
) {
|
||||
// Calculate the threshold:
|
||||
#if SMAA_PREDICATION
|
||||
vec2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex);
|
||||
#else
|
||||
vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD);
|
||||
#endif
|
||||
|
||||
// Calculate lumas:
|
||||
vec3 weights = vec3(0.2126, 0.7152, 0.0722);
|
||||
float L = dot(texture(colorTex, texcoord).rgb, weights);
|
||||
|
||||
float Lleft = dot(texture(colorTex, offset[0].xy).rgb, weights);
|
||||
float Ltop = dot(texture(colorTex, offset[0].zw).rgb, weights);
|
||||
|
||||
// We do the usual threshold:
|
||||
vec4 delta;
|
||||
delta.xy = abs(L - vec2(Lleft, Ltop));
|
||||
vec2 edges = step(threshold, delta.xy);
|
||||
|
||||
// Then discard if there is no edge:
|
||||
if (dot(edges, vec2(1.0, 1.0)) == 0.0)
|
||||
discard;
|
||||
|
||||
// Calculate right and bottom deltas:
|
||||
float Lright = dot(texture(colorTex, offset[1].xy).rgb, weights);
|
||||
float Lbottom = dot(texture(colorTex, offset[1].zw).rgb, weights);
|
||||
delta.zw = abs(L - vec2(Lright, Lbottom));
|
||||
|
||||
// Calculate the maximum delta in the direct neighborhood:
|
||||
vec2 maxDelta = max(delta.xy, delta.zw);
|
||||
|
||||
// Calculate left-left and top-top deltas:
|
||||
float Lleftleft = dot(texture(colorTex, offset[2].xy).rgb, weights);
|
||||
float Ltoptop = dot(texture(colorTex, offset[2].zw).rgb, weights);
|
||||
delta.zw = abs(vec2(Lleft, Ltop) - vec2(Lleftleft, Ltoptop));
|
||||
|
||||
// Calculate the final maximum delta:
|
||||
maxDelta = max(maxDelta.xy, delta.zw);
|
||||
float finalDelta = max(maxDelta.x, maxDelta.y);
|
||||
|
||||
// Local contrast adaptation:
|
||||
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
|
||||
|
||||
return edges;
|
||||
}
|
||||
|
||||
/**
|
||||
* Color Edge Detection
|
||||
*
|
||||
* IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and
|
||||
* thus 'colorTex' should be a non-sRGB texture.
|
||||
*/
|
||||
vec2 SMAAColorEdgeDetectionPS(vec2 texcoord,
|
||||
vec4 offset[3],
|
||||
sampler2D colorTex
|
||||
#if SMAA_PREDICATION
|
||||
, sampler2D predicationTex
|
||||
#endif
|
||||
) {
|
||||
// Calculate the threshold:
|
||||
#if SMAA_PREDICATION
|
||||
vec2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex);
|
||||
#else
|
||||
vec2 threshold = vec2(SMAA_THRESHOLD, SMAA_THRESHOLD);
|
||||
#endif
|
||||
|
||||
// Calculate color deltas:
|
||||
vec4 delta;
|
||||
vec3 C = texture(colorTex, texcoord).rgb;
|
||||
|
||||
vec3 Cleft = texture(colorTex, offset[0].xy).rgb;
|
||||
vec3 t = abs(C - Cleft);
|
||||
delta.x = max(max(t.r, t.g), t.b);
|
||||
|
||||
vec3 Ctop = texture(colorTex, offset[0].zw).rgb;
|
||||
t = abs(C - Ctop);
|
||||
delta.y = max(max(t.r, t.g), t.b);
|
||||
|
||||
// We do the usual threshold:
|
||||
vec2 edges = step(threshold, delta.xy);
|
||||
|
||||
// Then discard if there is no edge:
|
||||
if (dot(edges, vec2(1.0, 1.0)) == 0.0)
|
||||
discard;
|
||||
|
||||
// Calculate right and bottom deltas:
|
||||
vec3 Cright = texture(colorTex, offset[1].xy).rgb;
|
||||
t = abs(C - Cright);
|
||||
delta.z = max(max(t.r, t.g), t.b);
|
||||
|
||||
vec3 Cbottom = texture(colorTex, offset[1].zw).rgb;
|
||||
t = abs(C - Cbottom);
|
||||
delta.w = max(max(t.r, t.g), t.b);
|
||||
|
||||
// Calculate the maximum delta in the direct neighborhood:
|
||||
vec2 maxDelta = max(delta.xy, delta.zw);
|
||||
|
||||
// Calculate left-left and top-top deltas:
|
||||
vec3 Cleftleft = texture(colorTex, offset[2].xy).rgb;
|
||||
t = abs(C - Cleftleft);
|
||||
delta.z = max(max(t.r, t.g), t.b);
|
||||
|
||||
vec3 Ctoptop = texture(colorTex, offset[2].zw).rgb;
|
||||
t = abs(C - Ctoptop);
|
||||
delta.w = max(max(t.r, t.g), t.b);
|
||||
|
||||
// Calculate the final maximum delta:
|
||||
maxDelta = max(maxDelta.xy, delta.zw);
|
||||
float finalDelta = max(maxDelta.x, maxDelta.y);
|
||||
|
||||
// Local contrast adaptation:
|
||||
edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy);
|
||||
|
||||
return edges;
|
||||
}
|
||||
|
||||
/**
|
||||
* Depth Edge Detection
|
||||
*/
|
||||
vec2 SMAADepthEdgeDetectionPS(vec2 texcoord,
|
||||
vec4 offset[3],
|
||||
sampler2D depthTex) {
|
||||
vec3 neighbours = SMAAGatherNeighbours(texcoord, offset, depthTex);
|
||||
vec2 delta = abs(neighbours.xx - vec2(neighbours.y, neighbours.z));
|
||||
vec2 edges = step(SMAA_DEPTH_THRESHOLD, delta);
|
||||
|
||||
if (dot(edges, vec2(1.0, 1.0)) == 0.0)
|
||||
discard;
|
||||
|
||||
return edges;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = vec4(SMAALumaEdgeDetectionPS(texcoord, offset, Source), 0.0, 0.0);
|
||||
}
|
102
anti-aliasing/shaders/smaa/smaa-neighborhood-blending.slang
Normal file
102
anti-aliasing/shaders/smaa/smaa-neighborhood-blending.slang
Normal file
@ -0,0 +1,102 @@
|
||||
#version 450
|
||||
|
||||
layout(push_constant) uniform Push
|
||||
{
|
||||
vec4 SourceSize;
|
||||
vec4 OriginalSize;
|
||||
vec4 OutputSize;
|
||||
uint FrameCount;
|
||||
} params;
|
||||
|
||||
layout(std140, set = 0, binding = 0) uniform UBO
|
||||
{
|
||||
mat4 MVP;
|
||||
} global;
|
||||
|
||||
#include "smaa-common.h"
|
||||
|
||||
#pragma stage vertex
|
||||
layout(location = 0) in vec4 Position;
|
||||
layout(location = 1) in vec2 TexCoord;
|
||||
layout(location = 0) out vec2 texcoord;
|
||||
layout(location = 1) out vec4 offset;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = global.MVP * Position;
|
||||
texcoord = TexCoord;
|
||||
offset = fma(SMAA_RT_METRICS.xyxy, vec4( 1.0, 0.0, 0.0, 1.0), texcoord.xyxy);
|
||||
}
|
||||
|
||||
#pragma stage fragment
|
||||
layout(location = 0) in vec2 texcoord;
|
||||
layout(location = 1) in vec4 offset;
|
||||
layout(location = 0) out vec4 FragColor;
|
||||
layout(set = 0, binding = 2) uniform sampler2D Source;
|
||||
layout(set = 0, binding = 3) uniform sampler2D Original;
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Neighborhood Blending Pixel Shader (Third Pass)
|
||||
|
||||
vec4 SMAANeighborhoodBlendingPS(vec2 texcoord,
|
||||
vec4 offset,
|
||||
sampler2D colorTex,
|
||||
sampler2D blendTex
|
||||
#if SMAA_REPROJECTION
|
||||
, SMAATexture2D(velocityTex)
|
||||
#endif
|
||||
) {
|
||||
// Fetch the blending weights for current pixel:
|
||||
vec4 a;
|
||||
a.x = texture(blendTex, offset.xy).a; // Right
|
||||
a.y = texture(blendTex, offset.zw).g; // Top
|
||||
a.wz = texture(blendTex, texcoord).xz; // Bottom / Left
|
||||
|
||||
// Is there any blending weight with a value greater than 0.0?
|
||||
// SMAA_BRANCH
|
||||
if (dot(a, vec4(1.0, 1.0, 1.0, 1.0)) < 1e-5) {
|
||||
vec4 color = textureLod(colorTex, texcoord, 0.0);
|
||||
|
||||
#if SMAA_REPROJECTION
|
||||
vec2 velocity = SMAA_DECODE_VELOCITY(textureLod(velocityTex, texcoord, 0.0));
|
||||
|
||||
// Pack velocity into the alpha channel:
|
||||
color.a = sqrt(5.0 * length(velocity));
|
||||
#endif
|
||||
|
||||
return color;
|
||||
} else {
|
||||
bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical)
|
||||
|
||||
// Calculate the blending offsets:
|
||||
vec4 blendingOffset = vec4(0.0, a.y, 0.0, a.w);
|
||||
vec2 blendingWeight = a.yw;
|
||||
SMAAMovc(bvec4(h, h, h, h), blendingOffset, vec4(a.x, 0.0, a.z, 0.0));
|
||||
SMAAMovc(bvec2(h, h), blendingWeight, a.xz);
|
||||
blendingWeight /= dot(blendingWeight, vec2(1.0, 1.0));
|
||||
|
||||
// Calculate the texture coordinates:
|
||||
vec4 blendingCoord = fma(blendingOffset, vec4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy);
|
||||
|
||||
// We exploit bilinear filtering to mix current pixel with the chosen
|
||||
// neighbor:
|
||||
vec4 color = blendingWeight.x * textureLod(colorTex, blendingCoord.xy, 0.0);
|
||||
color += blendingWeight.y * textureLod(colorTex, blendingCoord.zw, 0.0);
|
||||
|
||||
#if SMAA_REPROJECTION
|
||||
// Antialias velocity for proper reprojection in a later stage:
|
||||
vec2 velocity = blendingWeight.x * SMAA_DECODE_VELOCITY(textureLod(velocityTex, blendingCoord.xy, 0.0));
|
||||
velocity += blendingWeight.y * SMAA_DECODE_VELOCITY(textureLod(velocityTex, blendingCoord.zw, 0.0));
|
||||
|
||||
// Pack velocity into the alpha channel:
|
||||
color.a = sqrt(5.0 * length(velocity));
|
||||
#endif
|
||||
|
||||
return color;
|
||||
}
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = SMAANeighborhoodBlendingPS(texcoord, offset, Original, Source);
|
||||
}
|
18
anti-aliasing/smaa.slangp
Normal file
18
anti-aliasing/smaa.slangp
Normal file
@ -0,0 +1,18 @@
|
||||
shaders = 3
|
||||
|
||||
shader0 = shaders/smaa/smaa-edge-detection.slang
|
||||
filter_linear0 = true
|
||||
scale_type0 = source
|
||||
scale0 = 1.0
|
||||
|
||||
shader1 = shaders/smaa/smaa-blend-weight-calculation.slang
|
||||
filter_linear1 = true
|
||||
scale_type1 = source
|
||||
scale1 = 1.0
|
||||
|
||||
shader2 = shaders/smaa/smaa-neighborhood-blending.slang
|
||||
filter_linear2 = true
|
||||
|
||||
textures = "areaTex;searchTex"
|
||||
areaTex = shaders/smaa/AreaTex.png
|
||||
searchTex = shaders/smaa/SearchTex.png
|
Loading…
Reference in New Issue
Block a user