mirror of
https://github.com/libretro/snes9x.git
synced 2024-11-30 12:00:35 +00:00
1273 lines
47 KiB
C++
1273 lines
47 KiB
C++
// ****************************************************************************
|
|
// * This file is part of the xBRZ project. It is distributed under *
|
|
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 *
|
|
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved *
|
|
// * *
|
|
// * Additionally and as a special exception, the author gives permission *
|
|
// * to link the code of this program with the following libraries *
|
|
// * (or with modified versions that use the same licenses), and distribute *
|
|
// * linked combinations including the two: MAME, FreeFileSync, Snes9x *
|
|
// * You must obey the GNU General Public License in all respects for all of *
|
|
// * the code used other than MAME, FreeFileSync, Snes9x. *
|
|
// * If you modify this file, you may extend this exception to your version *
|
|
// * of the file, but you are not obligated to do so. If you do not wish to *
|
|
// * do so, delete this exception statement from your version. *
|
|
// ****************************************************************************
|
|
|
|
#include "xbrz.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <cmath> //std::sqrt
|
|
#include "xbrz_tools.h"
|
|
|
|
using namespace xbrz;
|
|
|
|
|
|
namespace
|
|
{
|
|
template <unsigned int M, unsigned int N> inline
|
|
uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
|
|
{
|
|
static_assert(0 < M && M < N && N <= 1000, "");
|
|
|
|
auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; };
|
|
|
|
return makePixel(calcColor(getRed (pixFront), getRed (pixBack)),
|
|
calcColor(getGreen(pixFront), getGreen(pixBack)),
|
|
calcColor(getBlue (pixFront), getBlue (pixBack)));
|
|
}
|
|
|
|
|
|
template <unsigned int M, unsigned int N> inline
|
|
uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
|
|
{
|
|
static_assert(0 < M && M < N && N <= 1000, "");
|
|
|
|
const unsigned int weightFront = getAlpha(pixFront) * M;
|
|
const unsigned int weightBack = getAlpha(pixBack) * (N - M);
|
|
const unsigned int weightSum = weightFront + weightBack;
|
|
if (weightSum == 0)
|
|
return 0;
|
|
|
|
auto calcColor = [=](unsigned char colFront, unsigned char colBack)
|
|
{
|
|
return static_cast<unsigned char>((colFront * weightFront + colBack * weightBack) / weightSum);
|
|
};
|
|
|
|
return makePixel(static_cast<unsigned char>(weightSum / N),
|
|
calcColor(getRed (pixFront), getRed (pixBack)),
|
|
calcColor(getGreen(pixFront), getGreen(pixBack)),
|
|
calcColor(getBlue (pixFront), getBlue (pixBack)));
|
|
}
|
|
|
|
|
|
//inline
|
|
//double fastSqrt(double n)
|
|
//{
|
|
// __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
|
|
// {
|
|
// fld n
|
|
// fsqrt
|
|
// }
|
|
//}
|
|
//
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
#define FORCE_INLINE __forceinline
|
|
#elif defined __GNUC__
|
|
#define FORCE_INLINE __attribute__((always_inline)) inline
|
|
#else
|
|
#define FORCE_INLINE inline
|
|
#endif
|
|
|
|
|
|
enum RotationDegree //clock-wise
|
|
{
|
|
ROT_0,
|
|
ROT_90,
|
|
ROT_180,
|
|
ROT_270
|
|
};
|
|
|
|
//calculate input matrix coordinates after rotation at compile time
|
|
template <RotationDegree rotDeg, size_t I, size_t J, size_t N>
|
|
struct MatrixRotation;
|
|
|
|
template <size_t I, size_t J, size_t N>
|
|
struct MatrixRotation<ROT_0, I, J, N>
|
|
{
|
|
static const size_t I_old = I;
|
|
static const size_t J_old = J;
|
|
};
|
|
|
|
template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix
|
|
struct MatrixRotation
|
|
{
|
|
static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation!
|
|
static const size_t J_old = MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; //
|
|
};
|
|
|
|
|
|
template <size_t N, RotationDegree rotDeg>
|
|
class OutputMatrix
|
|
{
|
|
public:
|
|
OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width
|
|
out_(out),
|
|
outWidth_(outWidth) {}
|
|
|
|
template <size_t I, size_t J>
|
|
uint32_t& ref() const
|
|
{
|
|
static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old;
|
|
static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old;
|
|
return *(out_ + J_old + I_old * outWidth_);
|
|
}
|
|
|
|
private:
|
|
uint32_t* out_;
|
|
const int outWidth_;
|
|
};
|
|
|
|
|
|
template <class T> inline
|
|
T square(T value) { return value * value; }
|
|
|
|
|
|
#if 0
|
|
inline
|
|
double distRGB(uint32_t pix1, uint32_t pix2)
|
|
{
|
|
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
|
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
|
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
|
|
|
//euklidean RGB distance
|
|
return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff));
|
|
}
|
|
#endif
|
|
|
|
|
|
inline
|
|
double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
|
|
{
|
|
//http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
|
|
//YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first!
|
|
const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication
|
|
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
|
|
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!
|
|
|
|
//const double k_b = 0.0722; //ITU-R BT.709 conversion
|
|
//const double k_r = 0.2126; //
|
|
const double k_b = 0.0593; //ITU-R BT.2020 conversion
|
|
const double k_r = 0.2627; //
|
|
const double k_g = 1 - k_b - k_r;
|
|
|
|
const double scale_b = 0.5 / (1 - k_b);
|
|
const double scale_r = 0.5 / (1 - k_r);
|
|
|
|
const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
|
|
const double c_b = scale_b * (b_diff - y);
|
|
const double c_r = scale_r * (r_diff - y);
|
|
|
|
//we skip division by 255 to have similar range like other distance functions
|
|
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
|
|
}
|
|
|
|
|
|
inline
|
|
double distYCbCrBuffered(uint32_t pix1, uint32_t pix2)
|
|
{
|
|
//30% perf boost compared to plain distYCbCr()!
|
|
//consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
|
|
static const std::vector<float> diffToDist = []
|
|
{
|
|
std::vector<float> tmp;
|
|
|
|
for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
|
|
{
|
|
const int r_diff = getByte<2>(i) * 2 - 0xFF;
|
|
const int g_diff = getByte<1>(i) * 2 - 0xFF;
|
|
const int b_diff = getByte<0>(i) * 2 - 0xFF;
|
|
|
|
const double k_b = 0.0593; //ITU-R BT.2020 conversion
|
|
const double k_r = 0.2627; //
|
|
const double k_g = 1 - k_b - k_r;
|
|
|
|
const double scale_b = 0.5 / (1 - k_b);
|
|
const double scale_r = 0.5 / (1 - k_r);
|
|
|
|
const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
|
|
const double c_b = scale_b * (b_diff - y);
|
|
const double c_r = scale_r * (r_diff - y);
|
|
|
|
tmp.push_back(static_cast<float>(std::sqrt(square(y) + square(c_b) + square(c_r))));
|
|
}
|
|
return tmp;
|
|
}();
|
|
|
|
//if (pix1 == pix2) -> 8% perf degradation!
|
|
// return 0;
|
|
//if (pix1 < pix2)
|
|
// std::swap(pix1, pix2); -> 30% perf degradation!!!
|
|
#if 1
|
|
const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
|
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
|
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
|
|
|
return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
|
|
(((g_diff + 0xFF) / 2) << 8) |
|
|
(( b_diff + 0xFF) / 2)];
|
|
#else //not noticeably faster:
|
|
const int r_diff_tmp = ((pix1 & 0xFF0000) + 0xFF0000 - (pix2 & 0xFF0000)) / 2;
|
|
const int g_diff_tmp = ((pix1 & 0x00FF00) + 0x00FF00 - (pix2 & 0x00FF00)) / 2; //slightly reduce precision (division by 2) to squeeze value into single byte
|
|
const int b_diff_tmp = ((pix1 & 0x0000FF) + 0x0000FF - (pix2 & 0x0000FF)) / 2;
|
|
|
|
return diffToDist[(r_diff_tmp & 0xFF0000) | (g_diff_tmp & 0x00FF00) | (b_diff_tmp & 0x0000FF)];
|
|
#endif
|
|
}
|
|
|
|
|
|
enum BlendType
|
|
{
|
|
BLEND_NONE = 0,
|
|
BLEND_NORMAL, //a normal indication to blend
|
|
BLEND_DOMINANT, //a strong indication to blend
|
|
//attention: BlendType must fit into the value range of 2 bit!!!
|
|
};
|
|
|
|
struct BlendResult
|
|
{
|
|
BlendType
|
|
/**/blend_f, blend_g,
|
|
/**/blend_j, blend_k;
|
|
};
|
|
|
|
|
|
struct Kernel_4x4 //kernel for preprocessing step
|
|
{
|
|
uint32_t
|
|
/**/a, b, c, d,
|
|
/**/e, f, g, h,
|
|
/**/i, j, k, l,
|
|
/**/m, n, o, p;
|
|
};
|
|
|
|
/*
|
|
input kernel area naming convention:
|
|
-----------------
|
|
| A | B | C | D |
|
|
----|---|---|---|
|
|
| E | F | G | H | //evaluate the four corners between F, G, J, K
|
|
----|---|---|---| //input pixel is at position F
|
|
| I | J | K | L |
|
|
----|---|---|---|
|
|
| M | N | O | P |
|
|
-----------------
|
|
*/
|
|
template <class ColorDistance>
|
|
FORCE_INLINE //detect blend direction
|
|
BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
|
|
{
|
|
BlendResult result = {};
|
|
|
|
if ((ker.f == ker.g &&
|
|
ker.j == ker.k) ||
|
|
(ker.f == ker.j &&
|
|
ker.g == ker.k))
|
|
return result;
|
|
|
|
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
|
|
|
|
const int weight = 4;
|
|
double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g);
|
|
double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k);
|
|
|
|
if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
|
|
{
|
|
const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk;
|
|
if (ker.f != ker.g && ker.f != ker.j)
|
|
result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
|
|
|
if (ker.k != ker.j && ker.k != ker.g)
|
|
result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
|
}
|
|
else if (fk < jg)
|
|
{
|
|
const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg;
|
|
if (ker.j != ker.f && ker.j != ker.k)
|
|
result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
|
|
|
if (ker.g != ker.f && ker.g != ker.k)
|
|
result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct Kernel_3x3
|
|
{
|
|
uint32_t
|
|
/**/a, b, c,
|
|
/**/d, e, f,
|
|
/**/g, h, i;
|
|
};
|
|
|
|
#define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; }
|
|
//we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token
|
|
DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c)
|
|
DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f)
|
|
DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i)
|
|
#undef DEF_GETTER
|
|
|
|
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; }
|
|
DEF_GETTER(b, d) DEF_GETTER(c, a)
|
|
DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b)
|
|
DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c)
|
|
#undef DEF_GETTER
|
|
|
|
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; }
|
|
DEF_GETTER(b, h) DEF_GETTER(c, g)
|
|
DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d)
|
|
DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a)
|
|
#undef DEF_GETTER
|
|
|
|
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; }
|
|
DEF_GETTER(b, f) DEF_GETTER(c, i)
|
|
DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h)
|
|
DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g)
|
|
#undef DEF_GETTER
|
|
|
|
|
|
//compress four blend types into a single byte
|
|
//inline BlendType getTopL (unsigned char b) { return static_cast<BlendType>(0x3 & b); }
|
|
inline BlendType getTopR (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); }
|
|
inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); }
|
|
inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); }
|
|
|
|
inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing!
|
|
inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); }
|
|
inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); }
|
|
inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); }
|
|
|
|
inline bool blendingNeeded(unsigned char b) { return b != 0; }
|
|
|
|
template <RotationDegree rotDeg> inline
|
|
unsigned char rotateBlendInfo(unsigned char b) { return b; }
|
|
template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; }
|
|
template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; }
|
|
template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; }
|
|
|
|
#ifdef WIN32
|
|
#ifndef NDEBUG
|
|
int debugPixelX = -1;
|
|
int debugPixelY = 12;
|
|
__declspec(thread) bool breakIntoDebugger = false;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
input kernel area naming convention:
|
|
-------------
|
|
| A | B | C |
|
|
----|---|---|
|
|
| D | E | F | //input pixel is at position E
|
|
----|---|---|
|
|
| G | H | I |
|
|
-------------
|
|
*/
|
|
template <class Scaler, class ColorDistance, RotationDegree rotDeg>
|
|
FORCE_INLINE //perf: quite worth it!
|
|
void blendPixel(const Kernel_3x3& ker,
|
|
uint32_t* target, int trgWidth,
|
|
unsigned char blendInfo, //result of preprocessing all four corners of pixel "e"
|
|
const xbrz::ScalerCfg& cfg)
|
|
{
|
|
#define a get_a<rotDeg>(ker)
|
|
#define b get_b<rotDeg>(ker)
|
|
#define c get_c<rotDeg>(ker)
|
|
#define d get_d<rotDeg>(ker)
|
|
#define e get_e<rotDeg>(ker)
|
|
#define f get_f<rotDeg>(ker)
|
|
#define g get_g<rotDeg>(ker)
|
|
#define h get_h<rotDeg>(ker)
|
|
#define i get_i<rotDeg>(ker)
|
|
|
|
#ifdef WIN32
|
|
#ifndef NDEBUG
|
|
if (breakIntoDebugger)
|
|
__debugbreak(); //__asm int 3;
|
|
#endif
|
|
#endif
|
|
|
|
const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo);
|
|
|
|
if (getBottomR(blend) >= BLEND_NORMAL)
|
|
{
|
|
auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight) < cfg.equalColorTolerance; };
|
|
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
|
|
|
|
const bool doLineBlend = [&]() -> bool
|
|
{
|
|
if (getBottomR(blend) >= BLEND_DOMINANT)
|
|
return true;
|
|
|
|
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
|
|
if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90 degree corners
|
|
return false;
|
|
if (getBottomL(blend) != BLEND_NONE && !eq(e, c))
|
|
return false;
|
|
|
|
//no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
|
|
if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c))
|
|
return false;
|
|
|
|
return true;
|
|
}();
|
|
|
|
const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color
|
|
|
|
OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);
|
|
|
|
if (doLineBlend)
|
|
{
|
|
const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
|
|
const double hc = dist(h, c); //
|
|
|
|
const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
|
|
const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;
|
|
|
|
if (haveShallowLine)
|
|
{
|
|
if (haveSteepLine)
|
|
Scaler::blendLineSteepAndShallow(px, out);
|
|
else
|
|
Scaler::blendLineShallow(px, out);
|
|
}
|
|
else
|
|
{
|
|
if (haveSteepLine)
|
|
Scaler::blendLineSteep(px, out);
|
|
else
|
|
Scaler::blendLineDiagonal(px, out);
|
|
}
|
|
}
|
|
else
|
|
Scaler::blendCorner(px, out);
|
|
}
|
|
|
|
#undef a
|
|
#undef b
|
|
#undef c
|
|
#undef d
|
|
#undef e
|
|
#undef f
|
|
#undef g
|
|
#undef h
|
|
#undef i
|
|
}
|
|
|
|
|
|
template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation
|
|
void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
|
{
|
|
yFirst = std::max(yFirst, 0);
|
|
yLast = std::min(yLast, srcHeight);
|
|
if (yFirst >= yLast || srcWidth <= 0)
|
|
return;
|
|
|
|
const int trgWidth = srcWidth * Scaler::scale;
|
|
|
|
//"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
|
|
//"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
|
|
const int bufferSize = srcWidth;
|
|
unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize;
|
|
std::fill(preProcBuffer, preProcBuffer + bufferSize, '\0');
|
|
static_assert(BLEND_NONE == 0, "");
|
|
|
|
//initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
|
|
//this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
|
|
if (yFirst > 0)
|
|
{
|
|
const int y = yFirst - 1;
|
|
|
|
const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
|
|
const uint32_t* s_0 = src + srcWidth * y; //center line
|
|
const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
|
|
const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
|
|
|
|
for (int x = 0; x < srcWidth; ++x)
|
|
{
|
|
const int x_m1 = std::max(x - 1, 0);
|
|
const int x_p1 = std::min(x + 1, srcWidth - 1);
|
|
const int x_p2 = std::min(x + 2, srcWidth - 1);
|
|
|
|
Kernel_4x4 ker = {}; //perf: initialization is negligible
|
|
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
|
ker.b = s_m1[x];
|
|
ker.c = s_m1[x_p1];
|
|
ker.d = s_m1[x_p2];
|
|
|
|
ker.e = s_0[x_m1];
|
|
ker.f = s_0[x];
|
|
ker.g = s_0[x_p1];
|
|
ker.h = s_0[x_p2];
|
|
|
|
ker.i = s_p1[x_m1];
|
|
ker.j = s_p1[x];
|
|
ker.k = s_p1[x_p1];
|
|
ker.l = s_p1[x_p2];
|
|
|
|
ker.m = s_p2[x_m1];
|
|
ker.n = s_p2[x];
|
|
ker.o = s_p2[x_p1];
|
|
ker.p = s_p2[x_p2];
|
|
|
|
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
|
|
/*
|
|
preprocessing blend result:
|
|
---------
|
|
| F | G | //evalute corner between F, G, J, K
|
|
----|---| //input pixel is at position F
|
|
| J | K |
|
|
---------
|
|
*/
|
|
setTopR(preProcBuffer[x], res.blend_j);
|
|
|
|
if (x + 1 < bufferSize)
|
|
setTopL(preProcBuffer[x + 1], res.blend_k);
|
|
}
|
|
}
|
|
//------------------------------------------------------------------------------------
|
|
|
|
for (int y = yFirst; y < yLast; ++y)
|
|
{
|
|
uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access
|
|
|
|
const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
|
|
const uint32_t* s_0 = src + srcWidth * y; //center line
|
|
const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
|
|
const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
|
|
|
|
unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
|
|
|
|
for (int x = 0; x < srcWidth; ++x, out += Scaler::scale)
|
|
{
|
|
#ifdef WIN32
|
|
#ifndef NDEBUG
|
|
breakIntoDebugger = debugPixelX == x && debugPixelY == y;
|
|
#endif
|
|
#endif
|
|
//all those bounds checks have only insignificant impact on performance!
|
|
const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers!
|
|
const int x_p1 = std::min(x + 1, srcWidth - 1);
|
|
const int x_p2 = std::min(x + 2, srcWidth - 1);
|
|
|
|
Kernel_4x4 ker4 = {}; //perf: initialization is negligible
|
|
|
|
ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
|
ker4.b = s_m1[x];
|
|
ker4.c = s_m1[x_p1];
|
|
ker4.d = s_m1[x_p2];
|
|
|
|
ker4.e = s_0[x_m1];
|
|
ker4.f = s_0[x];
|
|
ker4.g = s_0[x_p1];
|
|
ker4.h = s_0[x_p2];
|
|
|
|
ker4.i = s_p1[x_m1];
|
|
ker4.j = s_p1[x];
|
|
ker4.k = s_p1[x_p1];
|
|
ker4.l = s_p1[x_p2];
|
|
|
|
ker4.m = s_p2[x_m1];
|
|
ker4.n = s_p2[x];
|
|
ker4.o = s_p2[x_p1];
|
|
ker4.p = s_p2[x_p2];
|
|
|
|
//evaluate the four corners on bottom-right of current pixel
|
|
unsigned char blend_xy = 0; //for current (x, y) position
|
|
{
|
|
const BlendResult res = preProcessCorners<ColorDistance>(ker4, cfg);
|
|
/*
|
|
preprocessing blend result:
|
|
---------
|
|
| F | G | //evalute corner between F, G, J, K
|
|
----|---| //current input pixel is at position F
|
|
| J | K |
|
|
---------
|
|
*/
|
|
blend_xy = preProcBuffer[x];
|
|
setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
|
|
|
|
setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
|
|
preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
|
|
|
|
blend_xy1 = 0;
|
|
setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
|
|
|
|
if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
|
|
setBottomL(preProcBuffer[x + 1], res.blend_g);
|
|
}
|
|
|
|
//fill block of size scale * scale with the given color
|
|
fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale, Scaler::scale);
|
|
//place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
|
|
|
|
//blend four corners of current pixel
|
|
if (blendingNeeded(blend_xy)) //good 5% perf-improvement
|
|
{
|
|
Kernel_3x3 ker3 = {}; //perf: initialization is negligible
|
|
|
|
ker3.a = ker4.a;
|
|
ker3.b = ker4.b;
|
|
ker3.c = ker4.c;
|
|
|
|
ker3.d = ker4.e;
|
|
ker3.e = ker4.f;
|
|
ker3.f = ker4.g;
|
|
|
|
ker3.g = ker4.i;
|
|
ker3.h = ker4.j;
|
|
ker3.i = ker4.k;
|
|
|
|
blendPixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy, cfg);
|
|
blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg);
|
|
blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg);
|
|
blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------
|
|
|
|
template <class ColorGradient>
|
|
struct Scaler2x : public ColorGradient
|
|
{
|
|
static const int scale = 2;
|
|
|
|
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
|
|
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<0, 1>(), col);
|
|
alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 2>(out.template ref<1, 1>(), col);
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendCorner(uint32_t col, OutputMatrix& out)
|
|
{
|
|
//model a round corner
|
|
alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
|
|
}
|
|
};
|
|
|
|
|
|
template <class ColorGradient>
|
|
struct Scaler3x : public ColorGradient
|
|
{
|
|
static const int scale = 3;
|
|
|
|
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
|
|
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
out.template ref<scale - 1, 2>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
out.template ref<2, scale - 1>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<2, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<0, 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<2, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<1, 2>(), col);
|
|
out.template ref<2, 2>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale
|
|
alphaGrad<1, 8>(out.template ref<2, 1>(), col);
|
|
alphaGrad<7, 8>(out.template ref<2, 2>(), col); //
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendCorner(uint32_t col, OutputMatrix& out)
|
|
{
|
|
//model a round corner
|
|
alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
|
|
//alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
|
|
//alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254
|
|
}
|
|
};
|
|
|
|
|
|
template <class ColorGradient>
|
|
struct Scaler4x : public ColorGradient
|
|
{
|
|
static const int scale = 4;
|
|
|
|
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
|
|
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
|
|
|
|
out.template ref<scale - 1, 2>() = col;
|
|
out.template ref<scale - 1, 3>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
|
|
|
|
out.template ref<2, scale - 1>() = col;
|
|
out.template ref<3, scale - 1>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<3, 4>(out.template ref<3, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<1, 3>(), col);
|
|
alphaGrad<1, 4>(out.template ref<3, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<0, 3>(), col);
|
|
|
|
alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
|
|
|
|
out.template ref<3, 3>() = col;
|
|
out.template ref<3, 2>() = col;
|
|
out.template ref<2, 3>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
|
|
alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
|
|
out.template ref<scale - 1, scale - 1>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendCorner(uint32_t col, OutputMatrix& out)
|
|
{
|
|
//model a round corner
|
|
alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
|
|
alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
|
|
alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
|
|
}
|
|
};
|
|
|
|
|
|
template <class ColorGradient>
|
|
struct Scaler5x : public ColorGradient
|
|
{
|
|
static const int scale = 5;
|
|
|
|
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
|
|
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
|
|
|
|
out.template ref<scale - 1, 2>() = col;
|
|
out.template ref<scale - 1, 3>() = col;
|
|
out.template ref<scale - 1, 4>() = col;
|
|
out.template ref<scale - 2, 4>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
|
|
|
|
out.template ref<2, scale - 1>() = col;
|
|
out.template ref<3, scale - 1>() = col;
|
|
out.template ref<4, scale - 1>() = col;
|
|
out.template ref<4, scale - 2>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
|
|
alphaGrad<2, 3>(out.template ref<3, 3>(), col);
|
|
|
|
out.template ref<2, scale - 1>() = col;
|
|
out.template ref<3, scale - 1>() = col;
|
|
out.template ref<4, scale - 1>() = col;
|
|
|
|
out.template ref<scale - 1, 2>() = col;
|
|
out.template ref<scale - 1, 3>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 8>(out.template ref<scale - 1, scale / 2 >(), col); //conflict with other rotations for this odd scale
|
|
alphaGrad<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
|
|
alphaGrad<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col); //
|
|
|
|
alphaGrad<7, 8>(out.template ref<4, 3>(), col);
|
|
alphaGrad<7, 8>(out.template ref<3, 4>(), col);
|
|
|
|
out.template ref<4, 4>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendCorner(uint32_t col, OutputMatrix& out)
|
|
{
|
|
//model a round corner
|
|
alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
|
|
alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
|
|
alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
|
|
//alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
|
|
//alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367
|
|
}
|
|
};
|
|
|
|
|
|
template <class ColorGradient>
|
|
struct Scaler6x : public ColorGradient
|
|
{
|
|
static const int scale = 6;
|
|
|
|
template <unsigned int M, unsigned int N> //bring template function into scope for GCC
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
|
|
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 3, 5>(), col);
|
|
|
|
out.template ref<scale - 1, 2>() = col;
|
|
out.template ref<scale - 1, 3>() = col;
|
|
out.template ref<scale - 1, 4>() = col;
|
|
out.template ref<scale - 1, 5>() = col;
|
|
|
|
out.template ref<scale - 2, 4>() = col;
|
|
out.template ref<scale - 2, 5>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
|
|
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col);
|
|
|
|
out.template ref<2, scale - 1>() = col;
|
|
out.template ref<3, scale - 1>() = col;
|
|
out.template ref<4, scale - 1>() = col;
|
|
out.template ref<5, scale - 1>() = col;
|
|
|
|
out.template ref<4, scale - 2>() = col;
|
|
out.template ref<5, scale - 2>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
|
|
alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
|
|
|
|
alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
|
|
alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
|
|
alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
|
|
|
|
out.template ref<2, scale - 1>() = col;
|
|
out.template ref<3, scale - 1>() = col;
|
|
out.template ref<4, scale - 1>() = col;
|
|
out.template ref<5, scale - 1>() = col;
|
|
|
|
out.template ref<4, scale - 2>() = col;
|
|
out.template ref<5, scale - 2>() = col;
|
|
|
|
out.template ref<scale - 1, 2>() = col;
|
|
out.template ref<scale - 1, 3>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
|
{
|
|
alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
|
|
alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
|
|
alphaGrad<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col);
|
|
|
|
out.template ref<scale - 2, scale - 1>() = col;
|
|
out.template ref<scale - 1, scale - 1>() = col;
|
|
out.template ref<scale - 1, scale - 2>() = col;
|
|
}
|
|
|
|
template <class OutputMatrix>
|
|
static void blendCorner(uint32_t col, OutputMatrix& out)
|
|
{
|
|
//model a round corner
|
|
alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910
|
|
alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243
|
|
alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243
|
|
alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508
|
|
alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508
|
|
}
|
|
};
|
|
|
|
//------------------------------------------------------------------------------------
|
|
|
|
struct ColorDistanceRGB
|
|
{
|
|
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
|
{
|
|
return distYCbCrBuffered(pix1, pix2);
|
|
|
|
//if (pix1 == pix2) //about 4% perf boost
|
|
// return 0;
|
|
//return distYCbCr(pix1, pix2, luminanceWeight);
|
|
}
|
|
};
|
|
|
|
struct ColorDistanceARGB
|
|
{
|
|
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
|
{
|
|
const double a1 = getAlpha(pix1) / 255.0 ;
|
|
const double a2 = getAlpha(pix2) / 255.0 ;
|
|
/*
|
|
Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
|
|
|
|
1. if a1 = a2, distance should be: a1 * distYCbCr()
|
|
2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
|
|
3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
|
|
*/
|
|
|
|
//return std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
|
|
//=> following code is 15% faster:
|
|
const double d = distYCbCrBuffered(pix1, pix2);
|
|
if (a1 < a2)
|
|
return a1 * d + 255 * (a2 - a1);
|
|
else
|
|
return a2 * d + 255 * (a1 - a2);
|
|
|
|
//alternative? return std::sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2)));
|
|
}
|
|
};
|
|
|
|
|
|
struct ColorDistanceUnbufferedARGB
|
|
{
|
|
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
|
{
|
|
const double a1 = getAlpha(pix1) / 255.0 ;
|
|
const double a2 = getAlpha(pix2) / 255.0 ;
|
|
|
|
const double d = distYCbCr(pix1, pix2, luminanceWeight);
|
|
if (a1 < a2)
|
|
return a1 * d + 255 * (a2 - a1);
|
|
else
|
|
return a2 * d + 255 * (a1 - a2);
|
|
}
|
|
};
|
|
|
|
|
|
struct ColorGradientRGB
|
|
{
|
|
template <unsigned int M, unsigned int N>
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
|
|
{
|
|
pixBack = gradientRGB<M, N>(pixFront, pixBack);
|
|
}
|
|
};
|
|
|
|
struct ColorGradientARGB
|
|
{
|
|
template <unsigned int M, unsigned int N>
|
|
static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
|
|
{
|
|
pixBack = gradientARGB<M, N>(pixFront, pixBack);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
|
{
|
|
static_assert(SCALE_FACTOR_MAX == 6, "");
|
|
switch (colFmt)
|
|
{
|
|
case ColorFormat::RGB:
|
|
switch (factor)
|
|
{
|
|
case 2:
|
|
return scaleImage<Scaler2x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 3:
|
|
return scaleImage<Scaler3x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 4:
|
|
return scaleImage<Scaler4x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 5:
|
|
return scaleImage<Scaler5x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 6:
|
|
return scaleImage<Scaler6x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
}
|
|
break;
|
|
|
|
case ColorFormat::ARGB:
|
|
switch (factor)
|
|
{
|
|
case 2:
|
|
return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 3:
|
|
return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 4:
|
|
return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 5:
|
|
return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 6:
|
|
return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
}
|
|
break;
|
|
|
|
case ColorFormat::ARGB_UNBUFFERED:
|
|
switch (factor)
|
|
{
|
|
case 2:
|
|
return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 3:
|
|
return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 4:
|
|
return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 5:
|
|
return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
case 6:
|
|
return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
|
}
|
|
break;
|
|
}
|
|
assert(false);
|
|
}
|
|
|
|
|
|
bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
|
|
{
|
|
switch (colFmt)
|
|
{
|
|
case ColorFormat::RGB:
|
|
return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
|
case ColorFormat::ARGB:
|
|
return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
|
case ColorFormat::ARGB_UNBUFFERED:
|
|
return ColorDistanceUnbufferedARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
|
|
void xbrz::bilinearScale(const uint32_t* src, int srcWidth, int srcHeight,
|
|
/**/ uint32_t* trg, int trgWidth, int trgHeight)
|
|
{
|
|
bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
|
|
trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
|
|
0, trgHeight, [](uint32_t pix) { return pix; });
|
|
}
|
|
|
|
|
|
void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight,
|
|
/**/ uint32_t* trg, int trgWidth, int trgHeight)
|
|
{
|
|
nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
|
|
trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
|
|
0, trgHeight, [](uint32_t pix) { return pix; });
|
|
}
|
|
|
|
|
|
#if 0
|
|
//#include <ppl.h>
|
|
void bilinearScaleCpu(const uint32_t* src, int srcWidth, int srcHeight,
|
|
/**/ uint32_t* trg, int trgWidth, int trgHeight)
|
|
{
|
|
const int TASK_GRANULARITY = 16;
|
|
|
|
concurrency::task_group tg;
|
|
|
|
for (int i = 0; i < trgHeight; i += TASK_GRANULARITY)
|
|
tg.run([=]
|
|
{
|
|
const int iLast = std::min(i + TASK_GRANULARITY, trgHeight);
|
|
xbrz::bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
|
|
trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
|
|
i, iLast, [](uint32_t pix) { return pix; });
|
|
});
|
|
tg.wait();
|
|
}
|
|
|
|
|
|
//Perf: AMP vs CPU: merely ~10% shorter runtime (scaling 1280x800 -> 1920x1080)
|
|
//#include <amp.h>
|
|
void bilinearScaleAmp(const uint32_t* src, int srcWidth, int srcHeight, //throw concurrency::runtime_exception
|
|
/**/ uint32_t* trg, int trgWidth, int trgHeight)
|
|
{
|
|
//C++ AMP reference: https://msdn.microsoft.com/en-us/library/hh289390.aspx
|
|
//introduction to C++ AMP: https://msdn.microsoft.com/en-us/magazine/hh882446.aspx
|
|
using namespace concurrency;
|
|
//TODO: pitch
|
|
|
|
if (srcHeight <= 0 || srcWidth <= 0) return;
|
|
|
|
const float scaleX = static_cast<float>(trgWidth ) / srcWidth;
|
|
const float scaleY = static_cast<float>(trgHeight) / srcHeight;
|
|
|
|
array_view<const uint32_t, 2> srcView(srcHeight, srcWidth, src);
|
|
array_view< uint32_t, 2> trgView(trgHeight, trgWidth, trg);
|
|
trgView.discard_data();
|
|
|
|
parallel_for_each(trgView.extent, [=](index<2> idx) restrict(amp) //throw ?
|
|
{
|
|
const int y = idx[0];
|
|
const int x = idx[1];
|
|
//Perf notes:
|
|
// -> float-based calculation is (almost 2x) faster than double!
|
|
// -> no noticeable improvement via tiling: https://msdn.microsoft.com/en-us/magazine/hh882447.aspx
|
|
// -> no noticeable improvement with restrict(amp,cpu)
|
|
// -> iterating over y-axis only is significantly slower!
|
|
// -> pre-calculating x,y-dependent variables in a buffer + array_view<> is ~ 20 % slower!
|
|
const int y1 = srcHeight * y / trgHeight;
|
|
int y2 = y1 + 1;
|
|
if (y2 == srcHeight) --y2;
|
|
|
|
const float yy1 = y / scaleY - y1;
|
|
const float y2y = 1 - yy1;
|
|
//-------------------------------------
|
|
const int x1 = srcWidth * x / trgWidth;
|
|
int x2 = x1 + 1;
|
|
if (x2 == srcWidth) --x2;
|
|
|
|
const float xx1 = x / scaleX - x1;
|
|
const float x2x = 1 - xx1;
|
|
//-------------------------------------
|
|
const float x2xy2y = x2x * y2y;
|
|
const float xx1y2y = xx1 * y2y;
|
|
const float x2xyy1 = x2x * yy1;
|
|
const float xx1yy1 = xx1 * yy1;
|
|
|
|
auto interpolate = [=](int offset)
|
|
{
|
|
/*
|
|
https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
(c11(x2 - x) + c21(x - x1)) * (y2 - y ) +
|
|
(c12(x2 - x) + c22(x - x1)) * (y - y1)
|
|
*/
|
|
const auto c11 = (srcView(y1, x1) >> (8 * offset)) & 0xff;
|
|
const auto c21 = (srcView(y1, x2) >> (8 * offset)) & 0xff;
|
|
const auto c12 = (srcView(y2, x1) >> (8 * offset)) & 0xff;
|
|
const auto c22 = (srcView(y2, x2) >> (8 * offset)) & 0xff;
|
|
|
|
return c11 * x2xy2y + c21 * xx1y2y +
|
|
c12 * x2xyy1 + c22 * xx1yy1;
|
|
};
|
|
|
|
const float bi = interpolate(0);
|
|
const float gi = interpolate(1);
|
|
const float ri = interpolate(2);
|
|
const float ai = interpolate(3);
|
|
|
|
const auto b = static_cast<uint32_t>(bi + 0.5f);
|
|
const auto g = static_cast<uint32_t>(gi + 0.5f);
|
|
const auto r = static_cast<uint32_t>(ri + 0.5f);
|
|
const auto a = static_cast<uint32_t>(ai + 0.5f);
|
|
|
|
trgView(y, x) = (a << 24) | (r << 16) | (g << 8) | b;
|
|
});
|
|
trgView.synchronize(); //throw ?
|
|
}
|
|
#endif
|