mirror of
https://github.com/libretro/slang-shaders.git
synced 2024-11-23 00:10:03 +00:00
ea8683bc61
add some basic grayscale / luma conversions, fix up some style inconsistencies and add some informational comments about some of the color spaces.
441 lines
14 KiB
C
441 lines
14 KiB
C
// Colorspace Tools
|
|
// ported from Asmodean's PsxFX Shader Suite v2.00
|
|
// NTSC color code from SimoneT
|
|
// Jzazbz code from torridgristle
|
|
// License: GPL v2+
|
|
|
|
/*------------------------------------------------------------------------------
|
|
[GAMMA CORRECTION CODE SECTION]
|
|
------------------------------------------------------------------------------*/
|
|
|
|
vec3 EncodeGamma(vec3 color, float gamma)
|
|
{
|
|
color = clamp(color, 0.0, 1.0);
|
|
color.r = (color.r <= 0.0404482362771082) ?
|
|
color.r / 12.92 : pow((color.r + 0.055) / 1.055, gamma);
|
|
color.g = (color.g <= 0.0404482362771082) ?
|
|
color.g / 12.92 : pow((color.g + 0.055) / 1.055, gamma);
|
|
color.b = (color.b <= 0.0404482362771082) ?
|
|
color.b / 12.92 : pow((color.b + 0.055) / 1.055, gamma);
|
|
|
|
return color;
|
|
}
|
|
|
|
vec3 DecodeGamma(vec3 color, float gamma)
|
|
{
|
|
color = clamp(color, 0.0, 1.0);
|
|
color.r = (color.r <= 0.00313066844250063) ?
|
|
color.r * 12.92 : 1.055 * pow(color.r, 1.0 / gamma) - 0.055;
|
|
color.g = (color.g <= 0.00313066844250063) ?
|
|
color.g * 12.92 : 1.055 * pow(color.g, 1.0 / gamma) - 0.055;
|
|
color.b = (color.b <= 0.00313066844250063) ?
|
|
color.b * 12.92 : 1.055 * pow(color.b, 1.0 / gamma) - 0.055;
|
|
|
|
return color;
|
|
}
|
|
|
|
#ifdef GAMMA_CORRECTION
|
|
vec4 GammaPass(vec4 color, vec2 texcoord)
|
|
{
|
|
const float GammaConst = 2.233333;
|
|
color.rgb = EncodeGamma(color.rgb, GammaConst);
|
|
color.rgb = DecodeGamma(color.rgb, float(Gamma));
|
|
|
|
return color;
|
|
}
|
|
#endif
|
|
|
|
// more gamma linearization algos
|
|
vec3 linear_srgb(vec3 x) {
|
|
#ifdef GAMMA_CORRECT
|
|
// use slower, more accurate calculation
|
|
return mix(1.055*pow(x, vec3(1./2.4)) - 0.055, 12.92*x, step(x,vec3(0.0031308)));
|
|
#else
|
|
// use faster, less accurate calculation
|
|
return pow(x,vec3(1.0/2.2));
|
|
#endif
|
|
}
|
|
|
|
vec3 srgb_linear(vec3 x) {
|
|
#ifdef GAMMA_CORRECT
|
|
return mix(pow((x + 0.055)/1.055,vec3(2.4)), x / 12.92, step(x,vec3(0.04045)));
|
|
#else
|
|
return pow(x,vec3(2.2));
|
|
#endif
|
|
}
|
|
|
|
vec3 linear_to_sRGB(vec3 color, float gamma)
|
|
{
|
|
color = clamp(color, 0.0, 1.0);
|
|
color.r = (color.r <= 0.00313066844250063) ?
|
|
color.r * 12.92 : 1.055 * pow(color.r, 1.0 / gamma) - 0.055;
|
|
color.g = (color.g <= 0.00313066844250063) ?
|
|
color.g * 12.92 : 1.055 * pow(color.g, 1.0 / gamma) - 0.055;
|
|
color.b = (color.b <= 0.00313066844250063) ?
|
|
color.b * 12.92 : 1.055 * pow(color.b, 1.0 / gamma) - 0.055;
|
|
|
|
return color.rgb;
|
|
}
|
|
|
|
vec3 sRGB_to_linear(vec3 color, float gamma)
|
|
{
|
|
color = clamp(color, 0.0, 1.0);
|
|
color.r = (color.r <= 0.04045) ?
|
|
color.r / 12.92 : pow((color.r + 0.055) / (1.055), gamma);
|
|
color.g = (color.g <= 0.04045) ?
|
|
color.g / 12.92 : pow((color.g + 0.055) / (1.055), gamma);
|
|
color.b = (color.b <= 0.04045) ?
|
|
color.b / 12.92 : pow((color.b + 0.055) / (1.055), gamma);
|
|
|
|
return color.rgb;
|
|
}
|
|
|
|
/*------------------------------------------------------------------------------
|
|
[RGB TO GRAYSCALE / LUMA CODE SECTION]
|
|
------------------------------------------------------------------------------*/
|
|
|
|
// if you're already in linear gamma, definitely use this one ( Y = 0.2126R + 0.7152G + 0.0722B )
|
|
// the Rec. 709 spec uses these same coefficients but with gamma-compressed components ( Y' = 0.2126R' + 0.7152G' + 0.0722B' )
|
|
float luma(vec3 color)
|
|
{
|
|
return dot(color, vec3(0.2126, 0.7152, 0.0722));
|
|
}
|
|
|
|
// for digital formats following CCIR 601 (that is, most digital standard def formats)
|
|
// expects gamma-compressed components and doesn't look very good
|
|
// ( Y' = 0.299R' + 0.587G' + 0.114B' )
|
|
float luma_CCIR601(vec3 color)
|
|
{
|
|
return dot(color, vec3(0.299, 0.587, 0.114));
|
|
}
|
|
|
|
// SMPTE 240M; used by some transitional 1035i HDTV signals. Expects gamma-compressed components
|
|
// ( Y' = 0.212R' + 0.701G' + 0.087B' )
|
|
float luma_240M(vec3 color)
|
|
{
|
|
return dot(color, vec3(0.212, 0.701, 0.087));
|
|
}
|
|
|
|
// Same as Rec. 709 but with quick-and-dirty gamma linearization added on top
|
|
float luma_gamma(vec3 color)
|
|
{
|
|
color = color * color;
|
|
float luma = dot(color, vec3(0.2126, 0.7152, 0.0722));
|
|
return sqrt(luma);
|
|
}
|
|
|
|
/*------------------------------------------------------------------------------
|
|
[COLORSPACE CONVERSION CODE SECTION]
|
|
------------------------------------------------------------------------------*/
|
|
|
|
/* XYZ color space is a device-invariant representation that encompasses all color sensations that are visible to a person
|
|
with average eyesight. Y is the luminance, Z is quasi-equal to blue and X is a mix of the three CIE RGB curves chosen to be non-negative */
|
|
|
|
vec3 RGBtoXYZ(vec3 RGB)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
0.6068909, 0.1735011, 0.2003480,
|
|
0.2989164, 0.5865990, 0.1144845,
|
|
0.0000000, 0.0660957, 1.1162243);
|
|
return RGB * m;
|
|
}
|
|
|
|
vec3 XYZtoRGB(vec3 XYZ)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
1.9099961, -0.5324542, -0.2882091,
|
|
-0.9846663, 1.9991710, -0.0283082,
|
|
0.0583056, -0.1183781, 0.8975535);
|
|
return XYZ * m;
|
|
}
|
|
|
|
vec3 XYZtoSRGB(vec3 XYZ)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
3.2404542,-1.5371385,-0.4985314,
|
|
-0.9692660, 1.8760108, 0.0415560,
|
|
0.0556434,-0.2040259, 1.0572252);
|
|
return XYZ * m;
|
|
}
|
|
|
|
/* YUV is a color space that takes human perception into account, allowing reduced bandwidth for chrominance components,
|
|
as compared with a direct RGB representation. It includes a luminance component, Y, with nonlinear perceptual brightness,
|
|
and two color components, U and V. This colorspace was used in the PAL color broadcast standard and is the counterpart to
|
|
NTSC's YIQ colorspace. It is still commonly used to describe YCbCr signals. */
|
|
|
|
vec3 RGBtoYUV(vec3 RGB)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
0.2126, 0.7152, 0.0722,
|
|
-0.09991,-0.33609, 0.436,
|
|
0.615, -0.55861, -0.05639);
|
|
return RGB * m;
|
|
}
|
|
|
|
vec3 YUVtoRGB(vec3 YUV)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
1.000, 0.000, 1.28033,
|
|
1.000,-0.21482,-0.38059,
|
|
1.000, 2.12798, 0.000);
|
|
return YUV * m;
|
|
}
|
|
|
|
/* YIQ is the color space used for analog NTSC color broadcasts, whereby Y stands for luma, I stands for in-phase and
|
|
Q stands for quadrature, referring to the components used in quadrature amplitude modulation. The IQ axes exist on the
|
|
same plane as the UV axes from the YUV color space, just rotated 33 degrees. */
|
|
|
|
vec3 RGBtoYIQ(vec3 RGB)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
0.2989, 0.5870, 0.1140,
|
|
0.5959, -0.2744, -0.3216,
|
|
0.2115, -0.5229, 0.3114);
|
|
return RGB * m;
|
|
}
|
|
|
|
vec3 YIQtoRGB(vec3 YIQ)
|
|
{
|
|
const mat3x3 m = mat3x3(
|
|
1.0, 0.956, 0.6210,
|
|
1.0, -0.2720, -0.6474,
|
|
1.0, -1.1060, 1.7046);
|
|
return YIQ * m;
|
|
}
|
|
|
|
vec3 XYZtoYxy(vec3 XYZ)
|
|
{
|
|
float w = (XYZ.r + XYZ.g + XYZ.b);
|
|
vec3 Yxy;
|
|
Yxy.r = XYZ.g;
|
|
Yxy.g = XYZ.r / w;
|
|
Yxy.b = XYZ.g / w;
|
|
|
|
return Yxy;
|
|
}
|
|
|
|
vec3 YxytoXYZ(vec3 Yxy)
|
|
{
|
|
vec3 XYZ;
|
|
XYZ.g = Yxy.r;
|
|
XYZ.r = Yxy.r * Yxy.g / Yxy.b;
|
|
XYZ.b = Yxy.r * (1.0 - Yxy.g - Yxy.b) / Yxy.b;
|
|
|
|
return XYZ;
|
|
}
|
|
|
|
/* CMYK--aka process color or four color--is a subtractive color model based on the CMY color model that is
|
|
used in color printing and to describe the printing process itself. C is for Cyan, M is for Magenta, Y is for
|
|
Yellow and K is for 'key' or black. */
|
|
|
|
// RGB <-> CMYK conversions require 4 channels
|
|
vec4 RGBtoCMYK(vec3 RGB){
|
|
float Red = RGB.r;
|
|
float Green = RGB.g;
|
|
float Blue = RGB.b;
|
|
float Black = min(1.0 - Red, min(1.0 - Green, 1.0 - Blue));
|
|
float Cyan = (1.0 - Red - Black) / (1.0 - Black);
|
|
float Magenta = (1.0 - Green - Black) / (1.0 - Black);
|
|
float Yellow = (1.0 - Blue - Black) / (1.0 - Black);
|
|
return vec4(Cyan, Magenta, Yellow, Black);
|
|
}
|
|
|
|
vec3 CMYKtoRGB(vec4 CMYK){
|
|
float Cyan = CMYK.x;
|
|
float Magenta = CMYK.y;
|
|
float Yellow = CMYK.z;
|
|
float Black = CMYK.w;
|
|
float Red = 1.0 - min(1.0, Cyan * (1.0 - Black) + Black);
|
|
float Green = 1.0 - min(1.0, Magenta * (1.0 - Black) + Black);
|
|
float Blue = 1.0 - min(1.0, Yellow * (1.0 - Black) + Black);
|
|
return vec3(Red, Green, Blue);
|
|
}
|
|
|
|
// Converting pure hue to RGB
|
|
vec3 HUEtoRGB(float H)
|
|
{
|
|
float R = abs(H * 6.0 - 3.0) - 1.0;
|
|
float G = 2.0 - abs(H * 6.0 - 2.0);
|
|
float B = 2.0 - abs(H * 6.0 - 4.0);
|
|
|
|
return clamp(vec3(R, G, B), 0.0, 1.0);
|
|
}
|
|
|
|
// Converting RGB to hue/chroma/value
|
|
vec3 RGBtoHCV(vec3 RGB)
|
|
{
|
|
vec4 BG = vec4(RGB.bg,-1.0, 2.0 / 3.0);
|
|
vec4 GB = vec4(RGB.gb, 0.0,-1.0 / 3.0);
|
|
|
|
vec4 P = (RGB.g < RGB.b) ? BG : GB;
|
|
|
|
vec4 XY = vec4(P.xyw, RGB.r);
|
|
vec4 YZ = vec4(RGB.r, P.yzx);
|
|
|
|
vec4 Q = (RGB.r < P.x) ? XY : YZ;
|
|
|
|
float C = Q.x - min(Q.w, Q.y);
|
|
float H = abs((Q.w - Q.y) / (6.0 * C + 1e-10) + Q.z);
|
|
|
|
return vec3(H, C, Q.x);
|
|
}
|
|
|
|
vec3 RGBtoHSV(vec3 c)
|
|
{
|
|
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
|
|
vec4 p = c.g < c.b ? vec4(c.bg, K.wz) : vec4(c.gb, K.xy);
|
|
vec4 q = c.r < p.x ? vec4(p.xyw, c.r) : vec4(c.r, p.yzx);
|
|
|
|
float d = q.x - min(q.w, q.y);
|
|
float e = 1.0e-10;
|
|
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
|
|
}
|
|
|
|
vec3 HSVtoRGB(vec3 c)
|
|
{
|
|
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
|
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
|
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
|
}
|
|
|
|
// conversion from NTSC RGB Reference White D65 ( color space used by NA/Japan TV's ) to XYZ
|
|
vec3 NTSC(vec3 c)
|
|
{
|
|
vec3 v = vec3(pow(c.r, 2.2), pow(c.g, 2.2), pow(c.b, 2.2)); //Inverse Companding
|
|
return RGBtoXYZ(v);
|
|
}
|
|
|
|
// conversion from XYZ to sRGB Reference White D65 ( color space used by windows )
|
|
vec3 sRGB(vec3 c)
|
|
{
|
|
vec3 v = XYZtoSRGB(c);
|
|
v = DecodeGamma(v, 2.4); //Companding
|
|
|
|
return v;
|
|
}
|
|
|
|
// NTSC RGB to sRGB
|
|
vec3 NTSCtoSRGB( vec3 c )
|
|
{
|
|
return sRGB(NTSC( c ));
|
|
}
|
|
|
|
const float Pi = 3.1415926535897932384626433832795;
|
|
|
|
// --- Reference White Values --- //{
|
|
|
|
const vec3 D50 = vec3(0.9642, 1.0000, 0.8251);
|
|
const vec3 D55 = vec3(0.9568, 1.0000, 0.9214);
|
|
const vec3 D65 = vec3(0.9504, 1.0000, 1.0888);
|
|
//D9000 apparently isn't a real standard so here's the CCT daylight calculation result
|
|
const vec3 D9000 = vec3(0.9520, 1.0000, 1.3661);
|
|
//D9300 apparently isn't a real standard so here's the CCT daylight calculation result
|
|
const vec3 D9300 = vec3(0.95271,1.00000,1.39177);
|
|
//Various CRT monitors, Duv describes distance from the blackbody curve. The smaller it is, the closer to "white" it is. +/- 0.006 is recommended by ANSI and EnergyStar.
|
|
//NEC Multisync C400, claims 9300K but it isn't
|
|
const vec3 D9000NEC = vec3(0.88889,1.00000,1.28571);//8890K, 0.0139 Duv
|
|
//KDS VS19
|
|
const vec3 D9000KDS = vec3(0.90354,1.00000,1.31190);//8939K, 0.0114 Duv
|
|
//}
|
|
|
|
// --- sRGB --- //
|
|
vec3 XYZ_to_sRGB(vec3 x)
|
|
{
|
|
x = x * mat3x3( 3.2404542, -1.5371385, -0.4985314, -0.9692660, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252 );
|
|
x = mix(1.055*pow(x, vec3(1./2.4)) - 0.055, 12.92*x, step(x,vec3(0.0031308)));
|
|
return x;
|
|
}
|
|
|
|
vec3 sRGB_to_XYZ(vec3 x)
|
|
{
|
|
x = mix(pow((x + 0.055)/1.055,vec3(2.4)), x / 12.92, step(x,vec3(0.04045)));
|
|
x = x * mat3x3( 0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041 );
|
|
return x;
|
|
}
|
|
|
|
/* Jzazbz is a color space designed for perceptual uniformity in high dynamic range (HDR) and wide color gamut (WCG) applications.
|
|
It is conceptually similar to CIE Lab but is considered more "modern". As compared with Lab, perceptual color differences are
|
|
predicted by Euclidean distance, it is more perceptually uniform and changes in saturation or lightness produce less shifts in hue
|
|
(i.e., increased hue linearity). Jzazbz and JzCzhz are used by ImageMagick and not much else. */
|
|
|
|
vec3 XYZ_to_Jzazbz(vec3 XYZ)
|
|
{
|
|
float b = 1.15;
|
|
float g = 0.66;
|
|
vec3 XYZprime = XYZ;
|
|
XYZprime.x = XYZ.x * b - (b - 1) * XYZ.z;
|
|
XYZprime.y = XYZ.y * g - (g - 1) * XYZ.x;
|
|
XYZprime.z = XYZ.z;
|
|
vec3 LMS = XYZprime * mat3x3(0.41478972, 0.579999, 0.0146480, -0.2015100, 1.120649, 0.0531008, -0.0166008, 0.264800, 0.6684799);
|
|
float c1 = 3424 / pow(2.0,12.0);
|
|
float c2 = 2413 / pow(2.0,7.0);
|
|
float c3 = 2392 / pow(2.0,7.0);
|
|
float n = 2610 / pow(2.0,14.0);
|
|
float p = 1.7 * 2523 / pow(2.0,5.0);
|
|
vec3 LMSprime = pow((c1 + c2 * pow(LMS/10000,vec3(n)))/(1 + c3 * pow(LMS/10000,vec3(n))),vec3(p));
|
|
vec3 Izazbz = LMSprime * mat3x3(0.5, 0.5, 0.0, 3.524000, -4.066708, 0.542708, 0.199076, 1.096799, -1.295875);
|
|
float d = -0.56;
|
|
float d0 = 1.6295499532821566 * pow(10.0,-11.0);
|
|
vec3 Jzazbz = Izazbz;
|
|
Jzazbz.x = ((1 + d) * Izazbz.x)/(1 + d * Izazbz.x) - d0;
|
|
return Jzazbz;
|
|
}
|
|
|
|
/* The polar version of Jzazbz */
|
|
|
|
vec3 Jzazbz_to_JzCzhz(vec3 Jzazbz)
|
|
{
|
|
float Cz = sqrt(Jzazbz.y*Jzazbz.y + Jzazbz.z*Jzazbz.z);
|
|
float hz = atan(Jzazbz.z,Jzazbz.y);
|
|
vec3 JzCzhz = vec3(Jzazbz.x,Cz,hz);
|
|
return JzCzhz;
|
|
}
|
|
|
|
vec3 JzCzhz_Normalize(vec3 JzCzhz)
|
|
{
|
|
JzCzhz.x = JzCzhz.x*56.91964;
|
|
JzCzhz.y = JzCzhz.y*40.05235;
|
|
JzCzhz.z = (JzCzhz.z+2.761)/5.522;
|
|
//-2.6274509803921568627450980392157
|
|
//2.760784313725490196078431372549
|
|
//Assume 2.761 both ways so +2.761 then / 5.522
|
|
return JzCzhz;
|
|
}
|
|
|
|
vec3 JzCzhz_Denormalize(vec3 JzCzhz)
|
|
{
|
|
JzCzhz.x = JzCzhz.x/56.91964;
|
|
JzCzhz.y = JzCzhz.y/40.05235;
|
|
JzCzhz.z = JzCzhz.z * 5.522 - 2.761;
|
|
return JzCzhz;
|
|
}
|
|
|
|
vec3 JzCzhz_to_Jzazbz(vec3 JzCzhz)
|
|
{
|
|
vec3 Jzazbz = vec3(JzCzhz.x,JzCzhz.y*cos(JzCzhz.z),JzCzhz.y*sin(JzCzhz.z));;
|
|
return Jzazbz;
|
|
}
|
|
|
|
vec3 Jzazbz_to_XYZ(vec3 Jzazbz)
|
|
{
|
|
float d0 = 1.6295499532821566 * pow(10.0,-11.0);
|
|
float d = -0.56;
|
|
float Iz = (Jzazbz.x + d0) / (1 + d - d * (Jzazbz.x + d0));
|
|
vec3 Izazbz = vec3(Iz,Jzazbz.y,Jzazbz.z);
|
|
vec3 LMSprime = Izazbz * mat3x3(1.0, 0.138605043271539, 0.0580473161561189, 1.0, -0.138605043271539, -0.0580473161561189, 1.0, -0.0960192420263189, -0.811891896056039);
|
|
float c1 = 3424 / pow(2.0,12.0);
|
|
float c2 = 2413 / pow(2.0,7.0);
|
|
float c3 = 2392 / pow(2.0,7.0);
|
|
float n = 2610 / pow(2.0,14.0);
|
|
float p = 1.7 * 2523 / pow(2.0,5.0);
|
|
vec3 LMS = 10000 * pow((c1 - pow(LMSprime,vec3(1.0/p)))/(c3 * pow(LMSprime,vec3(1.0/p)) - c2),vec3(1.0/n));
|
|
vec3 XYZprime = LMS * mat3x3(1.92422643578761, -1.00479231259537, 0.037651404030618, 0.350316762094999, 0.726481193931655, -0.065384422948085, -0.0909828109828476, -0.312728290523074, 1.52276656130526);
|
|
float b = 1.15;
|
|
float g = 0.66;
|
|
vec3 XYZ = XYZprime;
|
|
XYZ.x = (XYZprime.x + (b - 1.0) * XYZprime.z) / b;
|
|
XYZ.y = (XYZprime.y + (g - 1.0) * XYZ.x) / g;
|
|
XYZ.z = XYZprime.z;
|
|
return XYZ;
|
|
}
|