add mame-ntsc

This commit is contained in:
hunterk 2016-11-29 13:05:52 -06:00
parent cdd260242e
commit e1fe670222
3 changed files with 321 additions and 0 deletions

9
ntsc/mame-ntsc.slangp Normal file
View File

@ -0,0 +1,9 @@
shaders = 2
shader0 = shaders/mame-ntsc/ntsc-mame-pass0.slang
scale_type0 = source
scale0 = 1.0
shader1 = shaders/mame-ntsc/ntsc-mame-pass1.slang
scale_type1 = source
scale1 = 1.0

View File

@ -0,0 +1,132 @@
#version 450
// This is a port of the NTSC encode/decode shader pair in MAME and MESS, modified to use only
// one pass rather than an encode pass and a decode pass. It accurately emulates the sort of
// signal decimation one would see when viewing a composite signal, though it could benefit from a
// pre-pass to re-size the input content to more accurately reflect the actual size that would
// be incoming from a composite signal source.
//
// To encode the composite signal, I convert the RGB value to YIQ, then subsequently evaluate
// the standard NTSC composite equation. Four composite samples per RGB pixel are generated from
// the incoming linearly-interpolated texels.
//
// The decode pass implements a Fixed Impulse Response (FIR) filter designed by MAME/MESS contributor
// "austere" in matlab (if memory serves correctly) to mimic the behavior of a standard television set
// as closely as possible. The filter window is 83 composite samples wide, and there is an additional
// notch filter pass on the luminance (Y) values in order to strip the color signal from the luminance
// signal prior to processing.
//
// - UltraMoogleMan [8/2/2013]
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
#define float2 vec2
#define float3 vec3
#define float4 vec4
//-----------------------------------------------------------------------------
// NTSC Pixel Shader
//-----------------------------------------------------------------------------
const float AValue = 0.5f;
const float BValue = 0.5f;
const float CCValue = 3.5795454f;
const float OValue = 0.0f;
const float PValue = 1.0f;
const float ScanTime = 52.6f;
const float NotchHalfWidth = 1.0f;
const float YFreqResponse = 6.0f;
const float IFreqResponse = 1.2f;
const float QFreqResponse = 0.6f;
const float SignalOffset = 0.0f;
//-----------------------------------------------------------------------------
// Constants
//-----------------------------------------------------------------------------
const float PI = 3.1415927f;
const float PI2 = 6.2830854f;
const float4 YDot = float4(0.299f, 0.587f, 0.114f, 0.0f);
const float4 IDot = float4(0.595716f, -0.274453f, -0.321263f, 0.0f);
const float4 QDot = float4(0.211456f, -0.522591f, 0.311135f, 0.0f);
const float3 RDot = float3(1.0f, 0.956f, 0.621f);
const float3 GDot = float3(1.0f, -0.272f, -0.647f);
const float3 BDot = float3(1.0f, -1.106f, 1.703f);
const float4 OffsetX = float4(0.0f, 0.25f, 0.50f, 0.75f);
const float4 NotchOffset = float4(0.0f, 1.0f, 2.0f, 3.0f);
const int SampleCount = 64;
const int HalfSampleCount = 32;
float4 GetCompositeYIQ(sampler2D tex, float2 TexCoord, float2 size)
{
float2 PValueSourceTexel = float2(PValue / size.x, 0.0f);
float2 C0 = TexCoord + PValueSourceTexel * OffsetX.x;
float2 C1 = TexCoord + PValueSourceTexel * OffsetX.y;
float2 C2 = TexCoord + PValueSourceTexel * OffsetX.z;
float2 C3 = TexCoord + PValueSourceTexel * OffsetX.w;
float4 Cx = float4(C0.x, C1.x, C2.x, C3.x);
float4 Cy = float4(C0.y, C1.y, C2.y, C3.y);
float4 Texel0 = texture(tex, C0);
float4 Texel1 = texture(tex, C1);
float4 Texel2 = texture(tex, C2);
float4 Texel3 = texture(tex, C3);
float4 HPosition = Cx;
float4 VPosition = Cy;
float4 Y = float4(dot(Texel0, YDot), dot(Texel1, YDot), dot(Texel2, YDot), dot(Texel3, YDot));
float4 I = float4(dot(Texel0, IDot), dot(Texel1, IDot), dot(Texel2, IDot), dot(Texel3, IDot));
float4 Q = float4(dot(Texel0, QDot), dot(Texel1, QDot), dot(Texel2, QDot), dot(Texel3, QDot));
float W = PI2 * CCValue * ScanTime;
float WoPI = W / PI;
float HOffset = (BValue + SignalOffset) / WoPI;
float VScale = (AValue * size.y) / WoPI;
float4 T = HPosition + HOffset + VPosition * VScale;
float4 TW = T * W;
float4 CompositeYIQ = Y + I * cos(TW) + Q * sin(TW);
return CompositeYIQ;
}
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
void main()
{
FragColor = GetCompositeYIQ(Source, vTexCoord, params.SourceSize.xy);
}

View File

@ -0,0 +1,180 @@
#version 450
// This is a port of the NTSC encode/decode shader pair in MAME and MESS, modified to use only
// one pass rather than an encode pass and a decode pass. It accurately emulates the sort of
// signal decimation one would see when viewing a composite signal, though it could benefit from a
// pre-pass to re-size the input content to more accurately reflect the actual size that would
// be incoming from a composite signal source.
//
// To encode the composite signal, I convert the RGB value to YIQ, then subsequently evaluate
// the standard NTSC composite equation. Four composite samples per RGB pixel are generated from
// the incoming linearly-interpolated texels.
//
// The decode pass implements a Fixed Impulse Response (FIR) filter designed by MAME/MESS contributor
// "austere" in matlab (if memory serves correctly) to mimic the behavior of a standard television set
// as closely as possible. The filter window is 83 composite samples wide, and there is an additional
// notch filter pass on the luminance (Y) values in order to strip the color signal from the luminance
// signal prior to processing.
//
// - UltraMoogleMan [8/2/2013]
layout(push_constant) uniform Push
{
vec4 SourceSize;
vec4 OriginalSize;
vec4 OutputSize;
uint FrameCount;
} params;
layout(std140, set = 0, binding = 0) uniform UBO
{
mat4 MVP;
} global;
#define float2 vec2
#define float3 vec3
#define float4 vec4
//-----------------------------------------------------------------------------
// NTSC Pixel Shader
//-----------------------------------------------------------------------------
const float AValue = 0.5f;
const float BValue = 0.5f;
const float CCValue = 3.5795454f;
const float OValue = 0.0f;
const float PValue = 1.0f;
const float ScanTime = 52.6f;
const float NotchHalfWidth = 1.0f;
const float YFreqResponse = 6.0f;
const float IFreqResponse = 1.2f;
const float QFreqResponse = 0.6f;
const float SignalOffset = 0.0f;
//-----------------------------------------------------------------------------
// Constants
//-----------------------------------------------------------------------------
const float PI = 3.1415927f;
const float PI2 = 6.2830854f;
const float4 YDot = float4(0.299f, 0.587f, 0.114f, 0.0f);
const float4 IDot = float4(0.595716f, -0.274453f, -0.321263f, 0.0f);
const float4 QDot = float4(0.211456f, -0.522591f, 0.311135f, 0.0f);
const float3 RDot = float3(1.0f, 0.956f, 0.621f);
const float3 GDot = float3(1.0f, -0.272f, -0.647f);
const float3 BDot = float3(1.0f, -1.106f, 1.703f);
const float4 OffsetX = float4(0.0f, 0.25f, 0.50f, 0.75f);
const float4 NotchOffset = float4(0.0f, 1.0f, 2.0f, 3.0f);
const int SampleCount = 64;
const int HalfSampleCount = 32;
#pragma stage vertex
layout(location = 0) in vec4 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 0) out vec2 vTexCoord;
void main()
{
gl_Position = global.MVP * Position;
vTexCoord = TexCoord;
}
#pragma stage fragment
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
layout(set = 0, binding = 2) uniform sampler2D Source;
layout(set = 0, binding = 3) uniform sampler2D Original;
void main()
{
float4 BaseTexel = texture(Original, vTexCoord);
vec2 size = params.SourceSize.xy;//(params.SourceSize.y > 400.0) ? params.SourceSize.xy : params.SourceSize.xy * vec2(1.0, 0.5);
float TimePerSample = ScanTime / (size.x * 4.0f);
float Fc_y1 = (CCValue - NotchHalfWidth) * TimePerSample;
float Fc_y2 = (CCValue + NotchHalfWidth) * TimePerSample;
float Fc_y3 = YFreqResponse * TimePerSample;
float Fc_i = IFreqResponse * TimePerSample;
float Fc_q = QFreqResponse * TimePerSample;
float Fc_i_2 = Fc_i * 2.0f;
float Fc_q_2 = Fc_q * 2.0f;
float Fc_y1_2 = Fc_y1 * 2.0f;
float Fc_y2_2 = Fc_y2 * 2.0f;
float Fc_y3_2 = Fc_y3 * 2.0f;
float Fc_i_pi2 = Fc_i * PI2;
float Fc_q_pi2 = Fc_q * PI2;
float Fc_y1_pi2 = Fc_y1 * PI2;
float Fc_y2_pi2 = Fc_y2 * PI2;
float Fc_y3_pi2 = Fc_y3 * PI2;
float PI2Length = PI2 / SampleCount;
float W = PI2 * CCValue * ScanTime;
float WoPI = W / PI;
float HOffset = (BValue + SignalOffset) / WoPI;
float VScale = (AValue * size.y) / WoPI;
float4 YAccum = vec4(0.0);
float4 IAccum = vec4(0.0);
float4 QAccum = vec4(0.0);
float4 Cy = vec4(vTexCoord.y);
float4 VPosition = Cy;
for (float i = 0; i < SampleCount; i += 4.0f)
{
float n = i - HalfSampleCount;
float4 n4 = n + NotchOffset;
float4 Cx = vTexCoord.x + (n4 * 0.25f) / size.x;
float4 HPosition = Cx;
float4 C = texture(Source, float2(Cx.r, Cy.r));
float4 T = HPosition + HOffset + VPosition * VScale;
float4 WT = W * T + OValue;
float4 SincKernel = 0.54f + 0.46f * cos(PI2Length * n4);
float4 SincYIn1 = Fc_y1_pi2 * n4;
float4 SincYIn2 = Fc_y2_pi2 * n4;
float4 SincYIn3 = Fc_y3_pi2 * n4;
float4 SincIIn = Fc_i_pi2 * n4;
float4 SincQIn = Fc_q_pi2 * n4;
float4 SincY1 = (notEqual(SincYIn1 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn1) / SincYIn1 : vec4(0.5);
float4 SincY2 = (notEqual(SincYIn2 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn2) / SincYIn2 : vec4(0.5);
float4 SincY3 = (notEqual(SincYIn3 , vec4(0.0)) == bvec4(true)) ? sin(SincYIn3) / SincYIn3 : vec4(0.5);
float4 IdealY = (Fc_y1_2 * SincY1 - Fc_y2_2 * SincY2) + Fc_y3_2 * SincY3;
float4 IdealI = Fc_i_2 * ((notEqual(SincIIn , vec4(0.0)) == bvec4(true)) ? sin(SincIIn) / SincIIn : vec4(0.5));
float4 IdealQ = Fc_q_2 * ((notEqual(SincQIn , vec4(0.0)) == bvec4(true)) ? sin(SincQIn) / SincQIn : vec4(0.5));
float4 FilterY = SincKernel * IdealY;
float4 FilterI = SincKernel * IdealI;
float4 FilterQ = SincKernel * IdealQ;
YAccum = YAccum + C * FilterY;
IAccum = IAccum + C * cos(WT) * FilterI;
QAccum = QAccum + C * sin(WT) * FilterQ;
}
float3 YIQ = float3(
(YAccum.r + YAccum.g + YAccum.b + YAccum.a),
(IAccum.r + IAccum.g + IAccum.b + IAccum.a) * 2.0f,
(QAccum.r + QAccum.g + QAccum.b + QAccum.a) * 2.0f);
float3 RGB = float3(
dot(YIQ, RDot),
dot(YIQ, GDot),
dot(YIQ, BDot));
FragColor = vec4(RGB, BaseTexel.a);
}