mirror of
https://github.com/libretro/slang-shaders.git
synced 2024-11-23 08:19:54 +00:00
444 lines
13 KiB
Plaintext
444 lines
13 KiB
Plaintext
#version 450
|
|
// The MIT License
|
|
// Copyright © 2013 Inigo Quilez
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
// A list of useful distance function to simple primitives, and an example on how to
|
|
// do some interesting boolean operations, repetition and displacement.
|
|
//
|
|
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
|
|
|
// A set of primitives and combination functions, for reference. More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
|
|
|
layout(std140, set = 0, binding = 0) uniform UBO
|
|
{
|
|
mat4 MVP;
|
|
vec4 OutputSize;
|
|
vec4 OriginalSize;
|
|
vec4 SourceSize;
|
|
uint FrameCount;
|
|
} global;
|
|
|
|
#pragma stage vertex
|
|
layout(location = 0) in vec4 Position;
|
|
layout(location = 1) in vec2 TexCoord;
|
|
layout(location = 0) out vec2 vTexCoord;
|
|
const vec2 madd = vec2(0.5, 0.5);
|
|
void main()
|
|
{
|
|
gl_Position = global.MVP * Position;
|
|
vTexCoord = gl_Position.xy;
|
|
}
|
|
|
|
#pragma stage fragment
|
|
layout(location = 0) in vec2 vTexCoord;
|
|
layout(location = 0) out vec4 FragColor;
|
|
float iGlobalTime = float(global.FrameCount)*0.025;
|
|
vec2 iResolution = global.OutputSize.xy;
|
|
|
|
#define AA 1 // make this 1 is your machine is too slow
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
float sdPlane( vec3 p )
|
|
{
|
|
return p.y;
|
|
}
|
|
|
|
float sdSphere( vec3 p, float s )
|
|
{
|
|
return length(p)-s;
|
|
}
|
|
|
|
float sdBox( vec3 p, vec3 b )
|
|
{
|
|
vec3 d = abs(p) - b;
|
|
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
|
|
}
|
|
|
|
float sdEllipsoid( in vec3 p, in vec3 r )
|
|
{
|
|
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
|
|
}
|
|
|
|
float udRoundBox( vec3 p, vec3 b, float r )
|
|
{
|
|
return length(max(abs(p)-b,0.0))-r;
|
|
}
|
|
|
|
float sdTorus( vec3 p, vec2 t )
|
|
{
|
|
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
|
|
}
|
|
|
|
float sdHexPrism( vec3 p, vec2 h )
|
|
{
|
|
vec3 q = abs(p);
|
|
#if 0
|
|
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
|
|
#else
|
|
float d1 = q.z-h.y;
|
|
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
|
|
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
|
#endif
|
|
}
|
|
|
|
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
|
|
{
|
|
vec3 pa = p-a, ba = b-a;
|
|
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
|
|
return length( pa - ba*h ) - r;
|
|
}
|
|
|
|
float sdEquilateralTriangle( in vec2 p )
|
|
{
|
|
const float k = sqrt(3.0);
|
|
p.x = abs(p.x) - 1.0;
|
|
p.y = p.y + 1.0/k;
|
|
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
|
|
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
|
|
return -length(p)*sign(p.y);
|
|
}
|
|
|
|
float sdTriPrism( vec3 p, vec2 h )
|
|
{
|
|
vec3 q = abs(p);
|
|
float d1 = q.z-h.y;
|
|
#if 1
|
|
// distance bound
|
|
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
|
|
#else
|
|
// correct distance
|
|
h.x *= 0.866025;
|
|
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
|
|
#endif
|
|
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
|
}
|
|
|
|
float sdCylinder( vec3 p, vec2 h )
|
|
{
|
|
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
|
|
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
|
|
}
|
|
|
|
float sdCone( in vec3 p, in vec3 c )
|
|
{
|
|
vec2 q = vec2( length(p.xz), p.y );
|
|
float d1 = -q.y-c.z;
|
|
float d2 = max( dot(q,c.xy), q.y);
|
|
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
|
}
|
|
|
|
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
|
|
{
|
|
float d1 = -p.y - h;
|
|
float q = p.y - h;
|
|
float si = 0.5*(r1-r2)/h;
|
|
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
|
|
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
|
}
|
|
|
|
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
|
|
{
|
|
// Tetrahedron = Octahedron - Cube
|
|
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
|
|
|
|
float d = 0.0;
|
|
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
|
|
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
|
|
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
|
|
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
|
|
float octa = d - h.z;
|
|
return max(-box,octa); // Subtraction
|
|
}
|
|
|
|
float length2( vec2 p )
|
|
{
|
|
return sqrt( p.x*p.x + p.y*p.y );
|
|
}
|
|
|
|
float length6( vec2 p )
|
|
{
|
|
p = p*p*p; p = p*p;
|
|
return pow( p.x + p.y, 1.0/6.0 );
|
|
}
|
|
|
|
float length8( vec2 p )
|
|
{
|
|
p = p*p; p = p*p; p = p*p;
|
|
return pow( p.x + p.y, 1.0/8.0 );
|
|
}
|
|
|
|
float sdTorus82( vec3 p, vec2 t )
|
|
{
|
|
vec2 q = vec2(length2(p.xz)-t.x,p.y);
|
|
return length8(q)-t.y;
|
|
}
|
|
|
|
float sdTorus88( vec3 p, vec2 t )
|
|
{
|
|
vec2 q = vec2(length8(p.xz)-t.x,p.y);
|
|
return length8(q)-t.y;
|
|
}
|
|
|
|
float sdCylinder6( vec3 p, vec2 h )
|
|
{
|
|
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
float opS( float d1, float d2 )
|
|
{
|
|
return max(-d2,d1);
|
|
}
|
|
|
|
vec2 opU( vec2 d1, vec2 d2 )
|
|
{
|
|
return (d1.x<d2.x) ? d1 : d2;
|
|
}
|
|
|
|
vec3 opRep( vec3 p, vec3 c )
|
|
{
|
|
return mod(p,c)-0.5*c;
|
|
}
|
|
|
|
vec3 opTwist( vec3 p )
|
|
{
|
|
float c = cos(10.0*p.y+10.0);
|
|
float s = sin(10.0*p.y+10.0);
|
|
mat2 m = mat2(c,-s,s,c);
|
|
return vec3(m*p.xz,p.y);
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
vec2 map( in vec3 pos )
|
|
{
|
|
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
|
|
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
|
|
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
|
|
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
|
|
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
|
|
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
|
|
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
|
|
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
|
|
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
|
|
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
|
|
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
|
|
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
|
|
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
|
|
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
|
|
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
|
|
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
|
|
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
|
|
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
|
|
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
|
|
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
|
|
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
|
|
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
|
|
|
|
return res;
|
|
}
|
|
|
|
vec2 castRay( in vec3 ro, in vec3 rd )
|
|
{
|
|
float tmin = 1.0;
|
|
float tmax = 20.0;
|
|
|
|
#if 1
|
|
// bounding volume
|
|
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
|
|
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
|
|
else tmax = min( tmax, tp2 ); }
|
|
#endif
|
|
|
|
float t = tmin;
|
|
float m = -1.0;
|
|
for( int i=0; i<64; i++ )
|
|
{
|
|
float precis = 0.0005*t;
|
|
vec2 res = map( ro+rd*t );
|
|
if( res.x<precis || t>tmax ) break;
|
|
t += res.x;
|
|
m = res.y;
|
|
}
|
|
|
|
if( t>tmax ) m=-1.0;
|
|
return vec2( t, m );
|
|
}
|
|
|
|
|
|
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
|
|
{
|
|
float res = 1.0;
|
|
float t = mint;
|
|
for( int i=0; i<16; i++ )
|
|
{
|
|
float h = map( ro + rd*t ).x;
|
|
res = min( res, 8.0*h/t );
|
|
t += clamp( h, 0.02, 0.10 );
|
|
if( h<0.001 || t>tmax ) break;
|
|
}
|
|
return clamp( res, 0.0, 1.0 );
|
|
}
|
|
|
|
vec3 calcNormal( in vec3 pos )
|
|
{
|
|
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
|
|
return normalize( e.xyy*map( pos + e.xyy ).x +
|
|
e.yyx*map( pos + e.yyx ).x +
|
|
e.yxy*map( pos + e.yxy ).x +
|
|
e.xxx*map( pos + e.xxx ).x );
|
|
/*
|
|
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
|
|
vec3 nor = vec3(
|
|
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
|
|
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
|
|
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
|
|
return normalize(nor);
|
|
*/
|
|
}
|
|
|
|
float calcAO( in vec3 pos, in vec3 nor )
|
|
{
|
|
float occ = 0.0;
|
|
float sca = 1.0;
|
|
for( int i=0; i<5; i++ )
|
|
{
|
|
float hr = 0.01 + 0.12*float(i)/4.0;
|
|
vec3 aopos = nor * hr + pos;
|
|
float dd = map( aopos ).x;
|
|
occ += -(dd-hr)*sca;
|
|
sca *= 0.95;
|
|
}
|
|
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
|
|
}
|
|
|
|
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
|
|
float checkersGradBox( in vec2 p )
|
|
{
|
|
// filter kernel
|
|
vec2 w = fwidth(p) + 0.001;
|
|
// analytical integral (box filter)
|
|
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
|
|
// xor pattern
|
|
return 0.5 - 0.5*i.x*i.y;
|
|
}
|
|
|
|
vec3 render( in vec3 ro, in vec3 rd )
|
|
{
|
|
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
|
|
vec2 res = castRay(ro,rd);
|
|
float t = res.x;
|
|
float m = res.y;
|
|
if( m>-0.5 )
|
|
{
|
|
vec3 pos = ro + t*rd;
|
|
vec3 nor = calcNormal( pos );
|
|
vec3 ref = reflect( rd, nor );
|
|
|
|
// material
|
|
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
|
|
if( m<1.5 )
|
|
{
|
|
|
|
float f = checkersGradBox( 5.0*pos.xz );
|
|
col = 0.3 + f*vec3(0.1);
|
|
}
|
|
|
|
// lighitng
|
|
float occ = calcAO( pos, nor );
|
|
vec3 lig = normalize( vec3(-0.4, 0.7, -0.6) );
|
|
vec3 hal = normalize( lig-rd );
|
|
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
|
|
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
|
|
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
|
|
float dom = smoothstep( -0.1, 0.1, ref.y );
|
|
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
|
|
|
|
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
|
|
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
|
|
|
|
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
|
|
dif *
|
|
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
|
|
|
|
vec3 lin = vec3(0.0);
|
|
lin += 1.30*dif*vec3(1.00,0.80,0.55);
|
|
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
|
|
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
|
|
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
|
|
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
|
|
col = col*lin;
|
|
col += 10.00*spe*vec3(1.00,0.90,0.70);
|
|
|
|
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
|
|
}
|
|
|
|
return vec3( clamp(col,0.0,1.0) );
|
|
}
|
|
|
|
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
|
|
{
|
|
vec3 cw = normalize(ta-ro);
|
|
vec3 cp = vec3(sin(cr), cos(cr),0.0);
|
|
vec3 cu = normalize( cross(cw,cp) );
|
|
vec3 cv = normalize( cross(cu,cw) );
|
|
return mat3( cu, cv, cw );
|
|
}
|
|
|
|
void mainImage( out vec4 fragColor, in vec2 fragCoord )
|
|
{
|
|
#ifdef MOUSE
|
|
vec2 mo = iMouse.xy/iResolution.xy;
|
|
#else
|
|
vec2 mo = 0.0 / iResolution.xy;
|
|
#endif
|
|
float time = 15.0 + iGlobalTime;
|
|
|
|
|
|
vec3 tot = vec3(0.0);
|
|
#if AA>1
|
|
for( int m=0; m<AA; m++ )
|
|
for( int n=0; n<AA; n++ )
|
|
{
|
|
// pixel coordinates
|
|
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
|
|
vec2 p = (-iResolution.xy + 2.0*(fragCoord+o))/iResolution.y;
|
|
#else
|
|
vec2 p = (-iResolution.xy + 2.0*fragCoord)/iResolution.y;
|
|
#endif
|
|
|
|
// camera
|
|
vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
|
|
vec3 ta = vec3( -0.5, -0.4, 0.5 );
|
|
// camera-to-world transformation
|
|
mat3 ca = setCamera( ro, ta, 0.0 );
|
|
// ray direction
|
|
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
|
|
|
|
// render
|
|
vec3 col = render( ro, rd );
|
|
|
|
// gamma
|
|
col = pow( col, vec3(0.4545) );
|
|
|
|
tot += col;
|
|
#if AA>1
|
|
}
|
|
tot /= float(AA*AA);
|
|
#endif
|
|
|
|
fragColor = vec4( tot, 1.0 );
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
//just some shit to wrap shadertoy's stuff
|
|
vec2 FragCoord = vTexCoord.xy*global.OutputSize.xy;
|
|
FragCoord.y = -FragCoord.y;
|
|
mainImage(FragColor,FragCoord);
|
|
}
|