add ntsc-adaptive, move some presets to it and remove redundant presets

This commit is contained in:
hunterk 2020-02-16 23:11:31 -06:00
parent 165b5787ae
commit df9b480805
11 changed files with 338 additions and 458 deletions

View File

@ -1,224 +0,0 @@
# IMPORTANT:
# Shader passes need to know details about the image in the mask_texture LUT
# files, so set the following constants in user-cgp-constants.h accordingly:
# 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's)
# 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's)
# 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's)
# 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1])
# 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1])
# 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1])
# Shader passes also need to know certain scales set in this .slangp, but their
# compilation model doesn't currently allow the .slangp file to tell them. Make
# sure to set the following constants in user-cgp-constants.h accordingly too:
# 1.) bloom_approx_scale_x = scale_x2
# 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5)
# Finally, shader passes need to know the value of geom_max_aspect_ratio used to
# calculate scale_y5 (among other values):
# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5)
shaders = "14"
# NTSC Shader Passes
shader0 = "../ntsc/shaders/ntsc-pass1-composite-2phase.slang"
shader1 = "../ntsc/shaders/ntsc-pass2-2phase.slang"
filter_linear0 = false
filter_linear1 = false
scale_type_x0 = absolute
scale_type_y0 = source
scale_x0 = 1280
scale_y0 = 1.0
frame_count_mod0 = 2
float_framebuffer0 = true
scale_type1 = source
scale_x1 = 0.5
scale_y1 = 1.0
# Set an identifier, filename, and sampling traits for the phosphor mask texture.
# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small
# non-mipmapped version and a large mipmapped version.
# TODO: Test masks in other directories.
textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large"
mask_grille_texture_small = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"
mask_grille_texture_large = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"
mask_slot_texture_small = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"
mask_slot_texture_large = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png"
mask_shadow_texture_small = "shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png"
mask_shadow_texture_large = "shaders/crt-royale/TileableLinearShadowMaskEDP.png"
mask_grille_texture_small_wrap_mode = "repeat"
mask_grille_texture_large_wrap_mode = "repeat"
mask_slot_texture_small_wrap_mode = "repeat"
mask_slot_texture_large_wrap_mode = "repeat"
mask_shadow_texture_small_wrap_mode = "repeat"
mask_shadow_texture_large_wrap_mode = "repeat"
mask_grille_texture_small_linear = "true"
mask_grille_texture_large_linear = "true"
mask_slot_texture_small_linear = "true"
mask_slot_texture_large_linear = "true"
mask_shadow_texture_small_linear = "true"
mask_shadow_texture_large_linear = "true"
mask_grille_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_grille_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_slot_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks
# Pass2: Linearize the input based on CRT gamma and bob interlaced fields.
# (Bobbing ensures we can immediately blur without getting artifacts.)
shader2 = "shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang"
alias2 = "ORIG_LINEARIZED"
filter_linear2 = "false"
scale_type2 = "source"
scale2 = "1.0"
srgb_framebuffer2 = "true"
# Pass3: Resample interlaced (and misconverged) scanlines vertically.
# Separating vertical/horizontal scanline sampling is faster: It lets us
# consider more scanlines while calculating weights for fewer pixels, and
# it reduces our samples from vertical*horizontal to vertical+horizontal.
# This has to come right after ORIG_LINEARIZED, because there's no
# "original_source" scale_type we can use later.
shader3 = "shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang"
alias3 = "VERTICAL_SCANLINES"
filter_linear3 = "true"
scale_type_x3 = "source"
scale_x3 = "1.0"
scale_type_y3 = "viewport"
scale_y3 = "1.0"
#float_framebuffer3 = "true"
srgb_framebuffer3 = "true"
# Pass4: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and
# account for convergence offsets. We want to blur a predictable portion of the
# screen to match the phosphor bloom, and absolute scale works best for
# reliable results with a fixed-size bloom. Picking a scale is tricky:
# a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough
# to blur high-res/interlaced sources but high enough that resampling
# doesn't smear low-res sources too much.
# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and
# the only noticeable visual difference is a larger halation spread (which
# may be a good thing for people who like to crank it up).
# Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's
# *intended* for an ~4:3 aspect ratio).
shader4 = "shaders/crt-royale/src/crt-royale-bloom-approx.slang"
alias4 = "BLOOM_APPROX"
filter_linear4 = "true"
scale_type4 = "absolute"
scale_x4 = "320"
scale_y4 = "240"
srgb_framebuffer4 = "true"
# Pass5: Vertically blur the input for halation and refractive diffusion.
# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring
# a constant portion of the screen is probably physically correct if the
# viewport resolution is proportional to the simulated CRT size.
shader5 = "../blurs/blur9fast-vertical.slang"
filter_linear5 = "true"
scale_type5 = "source"
scale5 = "1.0"
srgb_framebuffer5 = "true"
# Pass6: Horizontally blur the input for halation and refractive diffusion.
# Note: Using a one-pass 9x9 blur is about 1% slower.
shader6 = "../blurs/blur9fast-horizontal.slang"
alias6 = "HALATION_BLUR"
filter_linear6 = "true"
scale_type6 = "source"
scale6 = "1.0"
srgb_framebuffer6 = "true"
# Pass7: Lanczos-resize the phosphor mask vertically. Set the absolute
# scale_x7 == mask_texture_small_size.x (see IMPORTANT above). Larger scales
# will blur, and smaller scales could get nasty. The vertical size must be
# based on the viewport size and calculated carefully to avoid artifacts later.
# First calculate the minimum number of mask tiles we need to draw.
# Since curvature is computed after the scanline masking pass:
# num_resized_mask_tiles = 2.0;
# If curvature were computed in the scanline masking pass (it's not):
# max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0);
# max_mask_tile_border = max_mask_texel_border/
# (min_resized_phosphor_triad_size * mask_triads_per_tile);
# num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0);
# At typical values (triad_size >= 2.0, mask_triads_per_tile == 8):
# num_resized_mask_tiles = ~3.8
# Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio
# to relate them to vertical resolution. The widest we expect is:
# geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this!
# The fewer triads we tile across the screen, the larger each triad will be as a
# fraction of the viewport size, and the larger scale_y5 must be to draw a full
# num_resized_mask_tiles. Therefore, we must decide the smallest number of
# triads we'll guarantee can be displayed on screen. We'll set this according
# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use):
# min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333
# Now calculate the viewport scale that ensures we can draw resized_mask_tiles:
# min_scale_x = resized_mask_tiles * mask_triads_per_tile /
# min_allowed_viewport_triads
# scale_y7 = geom_max_aspect_ratio * min_scale_x
# # Some code might depend on equal scales:
# scale_x8 = scale_y7
# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads:
# scale_y7 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625
# IMPORTANT: The scales MUST be calculated in this way. If you wish to change
# geom_max_aspect_ratio, update that constant in user-cgp-constants.h!
shader7 = "shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang"
filter_linear7 = "true"
scale_type_x7 = "absolute"
scale_x7 = "64"
scale_type_y7 = "viewport"
scale_y7 = "0.0625" # Safe for >= 341.333 horizontal triads at viewport size
#srgb_framebuffer7 = "false" # mask_texture is already assumed linear
# Pass8: Lanczos-resize the phosphor mask horizontally. scale_x8 = scale_y7.
# TODO: Check again if the shaders actually require equal scales.
shader8 = "shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
alias8 = "MASK_RESIZE"
filter_linear8 = "false"
scale_type_x8 = "viewport"
scale_x8 = "0.0625"
scale_type_y8 = "source"
scale_y8 = "1.0"
#srgb_framebuffer8 = "false" # mask_texture is already assumed linear
# Pass9: Resample (misconverged) scanlines horizontally, apply halation, and
# apply the phosphor mask.
shader9 = "shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang"
alias9 = "MASKED_SCANLINES"
filter_linear9 = "true" # This could just as easily be nearest neighbor.
scale_type9 = "viewport"
scale9 = "1.0"
#float_framebuffer9 = "true"
srgb_framebuffer9 = "true"
# Pass 10: Compute a brightpass. This will require reading the final mask.
shader10 = "shaders/crt-royale/src/crt-royale-brightpass.slang"
alias10 = "BRIGHTPASS"
filter_linear10 = "true" # This could just as easily be nearest neighbor.
scale_type10 = "viewport"
scale10 = "1.0"
srgb_framebuffer10 = "true"
# Pass 11: Blur the brightpass vertically
shader11 = "shaders/crt-royale/src/crt-royale-bloom-vertical.slang"
filter_linear11 = "true" # This could just as easily be nearest neighbor.
scale_type11 = "source"
scale11 = "1.0"
srgb_framebuffer11 = "true"
# Pass 12: Blur the brightpass horizontally and combine it with the dimpass:
shader12 = "shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang"
filter_linear12 = "true"
scale_type12 = "source"
scale12 = "1.0"
srgb_framebuffer12 = "true"
# Pass 13: Compute curvature/AA:
shader13 = "shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang"
filter_linear13 = "true"
scale_type13 = "viewport"
mipmap_input13 = "true"
texture_wrap_mode13 = "clamp_to_edge"

View File

@ -1,224 +0,0 @@
# IMPORTANT:
# Shader passes need to know details about the image in the mask_texture LUT
# files, so set the following constants in user-cgp-constants.h accordingly:
# 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's)
# 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's)
# 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's)
# 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1])
# 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1])
# 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1])
# Shader passes also need to know certain scales set in this .slangp, but their
# compilation model doesn't currently allow the .slangp file to tell them. Make
# sure to set the following constants in user-cgp-constants.h accordingly too:
# 1.) bloom_approx_scale_x = scale_x2
# 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5)
# Finally, shader passes need to know the value of geom_max_aspect_ratio used to
# calculate scale_y5 (among other values):
# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5)
shaders = "14"
# NTSC Shader Passes
shader0 = "../ntsc/shaders/ntsc-pass1-svideo-2phase.slang"
shader1 = "../ntsc/shaders/ntsc-pass2-2phase.slang"
filter_linear0 = false
filter_linear1 = false
scale_type_x0 = absolute
scale_type_y0 = source
scale_x0 = 1920
scale_y0 = 1.0
frame_count_mod0 = 2
float_framebuffer0 = true
scale_type1 = source
scale_x1 = 0.5
scale_y1 = 1.0
# Set an identifier, filename, and sampling traits for the phosphor mask texture.
# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small
# non-mipmapped version and a large mipmapped version.
# TODO: Test masks in other directories.
textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large"
mask_grille_texture_small = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"
mask_grille_texture_large = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"
mask_slot_texture_small = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"
mask_slot_texture_large = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png"
mask_shadow_texture_small = "shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png"
mask_shadow_texture_large = "shaders/crt-royale/TileableLinearShadowMaskEDP.png"
mask_grille_texture_small_wrap_mode = "repeat"
mask_grille_texture_large_wrap_mode = "repeat"
mask_slot_texture_small_wrap_mode = "repeat"
mask_slot_texture_large_wrap_mode = "repeat"
mask_shadow_texture_small_wrap_mode = "repeat"
mask_shadow_texture_large_wrap_mode = "repeat"
mask_grille_texture_small_linear = "true"
mask_grille_texture_large_linear = "true"
mask_slot_texture_small_linear = "true"
mask_slot_texture_large_linear = "true"
mask_shadow_texture_small_linear = "true"
mask_shadow_texture_large_linear = "true"
mask_grille_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_grille_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_slot_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_slot_texture_large_mipmap = "true" # Essential for hardware-resized masks
mask_shadow_texture_small_mipmap = "false" # Mipmapping causes artifacts with manually resized masks without tex2Dlod
mask_shadow_texture_large_mipmap = "true" # Essential for hardware-resized masks
# Pass2: Linearize the input based on CRT gamma and bob interlaced fields.
# (Bobbing ensures we can immediately blur without getting artifacts.)
shader2 = "shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang"
alias2 = "ORIG_LINEARIZED"
filter_linear2 = "false"
scale_type2 = "source"
scale2 = "1.0"
srgb_framebuffer2 = "true"
# Pass3: Resample interlaced (and misconverged) scanlines vertically.
# Separating vertical/horizontal scanline sampling is faster: It lets us
# consider more scanlines while calculating weights for fewer pixels, and
# it reduces our samples from vertical*horizontal to vertical+horizontal.
# This has to come right after ORIG_LINEARIZED, because there's no
# "original_source" scale_type we can use later.
shader3 = "shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang"
alias3 = "VERTICAL_SCANLINES"
filter_linear3 = "true"
scale_type_x3 = "source"
scale_x3 = "1.0"
scale_type_y3 = "viewport"
scale_y3 = "1.0"
#float_framebuffer3 = "true"
srgb_framebuffer3 = "true"
# Pass4: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and
# account for convergence offsets. We want to blur a predictable portion of the
# screen to match the phosphor bloom, and absolute scale works best for
# reliable results with a fixed-size bloom. Picking a scale is tricky:
# a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough
# to blur high-res/interlaced sources but high enough that resampling
# doesn't smear low-res sources too much.
# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and
# the only noticeable visual difference is a larger halation spread (which
# may be a good thing for people who like to crank it up).
# Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's
# *intended* for an ~4:3 aspect ratio).
shader4 = "shaders/crt-royale/src/crt-royale-bloom-approx.slang"
alias4 = "BLOOM_APPROX"
filter_linear4 = "true"
scale_type4 = "absolute"
scale_x4 = "320"
scale_y4 = "240"
srgb_framebuffer4 = "true"
# Pass5: Vertically blur the input for halation and refractive diffusion.
# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring
# a constant portion of the screen is probably physically correct if the
# viewport resolution is proportional to the simulated CRT size.
shader5 = "../blurs/blur9fast-vertical.slang"
filter_linear5 = "true"
scale_type5 = "source"
scale5 = "1.0"
srgb_framebuffer5 = "true"
# Pass6: Horizontally blur the input for halation and refractive diffusion.
# Note: Using a one-pass 9x9 blur is about 1% slower.
shader6 = "../blurs/blur9fast-horizontal.slang"
alias6 = "HALATION_BLUR"
filter_linear6 = "true"
scale_type6 = "source"
scale6 = "1.0"
srgb_framebuffer6 = "true"
# Pass7: Lanczos-resize the phosphor mask vertically. Set the absolute
# scale_x7 == mask_texture_small_size.x (see IMPORTANT above). Larger scales
# will blur, and smaller scales could get nasty. The vertical size must be
# based on the viewport size and calculated carefully to avoid artifacts later.
# First calculate the minimum number of mask tiles we need to draw.
# Since curvature is computed after the scanline masking pass:
# num_resized_mask_tiles = 2.0;
# If curvature were computed in the scanline masking pass (it's not):
# max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0);
# max_mask_tile_border = max_mask_texel_border/
# (min_resized_phosphor_triad_size * mask_triads_per_tile);
# num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0);
# At typical values (triad_size >= 2.0, mask_triads_per_tile == 8):
# num_resized_mask_tiles = ~3.8
# Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio
# to relate them to vertical resolution. The widest we expect is:
# geom_max_aspect_ratio = 4.0/3.0 # Note: Shader passes need to know this!
# The fewer triads we tile across the screen, the larger each triad will be as a
# fraction of the viewport size, and the larger scale_y5 must be to draw a full
# num_resized_mask_tiles. Therefore, we must decide the smallest number of
# triads we'll guarantee can be displayed on screen. We'll set this according
# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use):
# min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333
# Now calculate the viewport scale that ensures we can draw resized_mask_tiles:
# min_scale_x = resized_mask_tiles * mask_triads_per_tile /
# min_allowed_viewport_triads
# scale_y7 = geom_max_aspect_ratio * min_scale_x
# # Some code might depend on equal scales:
# scale_x8 = scale_y7
# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads:
# scale_y7 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625
# IMPORTANT: The scales MUST be calculated in this way. If you wish to change
# geom_max_aspect_ratio, update that constant in user-cgp-constants.h!
shader7 = "shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang"
filter_linear7 = "true"
scale_type_x7 = "absolute"
scale_x7 = "64"
scale_type_y7 = "viewport"
scale_y7 = "0.0625" # Safe for >= 341.333 horizontal triads at viewport size
#srgb_framebuffer7 = "false" # mask_texture is already assumed linear
# Pass8: Lanczos-resize the phosphor mask horizontally. scale_x8 = scale_y7.
# TODO: Check again if the shaders actually require equal scales.
shader8 = "shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
alias8 = "MASK_RESIZE"
filter_linear8 = "false"
scale_type_x8 = "viewport"
scale_x8 = "0.0625"
scale_type_y8 = "source"
scale_y8 = "1.0"
#srgb_framebuffer8 = "false" # mask_texture is already assumed linear
# Pass9: Resample (misconverged) scanlines horizontally, apply halation, and
# apply the phosphor mask.
shader9 = "shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang"
alias9 = "MASKED_SCANLINES"
filter_linear9 = "true" # This could just as easily be nearest neighbor.
scale_type9 = "viewport"
scale9 = "1.0"
#float_framebuffer9 = "true"
srgb_framebuffer9 = "true"
# Pass 10: Compute a brightpass. This will require reading the final mask.
shader10 = "shaders/crt-royale/src/crt-royale-brightpass.slang"
alias10 = "BRIGHTPASS"
filter_linear10 = "true" # This could just as easily be nearest neighbor.
scale_type10 = "viewport"
scale10 = "1.0"
srgb_framebuffer10 = "true"
# Pass 11: Blur the brightpass vertically
shader11 = "shaders/crt-royale/src/crt-royale-bloom-vertical.slang"
filter_linear11 = "true" # This could just as easily be nearest neighbor.
scale_type11 = "source"
scale11 = "1.0"
srgb_framebuffer11 = "true"
# Pass 12: Blur the brightpass horizontally and combine it with the dimpass:
shader12 = "shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang"
filter_linear12 = "true"
scale_type12 = "source"
scale12 = "1.0"
srgb_framebuffer12 = "true"
# Pass 13: Compute curvature/AA:
shader13 = "shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang"
filter_linear13 = "true"
scale_type13 = "viewport"
mipmap_input13 = "true"
texture_wrap_mode13 = "clamp_to_edge"

View File

@ -19,8 +19,8 @@
shaders = "14"
# NTSC Shader Passes
shader0 = "../ntsc/shaders/ntsc-pass1-composite-3phase.slang"
shader1 = "../ntsc/shaders/ntsc-pass2-3phase.slang"
shader0 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang"
shader1 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang"
filter_linear0 = false
filter_linear1 = false

View File

@ -19,8 +19,8 @@
shaders = "14"
# NTSC Shader Passes
shader0 = "../ntsc/shaders/ntsc-pass1-svideo-3phase.slang"
shader1 = "../ntsc/shaders/ntsc-pass2-3phase.slang"
shader0 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang"
shader1 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang"
filter_linear0 = false
filter_linear1 = false
@ -222,3 +222,6 @@ scale_type13 = "viewport"
mipmap_input13 = "true"
texture_wrap_mode13 = "clamp_to_edge"
parameters = "quality"
quality = 1.0

14
ntsc/ntsc-adaptive.slangp Normal file
View File

@ -0,0 +1,14 @@
shaders = 2
shader0 = shaders/ntsc-adaptive/ntsc-pass1.slang
scale_type0 = source
scale_x0 = 4.0
filter_linear0 = false
scale_y0 = 1.0
float_framebuffer0 = true
shader1 = shaders/ntsc-adaptive/ntsc-pass2.slang
scale_type1 = source
scale_x1 = 0.5
scale_y1 = 1.0
filter_linear1 = false

View File

@ -0,0 +1,90 @@
#version 450
// NTSC-Adaptive
// based on Themaister's NTSC shader
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
uint FrameCount;
float quality, bw;
} global;
#pragma parameter quality "Quality (Composite = 0, Svideo = 1)" 0.0 0.0 1.0 1.0
#pragma parameter bw "Black and White" 0.0 0.0 1.0 1.0
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
layout(location = 1) out vec2 pix_no;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
pix_no = TexCoord * global.SourceSize.xy * (global.OutputSize.xy / global.SourceSize.xy);
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 1) in vec2 pix_no;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
#define PI 3.14159265
float phase = (global.OriginalSize.x > 300.0) ? 2.0 : 3.0;
float CHROMA_MOD_FREQ = (phase < 2.5) ? (4.0 * PI / 15.0) : (PI / 3.0);
float ARTIFACTING = 1.0 - global.quality;
float FRINGING = 1.0 - global.quality;
float SATURATION = 1.0 - global.bw;
// prevent some very slight clipping that happens at 1.0
const float BRIGHTNESS = 0.95;
mat3 mix_mat = mat3(
BRIGHTNESS, FRINGING, FRINGING,
ARTIFACTING, 2.0 * SATURATION, 0.0,
ARTIFACTING, 0.0, 2.0 * SATURATION
);
const mat3 yiq2rgb_mat = mat3(
1.0, 0.956, 0.6210,
1.0, -0.2720, -0.6474,
1.0, -1.1060, 1.7046);
vec3 yiq2rgb(vec3 yiq)
{
return yiq * yiq2rgb_mat;
}
const mat3 yiq_mat = mat3(
0.2989, 0.5870, 0.1140,
0.5959, -0.2744, -0.3216,
0.2115, -0.5229, 0.3114
);
vec3 rgb2yiq(vec3 col)
{
return col * yiq_mat;
}
void main()
{
vec3 col = texture(Source, vTexCoord).rgb;
vec3 yiq = rgb2yiq(col);
float chroma_phase = (phase < 2.5) ? PI * (mod(pix_no.y, 2.0) + mod(global.FrameCount, 2.)) : 0.6667 * PI * (mod(pix_no.y, 3.0) + mod(global.FrameCount, 2.));
float mod_phase = chroma_phase + pix_no.x * CHROMA_MOD_FREQ;
float i_mod = cos(mod_phase);
float q_mod = sin(mod_phase);
yiq.yz *= vec2(i_mod, q_mod); // Modulate.
yiq *= mix_mat; // Cross-talk.
yiq.yz *= vec2(i_mod, q_mod); // Demodulate.
FragColor = vec4(yiq, 1.0);
}

View File

@ -0,0 +1,221 @@
#version 450
// NTSC-Adaptive
// based on Themaister's NTSC shader
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
vec4 OutputSize;
vec4 OriginalSize;
vec4 SourceSize;
float linearize;
} global;
#pragma parameter linearize "Linearize Output Gamma" 0.0 0.0 1.0 1.0
#define fetch_offset(offset, one_x) \
texture(Source, vTexCoord + vec2((offset) * (one_x), 0.0)).xyz
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord - vec2(0.5 / global.SourceSize.x, 0.0); // Compensate for decimate-by-2.
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
float phase = (global.OriginalSize.x > 300.0) ? 2.0 : 3.0;
const mat3 yiq2rgb_mat = mat3(
1.0, 0.956, 0.6210,
1.0, -0.2720, -0.6474,
1.0, -1.1060, 1.7046);
vec3 yiq2rgb(vec3 yiq)
{
return yiq * yiq2rgb_mat;
}
const mat3 yiq_mat = mat3(
0.2989, 0.5870, 0.1140,
0.5959, -0.2744, -0.3216,
0.2115, -0.5229, 0.3114
);
vec3 rgb2yiq(vec3 col)
{
return col * yiq_mat;
}
const int TAPS_2_phase = 32;
const float luma_filter_2_phase[33] = float[33](
-0.000174844,
-0.000205844,
-0.000149453,
-0.000051693,
0.000000000,
-0.000066171,
-0.000245058,
-0.000432928,
-0.000472644,
-0.000252236,
0.000198929,
0.000687058,
0.000944112,
0.000803467,
0.000363199,
0.000013422,
0.000253402,
0.001339461,
0.002932972,
0.003983485,
0.003026683,
-0.001102056,
-0.008373026,
-0.016897700,
-0.022914480,
-0.021642347,
-0.008863273,
0.017271957,
0.054921920,
0.098342579,
0.139044281,
0.168055832,
0.178571429);
const float chroma_filter_2_phase[33] = float[33](
0.001384762,
0.001678312,
0.002021715,
0.002420562,
0.002880460,
0.003406879,
0.004004985,
0.004679445,
0.005434218,
0.006272332,
0.007195654,
0.008204665,
0.009298238,
0.010473450,
0.011725413,
0.013047155,
0.014429548,
0.015861306,
0.017329037,
0.018817382,
0.020309220,
0.021785952,
0.023227857,
0.024614500,
0.025925203,
0.027139546,
0.028237893,
0.029201910,
0.030015081,
0.030663170,
0.031134640,
0.031420995,
0.031517031);
const int TAPS_3_phase = 24;
const float luma_filter_3_phase[25] = float[25](
-0.000012020,
-0.000022146,
-0.000013155,
-0.000012020,
-0.000049979,
-0.000113940,
-0.000122150,
-0.000005612,
0.000170516,
0.000237199,
0.000169640,
0.000285688,
0.000984574,
0.002018683,
0.002002275,
-0.000909882,
-0.007049081,
-0.013222860,
-0.012606931,
0.002460860,
0.035868225,
0.084016453,
0.135563500,
0.175261268,
0.190176552);
const float chroma_filter_3_phase[25] = float[25](
-0.000118847,
-0.000271306,
-0.000502642,
-0.000930833,
-0.001451013,
-0.002064744,
-0.002700432,
-0.003241276,
-0.003524948,
-0.003350284,
-0.002491729,
-0.000721149,
0.002164659,
0.006313635,
0.011789103,
0.018545660,
0.026414396,
0.035100710,
0.044196567,
0.053207202,
0.061590275,
0.068803602,
0.074356193,
0.077856564,
0.079052396);
void main()
{
float one_x = global.SourceSize.z;
vec3 signal = vec3(0.0);
if(phase < 2.5)
{
for (int i = 0; i < TAPS_2_phase; i++)
{
float offset = float(i);
vec3 sums = fetch_offset(offset - float(TAPS_2_phase), one_x) +
fetch_offset(float(TAPS_2_phase) - offset, one_x);
signal += sums * vec3(luma_filter_2_phase[i], chroma_filter_2_phase[i], chroma_filter_2_phase[i]);
}
signal += texture(Source, vTexCoord).xyz *
vec3(luma_filter_2_phase[TAPS_2_phase], chroma_filter_2_phase[TAPS_2_phase], chroma_filter_2_phase[TAPS_2_phase]);
}
else if(phase > 2.5)
{
for (int i = 0; i < TAPS_3_phase; i++)
{
float offset = float(i);
vec3 sums = fetch_offset(offset - float(TAPS_3_phase), one_x) +
fetch_offset(float(TAPS_3_phase) - offset, one_x);
signal += sums * vec3(luma_filter_3_phase[i], chroma_filter_3_phase[i], chroma_filter_3_phase[i]);
}
signal += texture(Source, vTexCoord).xyz *
vec3(luma_filter_3_phase[TAPS_3_phase], chroma_filter_3_phase[TAPS_3_phase], chroma_filter_3_phase[TAPS_3_phase]);
}
vec3 rgb = yiq2rgb(signal);
FragColor = vec4(rgb, 1.0);
if(global.linearize < 0.5) return;
else FragColor = pow(FragColor, vec4(2.2));
}

View File

@ -1,7 +1,7 @@
shaders = 12
shader0 = ../ntsc/shaders/ntsc-pass1-composite-3phase.slang
shader1 = ../ntsc/shaders/ntsc-pass2-3phase-gamma.slang
shader0 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang
shader1 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang
filter_linear0 = false
filter_linear1 = false

View File

@ -6,8 +6,8 @@ scale_type_x0 = source
scale_type_y0 = absolute
scale_y0 = 240
shader1 = ../ntsc/shaders/ntsc-pass1-composite-2phase.slang
shader2 = ../ntsc/shaders/ntsc-pass2-2phase-gamma.slang
shader1 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang
shader2 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang
filter_linear1 = false
filter_linear2 = false

View File

@ -1,7 +1,7 @@
shaders = 12
shader0 = ../ntsc/shaders/ntsc-pass1-composite-2phase.slang
shader1 = ../ntsc/shaders/ntsc-pass2-2phase-gamma.slang
shader0 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang
shader1 = ../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang
filter_linear0 = false
filter_linear1 = false