snes9x2005/source/apu.c
2017-08-14 08:06:11 +02:00

452 lines
12 KiB
C

#include "../copyright"
#ifndef USE_BLARGG_APU
#include "snes9x.h"
#include "spc700.h"
#include "apu.h"
#include "soundux.h"
#include "cpuexec.h"
extern int32_t NoiseFreq[32];
bool S9xInitAPU()
{
IAPU.RAM = (uint8_t*) malloc(0x10000);
if (!IAPU.RAM)
{
S9xDeinitAPU();
return false;
}
return true;
}
void S9xDeinitAPU()
{
if (IAPU.RAM)
{
free(IAPU.RAM);
IAPU.RAM = NULL;
}
}
uint8_t APUROM [64];
void S9xResetAPU()
{
int32_t i, j;
Settings.APUEnabled = true;
memset(IAPU.RAM, 0, 0x100);
memset(IAPU.RAM + 0x20, 0xFF, 0x20);
memset(IAPU.RAM + 0x60, 0xFF, 0x20);
memset(IAPU.RAM + 0xA0, 0xFF, 0x20);
memset(IAPU.RAM + 0xE0, 0xFF, 0x20);
for (i = 1; i < 256; i++)
memcpy(IAPU.RAM + (i << 8), IAPU.RAM, 0x100);
memset(APU.OutPorts, 0, sizeof(APU.OutPorts));
IAPU.DirectPage = IAPU.RAM;
/* memmove converted: Different mallocs [Neb]
* DS2 DMA notes: The APU ROM is not 32-byte aligned [Neb] */
memcpy(&IAPU.RAM [0xffc0], APUROM, sizeof(APUROM));
/* memmove converted: Different mallocs [Neb]
* DS2 DMA notes: The APU ROM is not 32-byte aligned [Neb] */
memcpy(APU.ExtraRAM, APUROM, sizeof(APUROM));
IAPU.PC = IAPU.RAM + IAPU.RAM [0xfffe] + (IAPU.RAM [0xffff] << 8);
APU.Cycles = 0;
IAPU.Registers.YA.W = 0;
IAPU.Registers.X = 0;
IAPU.Registers.S = 0xef;
IAPU.Registers.P = 0x02;
S9xAPUUnpackStatus();
IAPU.Registers.PC = 0;
IAPU.APUExecuting = Settings.APUEnabled;
IAPU.WaitAddress1 = NULL;
IAPU.WaitAddress2 = NULL;
IAPU.WaitCounter = 1;
APU.ShowROM = true;
IAPU.RAM [0xf1] = 0x80;
for (i = 0; i < 3; i++)
{
APU.TimerEnabled [i] = false;
APU.TimerTarget [i] = 0;
APU.Timer [i] = 0;
}
for (j = 0; j < 0x80; j++)
APU.DSP [j] = 0;
IAPU.TwoCycles = IAPU.OneCycle * 2;
for (i = 0; i < 256; i++)
S9xAPUCycles [i] = S9xAPUCycleLengths [i] * IAPU.OneCycle;
APU.DSP [APU_ENDX] = 0;
APU.DSP [APU_KOFF] = 0;
APU.DSP [APU_KON] = 0;
APU.DSP[APU_FLG] = APU_SOFT_RESET | APU_MUTE;
APU.KeyedChannels = 0;
S9xResetSound(true);
S9xSetEchoEnable(0);
}
void S9xSetAPUDSP(uint8_t byte)
{
uint8_t reg = IAPU.RAM [0xf2];
static uint8_t KeyOn;
static uint8_t KeyOnPrev;
int32_t i;
switch (reg)
{
case APU_FLG:
if (byte & APU_SOFT_RESET)
{
APU.DSP [reg] = APU_MUTE | APU_ECHO_DISABLED | (byte & 0x1f);
APU.DSP [APU_ENDX] = 0;
APU.DSP [APU_KOFF] = 0;
APU.DSP [APU_KON] = 0;
S9xSetEchoWriteEnable(false);
/* Kill sound */
S9xResetSound(false);
}
else
{
S9xSetEchoWriteEnable(!(byte & APU_ECHO_DISABLED));
so.mute_sound = !!(byte & APU_MUTE);
SoundData.noise_hertz = NoiseFreq [byte & 0x1f];
for (i = 0; i < 8; i++)
if (SoundData.channels [i].type == SOUND_NOISE)
S9xSetSoundFrequency(i, SoundData.noise_hertz);
}
break;
case APU_NON:
if (byte != APU.DSP [APU_NON])
{
int32_t c;
uint8_t mask = 1;
for (c = 0; c < 8; c++, mask <<= 1)
{
int32_t type;
if (byte & mask)
type = SOUND_NOISE;
else
type = SOUND_SAMPLE;
S9xSetSoundType(c, type);
}
}
break;
case APU_MVOL_LEFT:
if (byte != APU.DSP [APU_MVOL_LEFT])
S9xSetMasterVolume((int8_t) byte, (int8_t) APU.DSP [APU_MVOL_RIGHT]);
break;
case APU_MVOL_RIGHT:
if (byte != APU.DSP [APU_MVOL_RIGHT])
S9xSetMasterVolume((int8_t) APU.DSP [APU_MVOL_LEFT], (int8_t) byte);
break;
case APU_EVOL_LEFT:
if (byte != APU.DSP [APU_EVOL_LEFT])
S9xSetEchoVolume((int8_t) byte, (int8_t) APU.DSP [APU_EVOL_RIGHT]);
break;
case APU_EVOL_RIGHT:
if (byte != APU.DSP [APU_EVOL_RIGHT])
S9xSetEchoVolume((int8_t) APU.DSP [APU_EVOL_LEFT], (int8_t) byte);
break;
case APU_ENDX:
byte = 0;
break;
case APU_KOFF:
{
int32_t c;
uint8_t mask = 1;
for (c = 0; c < 8; c++, mask <<= 1)
{
if ((byte & mask) != 0)
{
if (APU.KeyedChannels & mask)
{
KeyOnPrev &= ~mask;
APU.KeyedChannels &= ~mask;
APU.DSP [APU_KON] &= ~mask;
S9xSetSoundKeyOff(c);
}
}
else if ((KeyOnPrev & mask) != 0)
{
KeyOnPrev &= ~mask;
APU.KeyedChannels |= mask;
APU.DSP [APU_KOFF] &= ~mask;
APU.DSP [APU_ENDX] &= ~mask;
S9xPlaySample(c);
}
}
APU.DSP [APU_KOFF] = byte;
return;
}
case APU_KON:
if (byte)
{
int32_t c;
uint8_t mask = 1;
for (c = 0; c < 8; c++, mask <<= 1)
{
if ((byte & mask) != 0)
{
/* Pac-In-Time requires that channels can be key-on
* regardeless of their current state. */
if ((APU.DSP [APU_KOFF] & mask) == 0)
{
KeyOnPrev &= ~mask;
APU.KeyedChannels |= mask;
APU.DSP [APU_ENDX] &= ~mask;
S9xPlaySample(c);
}
else
KeyOn |= mask;
}
}
}
return;
case APU_VOL_LEFT + 0x00:
case APU_VOL_LEFT + 0x10:
case APU_VOL_LEFT + 0x20:
case APU_VOL_LEFT + 0x30:
case APU_VOL_LEFT + 0x40:
case APU_VOL_LEFT + 0x50:
case APU_VOL_LEFT + 0x60:
case APU_VOL_LEFT + 0x70:
S9xSetSoundVolume(reg >> 4, (int8_t) byte, (int8_t) APU.DSP [reg + 1]);
break;
case APU_VOL_RIGHT + 0x00:
case APU_VOL_RIGHT + 0x10:
case APU_VOL_RIGHT + 0x20:
case APU_VOL_RIGHT + 0x30:
case APU_VOL_RIGHT + 0x40:
case APU_VOL_RIGHT + 0x50:
case APU_VOL_RIGHT + 0x60:
case APU_VOL_RIGHT + 0x70:
S9xSetSoundVolume(reg >> 4, (int8_t) APU.DSP [reg - 1], (int8_t) byte);
break;
case APU_P_LOW + 0x00:
case APU_P_LOW + 0x10:
case APU_P_LOW + 0x20:
case APU_P_LOW + 0x30:
case APU_P_LOW + 0x40:
case APU_P_LOW + 0x50:
case APU_P_LOW + 0x60:
case APU_P_LOW + 0x70:
S9xSetSoundHertz(reg >> 4, ((((int16_t) byte + ((int16_t) APU.DSP [reg + 1] << 8)) & FREQUENCY_MASK) * 32000) >> 12);
break;
case APU_P_HIGH + 0x00:
case APU_P_HIGH + 0x10:
case APU_P_HIGH + 0x20:
case APU_P_HIGH + 0x30:
case APU_P_HIGH + 0x40:
case APU_P_HIGH + 0x50:
case APU_P_HIGH + 0x60:
case APU_P_HIGH + 0x70:
S9xSetSoundHertz(reg >> 4, ((((int16_t) byte << 8) + (int16_t) APU.DSP [reg - 1]) & FREQUENCY_MASK) * 8);
break;
case APU_ADSR1 + 0x00:
case APU_ADSR1 + 0x10:
case APU_ADSR1 + 0x20:
case APU_ADSR1 + 0x30:
case APU_ADSR1 + 0x40:
case APU_ADSR1 + 0x50:
case APU_ADSR1 + 0x60:
case APU_ADSR1 + 0x70:
if(byte != APU.DSP [reg])
S9xFixEnvelope(reg >> 4, APU.DSP [reg + 2], byte, APU.DSP [reg + 1]);
break;
case APU_ADSR2 + 0x00:
case APU_ADSR2 + 0x10:
case APU_ADSR2 + 0x20:
case APU_ADSR2 + 0x30:
case APU_ADSR2 + 0x40:
case APU_ADSR2 + 0x50:
case APU_ADSR2 + 0x60:
case APU_ADSR2 + 0x70:
if(byte != APU.DSP [reg])
S9xFixEnvelope(reg >> 4, APU.DSP [reg + 1], APU.DSP [reg - 1], byte);
break;
case APU_GAIN + 0x00:
case APU_GAIN + 0x10:
case APU_GAIN + 0x20:
case APU_GAIN + 0x30:
case APU_GAIN + 0x40:
case APU_GAIN + 0x50:
case APU_GAIN + 0x60:
case APU_GAIN + 0x70:
if(byte != APU.DSP [reg])
S9xFixEnvelope(reg >> 4, byte, APU.DSP [reg - 2], APU.DSP [reg - 1]);
break;
case APU_PMON:
if(byte != APU.DSP [APU_PMON])
S9xSetFrequencyModulationEnable(byte);
break;
case APU_EON:
if(byte != APU.DSP [APU_EON])
S9xSetEchoEnable(byte);
break;
case APU_EFB:
S9xSetEchoFeedback((int8_t) byte);
break;
case APU_EDL:
S9xSetEchoDelay(byte & 0xf);
break;
case APU_C0:
case APU_C1:
case APU_C2:
case APU_C3:
case APU_C4:
case APU_C5:
case APU_C6:
case APU_C7:
S9xSetFilterCoefficient(reg >> 4, (int8_t) byte);
break;
default:
break;
}
KeyOnPrev |= KeyOn;
KeyOn = 0;
if (reg < 0x80)
APU.DSP [reg] = byte;
}
void S9xFixEnvelope(int32_t channel, uint8_t gain, uint8_t adsr1, uint8_t adsr2)
{
if (adsr1 & 0x80) /* ADSR mode */
{
/* XXX: can DSP be switched to ADSR mode directly from GAIN/INCREASE/
* DECREASE mode? And if so, what stage of the sequence does it start
* at? */
if(S9xSetSoundMode(channel, MODE_ADSR))
S9xSetSoundADSR(channel, adsr1 & 0xf, (adsr1 >> 4) & 7, adsr2 & 0x1f, (adsr2 >> 5) & 7, 8);
} /* Gain mode */
else if (!(gain & 0x80))
{
if (S9xSetSoundMode(channel, MODE_GAIN))
{
S9xSetEnvelopeRate(channel, 0, 0, gain & 0x7f, 0);
S9xSetEnvelopeHeight(channel, gain & 0x7f);
}
}
else if (gain & 0x40)
{
/* Increase mode */
if(S9xSetSoundMode(channel, (gain & 0x20) ? MODE_INCREASE_BENT_LINE : MODE_INCREASE_LINEAR))
S9xSetEnvelopeRate(channel, gain, 1, 127, (3 << 28) | gain);
}
else if (gain & 0x20)
{
if(S9xSetSoundMode(channel, MODE_DECREASE_EXPONENTIAL))
S9xSetEnvelopeRate(channel, gain, -1, 0, (4 << 28) | gain);
}
else
{
if (S9xSetSoundMode(channel, MODE_DECREASE_LINEAR))
S9xSetEnvelopeRate(channel, gain, -1, 0, (3 << 28) | gain);
}
}
void S9xSetAPUControl(uint8_t byte)
{
if ((byte & 1) && !APU.TimerEnabled [0])
{
APU.Timer [0] = 0;
IAPU.RAM [0xfd] = 0;
if ((APU.TimerTarget [0] = IAPU.RAM [0xfa]) == 0)
APU.TimerTarget [0] = 0x100;
}
if ((byte & 2) && !APU.TimerEnabled [1])
{
APU.Timer [1] = 0;
IAPU.RAM [0xfe] = 0;
if ((APU.TimerTarget [1] = IAPU.RAM [0xfb]) == 0)
APU.TimerTarget [1] = 0x100;
}
if ((byte & 4) && !APU.TimerEnabled [2])
{
APU.Timer [2] = 0;
IAPU.RAM [0xff] = 0;
if ((APU.TimerTarget [2] = IAPU.RAM [0xfc]) == 0)
APU.TimerTarget [2] = 0x100;
}
APU.TimerEnabled [0] = !!(byte & 1);
APU.TimerEnabled [1] = !!(byte & 2);
APU.TimerEnabled [2] = !!(byte & 4);
if (byte & 0x10)
IAPU.RAM [0xF4] = IAPU.RAM [0xF5] = 0;
if (byte & 0x20)
IAPU.RAM [0xF6] = IAPU.RAM [0xF7] = 0;
if (byte & 0x80)
{
if (!APU.ShowROM)
{
/* memmove converted: Different mallocs [Neb]
* DS2 DMA notes: The APU ROM is not 32-byte aligned [Neb] */
memcpy(&IAPU.RAM [0xffc0], APUROM, sizeof(APUROM));
APU.ShowROM = true;
}
}
else if (APU.ShowROM)
{
APU.ShowROM = false;
/* memmove converted: Different mallocs [Neb]
* DS2 DMA notes: The APU ROM is not 32-byte aligned [Neb] */
memcpy(&IAPU.RAM [0xffc0], APU.ExtraRAM, sizeof(APUROM));
}
IAPU.RAM [0xf1] = byte;
}
uint8_t S9xGetAPUDSP()
{
uint8_t reg = IAPU.RAM [0xf2] & 0x7f;
uint8_t byte = APU.DSP [reg];
switch (reg)
{
case APU_OUTX + 0x00:
case APU_OUTX + 0x10:
case APU_OUTX + 0x20:
case APU_OUTX + 0x30:
case APU_OUTX + 0x40:
case APU_OUTX + 0x50:
case APU_OUTX + 0x60:
case APU_OUTX + 0x70:
if(SoundData.channels [reg >> 4].state == SOUND_SILENT)
return 0;
return (SoundData.channels [reg >> 4].sample >> 8) | (SoundData.channels [reg >> 4].sample & 0xff);
case APU_ENVX + 0x00:
case APU_ENVX + 0x10:
case APU_ENVX + 0x20:
case APU_ENVX + 0x30:
case APU_ENVX + 0x40:
case APU_ENVX + 0x50:
case APU_ENVX + 0x60:
case APU_ENVX + 0x70:
{
int32_t eVal = SoundData.channels [reg >> 4].envx;
return (eVal > 0x7F) ? 0x7F : (eVal < 0 ? 0 : eVal);
}
default:
break;
}
return byte;
}
#endif