/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2011 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2011 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2011 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #ifdef DEBUGGER #include #include "snes9x.h" #include "memmap.h" #include "cpuops.h" #include "dma.h" #include "apu/apu.h" #include "display.h" #include "debug.h" #include "missing.h" extern SDMA DMA[8]; extern FILE *apu_trace; FILE *trace = NULL, *trace2 = NULL; struct SBreakPoint S9xBreakpoint[6]; struct SDebug { struct { uint8 Bank; uint16 Address; } Dump; struct { uint8 Bank; uint16 Address; } Unassemble; }; static struct SDebug Debug = { { 0, 0 }, { 0, 0 } }; static const char *HelpMessage[] = { "Command Help:", "?, help - Shows this command help", "r - Shows the registers", "i - Shows the interrupt vectors", "t - Trace current instruction [step-into]", "p - Proceed to next instruction [step-over]", "s - Skip to next instruction [skip]", "T - Toggle CPU instruction tracing to trace.log", "TS - Toggle SA-1 instruction tracing to trace_sa1.log", "E - Toggle HC-based event tracing to trace.log", "V - Toggle non-DMA V-RAM read/write tracing to stdout", "D - Toggle on-screen DMA tracing", "H - Toggle on-screen HDMA tracing", "U - Toggle on-screen unknown register read/write tracing", "P - Toggle on-screen DSP tracing", "S - Dump sprite (OBJ) status", "g [Address] - Go or go to [Address]", "u [Address] - Disassemble from PC or [Address]", "d [Address] - Dump from PC or [Address]", "bv [Number] - View breakpoints or view breakpoint [Number]", "bs [Number] [Address] - Enable/disable breakpoint", " [enable example: bs #2 $02:8002]", " [disable example: bs #2]", "c - Dump SNES colour palette", "W - Show what SNES hardware features the ROM is using", " which might not be implemented yet", "w - Show some SNES hardware features used so far in this frame", "R - Reset SNES", "q - Quit emulation", // "ai - Shou APU vectors", // "a - Show APU status", // "x - Show Sound DSP status", // "A - Toggle APU instruction tracing to aputrace.log", // "B - Toggle sound DSP register tracing to aputrace.log", // "C - Dump sound sample addresses", // "ad [Address] - Dump APU RAM from PC or [Address]", "", "[Address] - $Bank:Address or $Address", " [for example: $01:8123]", "[Number] - #Number", " [for example: #1]", "z - ", "f - ", "dump - ", "", NULL }; static const char *S9xMnemonics[256] = { "BRK", "ORA", "COP", "ORA", "TSB", "ORA", "ASL", "ORA", "PHP", "ORA", "ASL", "PHD", "TSB", "ORA", "ASL", "ORA", "BPL", "ORA", "ORA", "ORA", "TRB", "ORA", "ASL", "ORA", "CLC", "ORA", "INC", "TCS", "TRB", "ORA", "ASL", "ORA", "JSR", "AND", "JSL", "AND", "BIT", "AND", "ROL", "AND", "PLP", "AND", "ROL", "PLD", "BIT", "AND", "ROL", "AND", "BMI", "AND", "AND", "AND", "BIT", "AND", "ROL", "AND", "SEC", "AND", "DEC", "TSC", "BIT", "AND", "ROL", "AND", "RTI", "EOR", "WDM", "EOR", "MVP", "EOR", "LSR", "EOR", "PHA", "EOR", "LSR", "PHK", "JMP", "EOR", "LSR", "EOR", "BVC", "EOR", "EOR", "EOR", "MVN", "EOR", "LSR", "EOR", "CLI", "EOR", "PHY", "TCD", "JMP", "EOR", "LSR", "EOR", "RTS", "ADC", "PER", "ADC", "STZ", "ADC", "ROR", "ADC", "PLA", "ADC", "ROR", "RTL", "JMP", "ADC", "ROR", "ADC", "BVS", "ADC", "ADC", "ADC", "STZ", "ADC", "ROR", "ADC", "SEI", "ADC", "PLY", "TDC", "JMP", "ADC", "ROR", "ADC", "BRA", "STA", "BRL", "STA", "STY", "STA", "STX", "STA", "DEY", "BIT", "TXA", "PHB", "STY", "STA", "STX", "STA", "BCC", "STA", "STA", "STA", "STY", "STA", "STX", "STA", "TYA", "STA", "TXS", "TXY", "STZ", "STA", "STZ", "STA", "LDY", "LDA", "LDX", "LDA", "LDY", "LDA", "LDX", "LDA", "TAY", "LDA", "TAX", "PLB", "LDY", "LDA", "LDX", "LDA", "BCS", "LDA", "LDA", "LDA", "LDY", "LDA", "LDX", "LDA", "CLV", "LDA", "TSX", "TYX", "LDY", "LDA", "LDX", "LDA", "CPY", "CMP", "REP", "CMP", "CPY", "CMP", "DEC", "CMP", "INY", "CMP", "DEX", "WAI", "CPY", "CMP", "DEC", "CMP", "BNE", "CMP", "CMP", "CMP", "PEI", "CMP", "DEC", "CMP", "CLD", "CMP", "PHX", "STP", "JML", "CMP", "DEC", "CMP", "CPX", "SBC", "SEP", "SBC", "CPX", "SBC", "INC", "SBC", "INX", "SBC", "NOP", "XBA", "CPX", "SBC", "INC", "SBC", "BEQ", "SBC", "SBC", "SBC", "PEA", "SBC", "INC", "SBC", "SED", "SBC", "PLX", "XCE", "JSR", "SBC", "INC", "SBC" }; static int AddrModes[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 3, 10, 3, 19, 6, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 0 4, 11, 9, 20, 6, 7, 7, 13, 0, 16, 24, 0, 14, 15, 15, 18, // 1 14, 10, 17, 19, 6, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 2 4, 11, 9, 20, 7, 7, 7, 13, 0, 16, 24, 0, 15, 15, 15, 18, // 3 0, 10, 3, 19, 25, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 4 4, 11, 9, 20, 25, 7, 7, 13, 0, 16, 0, 0, 17, 15, 15, 18, // 5 0, 10, 5, 19, 6, 6, 6, 12, 0, 1, 24, 0, 21, 14, 14, 17, // 6 4, 11, 9, 20, 7, 7, 7, 13, 0, 16, 0, 0, 23, 15, 15, 18, // 7 4, 10, 5, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // 8 4, 11, 9, 20, 7, 7, 8, 13, 0, 16, 0, 0, 14, 15, 15, 18, // 9 2, 10, 2, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // A 4, 11, 9, 20, 7, 7, 8, 13, 0, 16, 0, 0, 15, 15, 16, 18, // B 2, 10, 3, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // C 4, 11, 9, 9, 27, 7, 7, 13, 0, 16, 0, 0, 22, 15, 15, 18, // D 2, 10, 3, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // E 4, 11, 9, 20, 26, 7, 7, 13, 0, 16, 0, 0, 23, 15, 15, 18 // F }; static uint8 S9xDebugGetByte (uint32); static uint16 S9xDebugGetWord (uint32); static uint8 S9xDebugSA1GetByte (uint32); static uint16 S9xDebugSA1GetWord (uint32); static uint8 debug_cpu_op_print (char *, uint8, uint16); static uint8 debug_sa1_op_print (char *, uint8, uint16); static void debug_line_print (const char *); static int debug_get_number (char *, uint16 *); static short debug_get_start_address (char *, uint8 *, uint32 *); static void debug_process_command (char *); static void debug_print_window (uint8 *); static const char * debug_clip_fn (int); static void debug_whats_used (void); static void debug_whats_missing (void); static uint8 S9xDebugGetByte (uint32 Address) { int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = Memory.Map[block]; uint8 byte = 0; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { byte = *(GetAddress + (Address & 0xffff)); return (byte); } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); return (byte); case CMemory::MAP_LOROM_SRAM_B: byte = *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); return (byte); case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_RONLY_SRAM: byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)); return (byte); case CMemory::MAP_BWRAM: byte = *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); return (byte); default: return (byte); } } static uint16 S9xDebugGetWord (uint32 Address) { uint16 word; word = S9xDebugGetByte(Address); word |= S9xDebugGetByte(Address + 1) << 8; return (word); } static uint8 S9xDebugSA1GetByte (uint32 Address) { int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = SA1.Map[block]; uint8 byte = 0; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { byte = *(GetAddress + (Address & 0xffff)); return (byte); } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: byte = *(Memory.SRAM + (Address & 0xffff)); return (byte); case CMemory::MAP_BWRAM: byte = *(SA1.BWRAM + ((Address & 0x7fff) - 0x6000)); return (byte); case CMemory::MAP_BWRAM_BITMAP: Address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) byte = (Memory.SRAM[(Address >> 2) & 0xffff] >> ((Address & 3) << 1)) & 3; else byte = (Memory.SRAM[(Address >> 1) & 0xffff] >> ((Address & 1) << 2)) & 15; return (byte); case CMemory::MAP_BWRAM_BITMAP2: Address = (Address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) byte = (SA1.BWRAM[(Address >> 2) & 0xffff] >> ((Address & 3) << 1)) & 3; else byte = (SA1.BWRAM[(Address >> 1) & 0xffff] >> ((Address & 1) << 2)) & 15; return (byte); default: return (byte); } } static uint16 S9xDebugSA1GetWord (uint32 Address) { uint16 word; word = S9xDebugSA1GetByte(Address); word |= S9xDebugSA1GetByte(Address + 1) << 8; return (word); } static uint8 debug_cpu_op_print (char *Line, uint8 Bank, uint16 Address) { uint8 S9xOpcode; uint8 Operant[3]; uint16 Word; uint8 Byte; int16 SWord; int8 SByte; uint8 Size = 0; S9xOpcode = S9xDebugGetByte((Bank << 16) + Address); sprintf(Line, "$%02X:%04X %02X ", Bank, Address, S9xOpcode); Operant[0] = S9xDebugGetByte((Bank << 16) + Address + 1); Operant[1] = S9xDebugGetByte((Bank << 16) + Address + 2); Operant[2] = S9xDebugGetByte((Bank << 16) + Address + 3); switch (AddrModes[S9xOpcode]) { case 0: // Implied sprintf(Line, "%s %s", Line, S9xMnemonics[S9xOpcode]); Size = 1; break; case 1: // Immediate[MemoryFlag] if (!CheckFlag(MemoryFlag)) { // Accumulator 16 - Bit sprintf(Line, "%s%02X %02X %s #$%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; } else { // Accumulator 8 - Bit sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; } break; case 2: // Immediate[IndexFlag] if (!CheckFlag(IndexFlag)) { // X / Y 16 - Bit sprintf(Line, "%s%02X %02X %s #$%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; } else { // X / Y 8 - Bit sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; } break; case 3: // Immediate[Always 8 - Bit] sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; break; case 4: // Relative sprintf(Line, "%s%02X %s $%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); SByte = Operant[0]; Word = Address; Word += SByte; Word += 2; sprintf(Line, "%-32s[$%04X]", Line, Word); Size = 2; break; case 5: // Relative Long sprintf(Line, "%s%02X %02X %s $%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); SWord = (Operant[1] << 8) | Operant[0]; Word = Address; Word += SWord; Word += 3; sprintf(Line, "%-32s[$%04X]", Line, Word); Size = 3; break; case 6: // Direct sprintf(Line, "%s%02X %s $%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 7: // Direct Indexed (with X) sprintf(Line, "%s%02X %s $%02X,x", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word += Registers.X.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 8: // Direct Indexed (with Y) sprintf(Line, "%s%02X %s $%02X,y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word += Registers.Y.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 9: // Direct Indirect sprintf(Line, "%s%02X %s ($%02X)", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 2; break; case 10: // Direct Indexed Indirect sprintf(Line, "%s%02X %s ($%02X,x)", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word += Registers.X.W; Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 2; break; case 11: // Direct Indirect Indexed sprintf(Line, "%s%02X %s ($%02X),y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word = S9xDebugGetWord(Word); Word += Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 2; break; case 12: // Direct Indirect Long sprintf(Line, "%s%02X %s [$%02X]", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Byte = S9xDebugGetByte(Word + 2); Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 2; break; case 13: // Direct Indirect Indexed Long sprintf(Line, "%s%02X %s [$%02X],y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Byte = S9xDebugGetByte(Word + 2); Word = S9xDebugGetWord(Word); Word += Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 2; break; case 14: // Absolute sprintf(Line, "%s%02X %02X %s $%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 3; break; case 15: // Absolute Indexed (with X) sprintf(Line, "%s%02X %02X %s $%02X%02X,x", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += Registers.X.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 3; break; case 16: // Absolute Indexed (with Y) sprintf(Line, "%s%02X %02X %s $%02X%02X,y", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 3; break; case 17: // Absolute Long sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X", Line, Operant[0], Operant[1], Operant[2], S9xMnemonics[S9xOpcode], Operant[2], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word); Size = 4; break; case 18: // Absolute Indexed Long sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X,x", Line, Operant[0], Operant[1], Operant[2], S9xMnemonics[S9xOpcode], Operant[2], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += Registers.X.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word); Size = 4; break; case 19: // Stack Relative sprintf(Line, "%s%02X %s $%02X,s", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Registers.S.W; Word += Operant[0]; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 20: // Stack Relative Indirect Indexed sprintf(Line, "%s%02X %s ($%02X,s),y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Registers.S.W; Word += Operant[0]; Word = S9xDebugGetWord(Word); Word += Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word); Size = 2; break; case 21: // Absolute Indirect sprintf(Line, "%s%02X %02X %s ($%02X%02X)", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.PB, Word); Size = 3; break; case 22: // Absolute Indirect Long sprintf(Line, "%s%02X %02X %s [$%02X%02X]", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Byte = S9xDebugGetByte(Word + 2); Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 3; break; case 23: // Absolute Indexed Indirect sprintf(Line, "%s%02X %02X %s ($%02X%02X,x)", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += Registers.X.W; Word = S9xDebugGetWord(ICPU.ShiftedPB + Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.PB, Word); Size = 3; break; case 24: // Implied Accumulator sprintf(Line, "%s %s A", Line, S9xMnemonics[S9xOpcode]); Size = 1; break; case 25: // MVN/MVP SRC DST sprintf(Line, "%s%02X %02X %s %02X %02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; break; case 26: // PEA sprintf(Line, "%s%02X %02X %s $%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; break; case 27: // PEI Direct Indirect sprintf(Line, "%s%02X %s ($%02X)", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += Registers.D.W; Word = S9xDebugGetWord(Word); sprintf(Line, "%-32s[$%04X]", Line, Word); Size = 2; break; } sprintf(Line, "%-44s A:%04X X:%04X Y:%04X D:%04X DB:%02X S:%04X P:%c%c%c%c%c%c%c%c%c HC:%04ld VC:%03ld FC:%02d %03x", Line, Registers.A.W, Registers.X.W, Registers.Y.W, Registers.D.W, Registers.DB, Registers.S.W, CheckEmulation() ? 'E' : 'e', CheckNegative() ? 'N' : 'n', CheckOverflow() ? 'V' : 'v', CheckMemory() ? 'M' : 'm', CheckIndex() ? 'X' : 'x', CheckDecimal() ? 'D' : 'd', CheckIRQ() ? 'I' : 'i', CheckZero() ? 'Z' : 'z', CheckCarry() ? 'C' : 'c', (long) CPU.Cycles, (long) CPU.V_Counter, IPPU.FrameCount, (CPU.IRQExternal ? 0x100 : 0) | (PPU.HTimerEnabled ? 0x10 : 0) | (PPU.VTimerEnabled ? 0x01 : 0)); return (Size); } static uint8 debug_sa1_op_print (char *Line, uint8 Bank, uint16 Address) { uint8 S9xOpcode; uint8 Operant[3]; uint16 Word; uint8 Byte; int16 SWord; int8 SByte; uint8 Size = 0; S9xOpcode = S9xDebugSA1GetByte((Bank << 16) + Address); sprintf(Line, "$%02X:%04X %02X ", Bank, Address, S9xOpcode); Operant[0] = S9xDebugSA1GetByte((Bank << 16) + Address + 1); Operant[1] = S9xDebugSA1GetByte((Bank << 16) + Address + 2); Operant[2] = S9xDebugSA1GetByte((Bank << 16) + Address + 3); switch (AddrModes[S9xOpcode]) { case 0: // Implied sprintf(Line, "%s %s", Line, S9xMnemonics[S9xOpcode]); Size = 1; break; case 1: // Immediate[MemoryFlag] if (!SA1CheckFlag(MemoryFlag)) { // Accumulator 16 - Bit sprintf(Line, "%s%02X %02X %s #$%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; } else { // Accumulator 8 - Bit sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; } break; case 2: // Immediate[IndexFlag] if (!SA1CheckFlag(IndexFlag)) { // X / Y 16 - Bit sprintf(Line, "%s%02X %02X %s #$%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Size = 3; } else { // X / Y 8 - Bit sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; } break; case 3: // Immediate[Always 8 - Bit] sprintf(Line, "%s%02X %s #$%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Size = 2; break; case 4: // Relative sprintf(Line, "%s%02X %s $%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); SByte = Operant[0]; Word = Address; Word += SByte; Word += 2; sprintf(Line, "%-32s[$%04X]", Line, Word); Size = 2; break; case 5: // Relative Long sprintf(Line, "%s%02X %02X %s $%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); SWord = (Operant[1] << 8) | Operant[0]; Word = Address; Word += SWord; Word += 3; sprintf(Line, "%-32s[$%04X]", Line, Word); Size = 3; break; case 6: // Direct sprintf(Line, "%s%02X %s $%02X", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 7: // Direct Indexed (with X) sprintf(Line, "%s%02X %s $%02X,x", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Word += SA1Registers.X.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 8: // Direct Indexed (with Y) sprintf(Line, "%s%02X %s $%02X,y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Word += SA1Registers.Y.W; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 9: // Direct Indirect sprintf(Line, "%s%02X %s ($%02X)", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Word = S9xDebugSA1GetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 2; break; case 10: // Direct Indexed Indirect sprintf(Line, "%s%02X %s ($%02X,x)", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Word += SA1Registers.X.W; Word = S9xDebugSA1GetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 2; break; case 11: // Direct Indirect Indexed sprintf(Line, "%s%02X %s ($%02X),y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Word = S9xDebugSA1GetWord(Word); Word += SA1Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 2; break; case 12: // Direct Indirect Long sprintf(Line, "%s%02X %s [$%02X]", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Byte = S9xDebugSA1GetByte(Word + 2); Word = S9xDebugSA1GetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 2; break; case 13: // Direct Indirect Indexed Long sprintf(Line, "%s%02X %s [$%02X],y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = Operant[0]; Word += SA1Registers.D.W; Byte = S9xDebugSA1GetByte(Word + 2); Word = S9xDebugSA1GetWord(Word); Word += SA1Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 2; break; case 14: // Absolute sprintf(Line, "%s%02X %02X %s $%02X%02X", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 3; break; case 15: // Absolute Indexed (with X) sprintf(Line, "%s%02X %02X %s $%02X%02X,x", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += SA1Registers.X.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 3; break; case 16: // Absolute Indexed (with Y) sprintf(Line, "%s%02X %02X %s $%02X%02X,y", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += SA1Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 3; break; case 17: // Absolute Long sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X", Line, Operant[0], Operant[1], Operant[2], S9xMnemonics[S9xOpcode], Operant[2], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word); Size = 4; break; case 18: // Absolute Indexed Long sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X,x", Line, Operant[0], Operant[1], Operant[2], S9xMnemonics[S9xOpcode], Operant[2], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += SA1Registers.X.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word); Size = 4; break; case 19: // Stack Relative sprintf(Line, "%s%02X %s $%02X,s", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = SA1Registers.S.W; Word += Operant[0]; sprintf(Line, "%-32s[$00:%04X]", Line, Word); Size = 2; break; case 20: // Stack Relative Indirect Indexed sprintf(Line, "%s%02X %s ($%02X,s),y", Line, Operant[0], S9xMnemonics[S9xOpcode], Operant[0]); Word = SA1Registers.S.W; Word += Operant[0]; Word = S9xDebugSA1GetWord(Word); Word += SA1Registers.Y.W; sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word); Size = 2; break; case 21: // Absolute Indirect sprintf(Line, "%s%02X %02X %s ($%02X%02X)", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word = S9xDebugSA1GetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.PB, Word); Size = 3; break; case 22: // Absolute Indirect Long sprintf(Line, "%s%02X %02X %s [$%02X%02X]", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Byte = S9xDebugSA1GetByte(Word + 2); Word = S9xDebugSA1GetWord(Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word); Size = 3; break; case 23: // Absolute Indexed Indirect sprintf(Line, "%s%02X %02X %s ($%02X%02X,x)", Line, Operant[0], Operant[1], S9xMnemonics[S9xOpcode], Operant[1], Operant[0]); Word = (Operant[1] << 8) | Operant[0]; Word += SA1Registers.X.W; Word = S9xDebugSA1GetWord(SA1.ShiftedPB + Word); sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.PB, Word); Size = 3; break; case 24: // Implied Accumulator sprintf(Line, "%s %s A", Line, S9xMnemonics[S9xOpcode]); Size = 1; break; case 25: // MVN/MVP SRC DST sprintf(Line, "%s %s %02X %02X", Line, S9xMnemonics[S9xOpcode], Operant[0], Operant[1]); Size = 3; break; } sprintf(Line, "%-44s A:%04X X:%04X Y:%04X D:%04X DB:%02X S:%04X P:%c%c%c%c%c%c%c%c%c HC:%04ld VC:%03ld FC:%02d", Line, SA1Registers.A.W, SA1Registers.X.W, SA1Registers.Y.W, SA1Registers.D.W, SA1Registers.DB, SA1Registers.S.W, SA1CheckEmulation() ? 'E' : 'e', SA1CheckNegative() ? 'N' : 'n', SA1CheckOverflow() ? 'V' : 'v', SA1CheckMemory() ? 'M' : 'm', SA1CheckIndex() ? 'X' : 'x', SA1CheckDecimal() ? 'D' : 'd', SA1CheckIRQ() ? 'I' : 'i', SA1CheckZero() ? 'Z' : 'z', SA1CheckCarry() ? 'C' : 'c', (long) CPU.Cycles, (long) CPU.V_Counter, IPPU.FrameCount); return (Size); } static void debug_line_print (const char *Line) { printf("%s\n", Line); } static int debug_get_number (char *Line, uint16 *Number) { int i; if (sscanf(Line, " #%d", &i) == 1) { *Number = i; return (1); } return (-1); } static short debug_get_start_address (char *Line, uint8 *Bank, uint32 *Address) { uint32 a, b; if (sscanf(Line + 1, " $%x:%x", &b, &a) != 2) return (-1); *Bank = b; *Address = a; return (1); } static void debug_process_command (char *Line) { uint8 Bank = Registers.PB; uint32 Address = Registers.PCw; uint16 Hold = 0; uint16 Number; short ErrorCode; char string[512]; if (strncasecmp(Line, "dump", 4) == 0) { int Count; if (sscanf(&Line[4], "%x %d", &Address, &Count) == 2) { FILE *fs; sprintf(string, "%06x%05d.sd2", Address, Count); fs = fopen(string, "wb"); if (fs) { for (int i = 0; i < Count; i++) putc(S9xDebugGetByte(Address + i), fs); fclose(fs); } else printf("Can't open %s for writing\n", string); } else printf("Usage: dump start_address_in_hex count_in_decimal\n"); return; } if (*Line == 'i') { printf("Vectors:\n"); sprintf(string, " 8 Bit 16 Bit "); debug_line_print(string); sprintf(string, "ABT $00:%04X|$00:%04X", S9xDebugGetWord(0xFFF8), S9xDebugGetWord(0xFFE8)); debug_line_print(string); sprintf(string, "BRK $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFE), S9xDebugGetWord(0xFFE6)); debug_line_print(string); sprintf(string, "COP $00:%04X|$00:%04X", S9xDebugGetWord(0xFFF4), S9xDebugGetWord(0xFFE4)); debug_line_print(string); sprintf(string, "IRQ $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFE), S9xDebugGetWord(0xFFEE)); debug_line_print(string); sprintf(string, "NMI $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFA), S9xDebugGetWord(0xFFEA)); debug_line_print(string); sprintf(string, "RES $00:%04X", S9xDebugGetWord(0xFFFC)); debug_line_print(string); } /* if (strncmp(Line, "ai", 2) == 0) { printf("APU vectors:"); for (int i = 0; i < 0x40; i += 2) { if (i % 16 == 0) printf("\n%04x ", 0xffc0 + i); printf("%04x ", APU.ExtraRAM[i]); } printf("\n"); } */ if (*Line == 's') { Registers.PCw += debug_cpu_op_print(string, Bank, Address); Bank = Registers.PB; Address = Registers.PCw; *Line = 'r'; } if (*Line == 'z') { uint16 *p = (uint16 *) &Memory.VRAM[PPU.BG[2].SCBase << 1]; for (int l = 0; l < 32; l++) { for (int c = 0; c < 32; c++, p++) printf("%04x,", *p++); printf("\n"); } } if (*Line == 'c') { printf("Colours:\n"); for (int i = 0; i < 256; i++) printf("%02x%02x%02x ", PPU.CGDATA[i] & 0x1f, (PPU.CGDATA[i] >> 5) & 0x1f, (PPU.CGDATA[i] >> 10) & 0x1f); printf("\n"); } if (*Line == 'S') { int SmallWidth, LargeWidth, SmallHeight, LargeHeight; switch ((Memory.FillRAM[0x2101] >> 5) & 7) { case 0: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 16; break; case 1: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 32; break; case 2: SmallWidth = SmallHeight = 8; LargeWidth = LargeHeight = 64; break; case 3: SmallWidth = SmallHeight = 16; LargeWidth = LargeHeight = 32; break; case 4: SmallWidth = SmallHeight = 16; LargeWidth = LargeHeight = 64; break; default: case 5: SmallWidth = SmallHeight = 32; LargeWidth = LargeHeight = 64; break; case 6: SmallWidth = 16; SmallHeight = 32; LargeWidth = 32; LargeHeight = 64; break; case 7: SmallWidth = 16; SmallHeight = 32; LargeWidth = LargeHeight = 32; break; } printf("Sprites: Small: %dx%d, Large: %dx%d, OAMAddr: 0x%04x, OBJNameBase: 0x%04x, OBJNameSelect: 0x%04x, First: %d\n", SmallWidth, SmallHeight, LargeWidth, LargeHeight, PPU.OAMAddr, PPU.OBJNameBase, PPU.OBJNameSelect, PPU.FirstSprite); for (int i = 0; i < 128; i++) { printf("X:%3d Y:%3d %c%c%d%c ", PPU.OBJ[i].HPos, PPU.OBJ[i].VPos, PPU.OBJ[i].VFlip ? 'V' : 'v', PPU.OBJ[i].HFlip ? 'H' : 'h', PPU.OBJ[i].Priority, PPU.OBJ[i].Size ? 'S' : 's'); if (i % 4 == 3) printf("\n"); } } if (*Line == 'T') { if (Line[1] == 'S') { SA1.Flags ^= TRACE_FLAG; if (SA1.Flags & TRACE_FLAG) { printf("SA1 CPU instruction tracing enabled.\n"); ENSURE_TRACE_OPEN(trace2, "trace_sa1.log", "wb") } else { printf("SA1 CPU instruction tracing disabled.\n"); fclose(trace2); trace2 = NULL; } } else { CPU.Flags ^= TRACE_FLAG; if (CPU.Flags & TRACE_FLAG) { printf("CPU instruction tracing enabled.\n"); ENSURE_TRACE_OPEN(trace, "trace.log", "wb") } else { printf("CPU instruction tracing disabled.\n"); fclose(trace); trace = NULL; } } } if (*Line == 'E') { Settings.TraceHCEvent = !Settings.TraceHCEvent; printf("HC event tracing %s.\n", Settings.TraceHCEvent ? "enabled" : "disabled"); } /* if (*Line == 'A') { APU.Flags ^= TRACE_FLAG; if (APU.Flags & TRACE_FLAG) { printf("APU tracing enabled.\n"); if (apu_trace == NULL) apu_trace = fopen("aputrace.log", "wb"); } else { printf("APU tracing disabled.\n"); fclose(apu_trace); apu_trace = NULL; } } if (*Line == 'B') { Settings.TraceSoundDSP = !Settings.TraceSoundDSP; printf("Sound DSP register tracing %s.\n", Settings.TraceSoundDSP ? "enabled" : "disabled"); } if (*Line == 'x') S9xPrintSoundDSPState(); if (*Line == 'C') { printf("SPC700 sample addresses at 0x%04x:\n", APU.DSP[APU_DIR] << 8); for (int i = 0; i < 256; i++) { uint8 *dir = IAPU.RAM + (((APU.DSP[APU_DIR] << 8) + i * 4) & 0xffff); int addr = *dir + (*(dir + 1) << 8); int addr2 = *(dir + 2) + (*(dir + 3) << 8); printf("%04X %04X;", addr, addr2); if (i % 8 == 7) printf("\n"); } } */ if (*Line == 'R') { S9xReset(); printf("SNES reset.\n"); CPU.Flags |= DEBUG_MODE_FLAG; } /* if (strncmp(Line, "ad", 2) == 0) { uint32 Count = 16; Address = 0; if (sscanf(Line + 2, "%x,%x", &Address, &Count) != 2) { if (sscanf(Line + 2, "%x", &Address) == 1) Count = 16; } printf("APU RAM dump:\n"); for (uint32 l = 0; l < Count; l += 16) { printf("%04X ", Address); for (int i = 0; i < 16; i++) printf("%02X ", IAPU.RAM[Address++]); printf("\n"); } *Line = 0; } if (*Line == 'a') { printf("APU in-ports : %02X %02X %02X %02X\n", IAPU.RAM[0xF4], IAPU.RAM[0xF5], IAPU.RAM[0xF6], IAPU.RAM[0xF7]); printf("APU out-ports: %02X %02X %02X %02X\n", APU.OutPorts[0], APU.OutPorts[1], APU.OutPorts[2], APU.OutPorts[3]); printf("ROM/RAM switch: %s\n", (IAPU.RAM[0xf1] & 0x80) ? "ROM" : "RAM"); for (int i = 0; i < 3; i++) if (APU.TimerEnabled[i]) printf("Timer%d enabled, Value: 0x%03X, 4-bit: 0x%02X, Target: 0x%03X\n", i, APU.Timer[i], IAPU.RAM[0xfd + i], APU.TimerTarget[i]); } if (*Line == 'P') { Settings.TraceDSP = !Settings.TraceDSP; printf("DSP tracing %s.\n", Settings.TraceDSP ? "enabled" : "disabled"); } */ if (*Line == 'p') { S9xBreakpoint[5].Enabled = FALSE; Address += debug_cpu_op_print(string, Bank, Address); if (strncmp(&string[18], "JMP", 3) != 0 && strncmp(&string[18], "JML", 3) != 0 && strncmp(&string[18], "RT" , 2) != 0 && strncmp(&string[18], "BRA", 3)) { S9xBreakpoint[5].Enabled = TRUE; S9xBreakpoint[5].Bank = Bank; S9xBreakpoint[5].Address = Address; } else { CPU.Flags |= SINGLE_STEP_FLAG; CPU.Flags &= ~DEBUG_MODE_FLAG; } } if (*Line == 'b') { if (Line[1] == 's') { debug_get_number(Line + 2, &Hold); if (Hold > 4) Hold = 0; if (Hold < 5) { if (debug_get_start_address(Line + 5, &Bank, &Address) == -1) S9xBreakpoint[Hold].Enabled = FALSE; else { S9xBreakpoint[Hold].Enabled = TRUE; S9xBreakpoint[Hold].Bank = Bank; S9xBreakpoint[Hold].Address = Address; CPU.Flags |= BREAK_FLAG; } } Line[1] = 'v'; } if (Line[1] == 'v') { Number = 0; if (debug_get_number(Line + 2, &Number) == -1 && Number < 5) { debug_line_print("Breakpoints:"); for (Number = 0; Number != 5; Number++) { if (S9xBreakpoint[Number].Enabled) sprintf(string, "%i @ $%02X:%04X", Number, S9xBreakpoint[Number].Bank, S9xBreakpoint[Number].Address); else sprintf(string, "%i @ Disabled", Number); debug_line_print(string); } } else { debug_line_print("Breakpoint:"); if (S9xBreakpoint[Number].Enabled) sprintf(string, "%i @ $%02X:%04X", Number, S9xBreakpoint[Number].Bank, S9xBreakpoint[Number].Address); else sprintf(string, "%i @ Disabled", Number); debug_line_print(string); } } } if (*Line == '?' || strcasecmp(Line, "help") == 0) { for (int i = 0; HelpMessage[i] != NULL; i++) debug_line_print(HelpMessage[i]); } if (*Line == 't') { CPU.Flags |= SINGLE_STEP_FLAG; CPU.Flags &= ~DEBUG_MODE_FLAG; } if (*Line == 'f') { CPU.Flags |= FRAME_ADVANCE_FLAG; CPU.Flags &= ~DEBUG_MODE_FLAG; IPPU.RenderThisFrame = TRUE; IPPU.FrameSkip = 0; if (sscanf(&Line[1], "%u", &ICPU.FrameAdvanceCount) != 1) ICPU.Frame = 0; } if (*Line == 'g') { S9xBreakpoint[5].Enabled = FALSE; bool8 found = FALSE; for (int i = 0; i < 5; i++) { if (S9xBreakpoint[i].Enabled) { found = TRUE; if (S9xBreakpoint[i].Bank == Registers.PB && S9xBreakpoint[i].Address == Registers.PCw) { S9xBreakpoint[i].Enabled = 2; break; } } } if (!found) CPU.Flags &= ~BREAK_FLAG; ErrorCode = debug_get_start_address(Line, &Bank, &Address); if (ErrorCode == 1) { S9xBreakpoint[5].Enabled = TRUE; S9xBreakpoint[5].Bank = Bank; S9xBreakpoint[5].Address = Address; CPU.Flags |= BREAK_FLAG; } CPU.Flags &= ~DEBUG_MODE_FLAG; } if (*Line == 'D') { Settings.TraceDMA = !Settings.TraceDMA; printf("DMA tracing %s.\n", Settings.TraceDMA ? "enabled" : "disabled"); } if (*Line == 'V') { Settings.TraceVRAM = !Settings.TraceVRAM; printf("Non-DMA VRAM write tracing %s.\n", Settings.TraceVRAM ? "enabled" : "disabled"); } if (*Line == 'H') { Settings.TraceHDMA = !Settings.TraceHDMA; printf("HDMA tracing %s.\n", Settings.TraceHDMA ? "enabled" : "disabled"); } if (*Line == 'U') { Settings.TraceUnknownRegisters = !Settings.TraceUnknownRegisters; printf("Unknown registers read/write tracing %s.\n", Settings.TraceUnknownRegisters ? "enabled" : "disabled"); } if (*Line == 'd') { int CLine; int CByte; uint8 MemoryByte; if (Debug.Dump.Bank != 0 || Debug.Dump.Address != 0) { Bank = Debug.Dump.Bank; Address = Debug.Dump.Address; } ErrorCode = debug_get_start_address(Line, &Bank, &Address); for (CLine = 0; CLine != 10; CLine++) { sprintf(string, "$%02X:%04X", Bank, Address); for (CByte = 0; CByte != 16; CByte++) { if (Address + CByte == 0x2140 || Address + CByte == 0x2141 || Address + CByte == 0x2142 || Address + CByte == 0x2143 || Address + CByte == 0x4210) MemoryByte = 0; else MemoryByte = S9xDebugGetByte((Bank << 16) + Address + CByte); sprintf(string, "%s %02X", string, MemoryByte); } sprintf(string, "%s-", string); for (CByte = 0; CByte != 16; CByte++) { if (Address + CByte == 0x2140 || Address + CByte == 0x2141 || Address + CByte == 0x2142 || Address + CByte == 0x2143 || Address + CByte == 0x4210) MemoryByte = 0; else MemoryByte = S9xDebugGetByte((Bank << 16) + Address + CByte); if (MemoryByte < 32 || MemoryByte >= 127) MemoryByte = '?'; sprintf(string, "%s%c", string, MemoryByte); } Address += 16; debug_line_print(string); } Debug.Dump.Bank = Bank; Debug.Dump.Address = Address; } if (*Line == 'q') S9xExit(); if (*Line == 'W') debug_whats_missing(); if (*Line == 'w') debug_whats_used(); if (*Line == 'r') { debug_cpu_op_print(string, Bank, Address); debug_line_print(string); } if (*Line == 'u') { if (Debug.Unassemble.Bank != 0 || Debug.Unassemble.Address != 0) { Bank = Debug.Unassemble.Bank; Address = Debug.Unassemble.Address; } ErrorCode = debug_get_start_address(Line, &Bank, &Address); for (int i = 0; i != 10; i++) { Address += debug_cpu_op_print(string, Bank, Address); debug_line_print(string); } Debug.Unassemble.Bank = Bank; Debug.Unassemble.Address = Address; } debug_line_print(""); return; } static void debug_print_window (uint8 *window) { for (int i = 0; i < 6; i++) { if (window[i]) { switch (i) { case 0: printf("Background 0, "); break; case 1: printf("Background 1, "); break; case 2: printf("Background 2, "); break; case 3: printf("Background 3, "); break; case 4: printf("Objects, "); break; case 5: printf("Color window, "); break; } } } } static const char * debug_clip_fn (int logic) { switch (logic) { case CLIP_OR: return ("OR"); case CLIP_AND: return ("AND"); case CLIP_XOR: return ("XOR"); case CLIP_XNOR: return ("XNOR"); default: return ("???"); } } static void debug_whats_used (void) { printf("V-line: %ld, H-Pos: %ld, \n", (long) CPU.V_Counter, (long) CPU.Cycles); printf("Screen mode: %d, ", PPU.BGMode); if (PPU.BGMode <= 1 && (Memory.FillRAM[0x2105] & 8)) printf("(BG#2 Priority), "); printf("Brightness: %d, ", PPU.Brightness); if (Memory.FillRAM[0x2100] & 0x80) printf("(screen blanked), "); printf("\n"); if (Memory.FillRAM[0x2133] & 1) printf("Interlace, "); if (Memory.FillRAM[0x2133] & 4) printf("240 line visible, "); if (Memory.FillRAM[0x2133] & 8) printf("Pseudo 512 pixels horizontal resolution, "); if (Memory.FillRAM[0x2133] & 0x40) printf("Mode 7 priority per pixel, "); printf("\n"); if (PPU.BGMode == 7 && (Memory.FillRAM[0x211a] & 3)) printf("Mode 7 flipping, "); if (PPU.BGMode == 7) printf("Mode 7 screen repeat: %d, ", (Memory.FillRAM[0x211a] & 0xc0) >> 6); if (Memory.FillRAM[0x2130] & 1) printf("32K colour mode, "); printf("\n"); if (PPU.BGMode == 7) { // Sign extend 13 bit values to 16 bit values... if (PPU.CentreX & (1 << 12)) PPU.CentreX |= 0xe000; if (PPU.CentreY & (1 << 12)) PPU.CentreY |= 0xe000; printf("Matrix A: %.3f, B: %.3f, C: %.3f, D: %.3f, Centre X: %d Y:%d, \n", (double) PPU.MatrixA / 256, (double) PPU.MatrixB / 256, (double) PPU.MatrixC / 256, (double) PPU.MatrixD / 256, PPU.CentreX, PPU.CentreY); } if ((Memory.FillRAM[0x2106] & 0xf0) && (Memory.FillRAM[0x2106] & 0x0f)) { printf("Mosaic effect(%d) on, ", PPU.Mosaic); for (int i = 0; i < 4; i++) if (Memory.FillRAM[0x2106] & (1 << i)) printf("BG%d, ", i); } printf("\n"); if (PPU.HVBeamCounterLatched) printf("V and H beam pos latched, \n"); if (Memory.FillRAM[0x4200] & 0x20) printf("V-IRQ enabled at %d, \n", PPU.IRQVBeamPos); if (Memory.FillRAM[0x4200] & 0x10) printf("H-IRQ enabled at %d, \n", PPU.IRQHBeamPos); if (Memory.FillRAM[0x4200] & 0x80) printf("V-blank NMI enabled, \n"); for (int i = 0; i < 8; i++) { if (missing.hdma_this_frame & (1 << i)) { printf("H-DMA %d [%d] 0x%02X%04X->0x21%02X %s %s 0x%02X%04X %s addressing, \n", i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress, DMA[i].AAddressDecrement ? "dec" : "inc", DMA[i].Repeat ? "repeat" : "continue", DMA[i].IndirectBank, DMA[i].IndirectAddress, DMA[i].HDMAIndirectAddressing ? "indirect" : "absolute"); } } for (int i = 0; i < 8; i++) { if (missing.dma_this_frame & (1 << i)) { printf("DMA %d [%d] 0x%02X%04X->0x21%02X Num: %d %s, \n", i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress, DMA[i].TransferBytes, DMA[i].AAddressFixed ? "fixed" : (DMA[i].AAddressDecrement ? "dec" : "inc")); } } printf("VRAM write address: 0x%04x(%s), Full Graphic: %d, Address inc: %d, \n", PPU.VMA.Address, PPU.VMA.High ? "Byte" : "Word", PPU.VMA.FullGraphicCount, PPU.VMA.Increment); for (int i = 0; i < 4; i++) { printf("BG%d: VOffset:%d, HOffset:%d, W:%d, H:%d, TS:%d, BA:0x%04x, TA:0x%04X, \n", i, PPU.BG[i].VOffset, PPU.BG[i].HOffset, (PPU.BG[i].SCSize & 1) * 32 + 32, (PPU.BG[i].SCSize & 2) * 16 + 32, PPU.BG[i].BGSize * 8 + 8, PPU.BG[i].SCBase, PPU.BG[i].NameBase); } const char *s = ""; switch ((Memory.FillRAM[0x2130] & 0xc0) >> 6) { case 0: s = "always on"; break; case 1: s = "inside"; break; case 2: s = "outside"; break; case 3: s = "always off"; break; } printf("Main screen (%s): ", s); for (int i = 0; i < 5; i++) { if (Memory.FillRAM[0x212c] & (1 << i)) { switch (i) { case 0: printf("BG0, "); break; case 1: printf("BG1, "); break; case 2: printf("BG2, "); break; case 3: printf("BG3, "); break; case 4: printf("OBJ, "); break; } } } printf("\n"); switch ((Memory.FillRAM[0x2130] & 0x30) >> 4) { case 0: s = "always on"; break; case 1: s = "inside"; break; case 2: s = "outside"; break; case 3: s = "always off"; break; } printf("Subscreen (%s): ", s); for (int i = 0; i < 5; i++) { if (Memory.FillRAM[0x212d] & (1 << i)) { switch (i) { case 0: printf("BG0, "); break; case 1: printf("BG1, "); break; case 2: printf("BG2, "); break; case 3: printf("BG3, "); break; case 4: printf("OBJ, "); break; } } } printf("\n"); if ((Memory.FillRAM[0x2131] & 0x3f)) { if (Memory.FillRAM[0x2131] & 0x80) { if (Memory.FillRAM[0x2130] & 0x02) printf("Subscreen subtract"); else printf("Fixed colour subtract"); } else { if (Memory.FillRAM[0x2130] & 0x02) printf("Subscreen addition"); else printf("Fixed colour addition"); } if (Memory.FillRAM[0x2131] & 0x40) printf("(half): "); else printf(": "); for (int i = 0; i < 6; i++) { if (Memory.FillRAM[0x2131] & (1 << i)) { switch (i) { case 0: printf("BG0, "); break; case 1: printf("BG1, "); break; case 2: printf("BG2, "); break; case 3: printf("BG3, "); break; case 4: printf("OBJ, "); break; case 5: printf("BACK, "); break; } } } printf("\n"); } printf("Window 1 (%d, %d, %02x, %02x): ", PPU.Window1Left, PPU.Window1Right, Memory.FillRAM[0x212e], Memory.FillRAM[0x212f]); for (int i = 0; i < 6; i++) { if (PPU.ClipWindow1Enable[i]) { switch (i) { case 0: printf("BG0(%s-%s), ", PPU.ClipWindow1Inside[0] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[0])); break; case 1: printf("BG1(%s-%s), ", PPU.ClipWindow1Inside[1] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[1])); break; case 2: printf("BG2(%s-%s), ", PPU.ClipWindow1Inside[2] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[2])); break; case 3: printf("BG3(%s-%s), ", PPU.ClipWindow1Inside[3] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[3])); break; case 4: printf("OBJ(%s-%s), ", PPU.ClipWindow1Inside[4] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[4])); break; case 5: printf("COL(%s-%s), ", PPU.ClipWindow1Inside[5] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[5])); break; } } } printf("\n"); printf("Window 2 (%d, %d): ", PPU.Window2Left, PPU.Window2Right); for (int i = 0; i < 6; i++) { if (PPU.ClipWindow2Enable[i]) { switch (i) { case 0: printf("BG0(%s), ", PPU.ClipWindow2Inside[0] ? "I" : "O"); break; case 1: printf("BG1(%s), ", PPU.ClipWindow2Inside[1] ? "I" : "O"); break; case 2: printf("BG2(%s), ", PPU.ClipWindow2Inside[2] ? "I" : "O"); break; case 3: printf("BG3(%s), ", PPU.ClipWindow2Inside[3] ? "I" : "O"); break; case 4: printf("OBJ(%s), ", PPU.ClipWindow2Inside[4] ? "I" : "O"); break; case 5: printf("COL(%s), " , PPU.ClipWindow2Inside[5] ? "I" : "O"); break; } } } printf("\n"); printf("Fixed colour: %02x%02x%02x, \n", PPU.FixedColourRed, PPU.FixedColourGreen, PPU.FixedColourBlue); } static void debug_whats_missing (void) { printf("Processor: "); if (missing.emulate6502) printf("emulation mode, "); if (missing.decimal_mode) printf("decimal mode, "); if (missing.mv_8bit_index) printf("MVP/MVN with 8bit index registers and XH or YH > 0, "); if (missing.mv_8bit_acc) printf("MVP/MVN with 8bit accumulator > 255, "); printf("\n"); printf("Screen modes used: "); for (int i = 0; i < 8; i++) if (missing.modes[i]) printf("%d, ", i); printf("\n"); if (missing.interlace) printf("Interlace, "); if (missing.pseudo_512) printf("Pseudo 512 pixels horizontal resolution, "); if (missing.lines_239) printf("240 lines visible, "); if (missing.sprite_double_height) printf("double-hight sprites, "); printf("\n"); if (missing.mode7_fx) printf("Mode 7 rotation/scaling, "); if (missing.matrix_read) printf("Mode 7 read matrix registers, "); if (missing.mode7_flip) printf("Mode 7 flipping, "); if (missing.mode7_bgmode) printf("Mode 7 priority per pixel, "); if (missing.direct) printf("Direct 32000 colour mode, "); printf("\n"); if (missing.mosaic) printf("Mosaic effect, "); if (missing.subscreen) printf("Subscreen enabled, "); if (missing.subscreen_add) printf("Subscreen colour add, "); if (missing.subscreen_sub) printf("Subscreen colour subtract, "); if (missing.fixed_colour_add) printf("Fixed colour add, "); if (missing.fixed_colour_sub) printf("Fixed colour subtract, "); printf("\n"); printf("Window 1 enabled on: "); debug_print_window(missing.window1); printf("\n"); printf("Window 2 enabled on: "); debug_print_window(missing.window2); printf("\n"); if (missing.bg_offset_read) printf("BG offset read, "); if (missing.oam_address_read) printf("OAM address read, "); if (missing.sprite_priority_rotation) printf("Sprite priority rotation, "); if (missing.fast_rom) printf("Fast 3.58MHz ROM access enabled, "); if (missing.matrix_multiply) printf("Matrix multiply 16bit by 8bit used, "); printf("\n"); if (missing.virq) printf("V-IRQ used at line %d, ", missing.virq_pos); if (missing.hirq) printf("H-IRQ used at position %d, ", missing.hirq_pos); printf("\n"); if (missing.h_v_latch) printf("H and V-Pos latched, "); if (missing.h_counter_read) printf("H-Pos read, "); if (missing.v_counter_read) printf("V-Pos read, "); printf("\n"); if (missing.oam_read) printf("OAM read, "); if (missing.vram_read) printf("VRAM read, "); if (missing.cgram_read) printf("CG-RAM read, "); if (missing.wram_read) printf("WRAM read, "); if (missing.dma_read) printf("DMA read, "); if (missing.vram_inc) printf("VRAM inc: %d, ", missing.vram_inc); if (missing.vram_full_graphic_inc) printf("VRAM full graphic inc: %d, ", missing.vram_full_graphic_inc); printf("\n"); for (int i = 0; i < 8; i++) { if (missing.hdma[i].used) { printf("HDMA %d 0x%02X%04X->0x21%02X %s, ", i, missing.hdma[i].abus_bank, missing.hdma[i].abus_address, missing.hdma[i].bbus_address, missing.hdma[i].indirect_address ? "indirect" : "absolute"); if (missing.hdma[i].force_table_address_write) printf("Forced address write, "); if (missing.hdma[i].force_table_address_read) printf("Current address read, "); if (missing.hdma[i].line_count_write) printf("Line count write, "); if (missing.hdma[i].line_count_read) printf("Line count read, "); printf("\n"); } } for (int i = 0; i < 8; i++) { if (missing.dma_channels & (1 << i)) { printf("DMA %d [%d] 0x%02X%04X->0x21%02X Num: %d %s, \n", i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress, DMA[i].TransferBytes, DMA[i].AAddressFixed ? "fixed" : (DMA[i].AAddressDecrement ? "dec" : "inc")); } } if (missing.unknownppu_read) printf("Read from unknown PPU register: $%04X, \n", missing.unknownppu_read); if (missing.unknownppu_write) printf("Write to unknown PPU register: $%04X, \n", missing.unknownppu_write); if (missing.unknowncpu_read) printf("Read from unknown CPU register: $%04X, \n", missing.unknowncpu_read); if (missing.unknowncpu_write) printf("Write to unknown CPU register: $%04X, \n", missing.unknowncpu_write); if (missing.unknowndsp_read) printf("Read from unknown DSP register: $%04X, \n", missing.unknowndsp_read); if (missing.unknowndsp_write) printf("Write to unknown DSP register: $%04X, \n", missing.unknowndsp_write); } void S9xDoDebug (void) { char Line[513]; Debug.Dump.Bank = 0; Debug.Dump.Address = 0; Debug.Unassemble.Bank = 0; Debug.Unassemble.Address = 0; S9xTextMode(); strcpy(Line, "r"); debug_process_command(Line); while (CPU.Flags & DEBUG_MODE_FLAG) { int32 Cycles; char *p; printf("> "); fflush(stdout); p = fgets(Line, sizeof(Line) - 1, stdin); Line[strlen(Line) - 1] = 0; Cycles = CPU.Cycles; debug_process_command(Line); CPU.Cycles = Cycles; } if (!(CPU.Flags & SINGLE_STEP_FLAG)) S9xGraphicsMode(); } void S9xTrace (void) { char msg[512]; ENSURE_TRACE_OPEN(trace, "trace.log", "a") debug_cpu_op_print(msg, Registers.PB, Registers.PCw); fprintf(trace, "%s\n", msg); } void S9xSA1Trace (void) { char msg[512]; ENSURE_TRACE_OPEN(trace2, "trace_sa1.log", "a") debug_sa1_op_print(msg, SA1Registers.PB, SA1Registers.PCw); fprintf(trace2, "%s\n", msg); } void S9xTraceMessage (const char *s) { if (s) { if (trace) fprintf(trace, "%s\n", s); else if (trace2) fprintf(trace2, "%s\n", s); } } void S9xTraceFormattedMessage (const char *s, ...) { char msg[512]; if (s) { va_list argptr; va_start(argptr, s); vsprintf(msg, s, argptr); va_end(argptr); S9xTraceMessage(msg); } } #endif