snes9x2005/source/soundux.c
2014-11-02 08:18:58 +01:00

1441 lines
44 KiB
C

/*******************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Joel Yliluoma (http://iki.fi/bisqwit/)
Kris Bleakley (codeviolation@hotmail.com),
Matthew Kendora,
Nach (n-a-c-h@users.sourceforge.net),
Peter Bortas (peter@bortas.org) and
zones (kasumitokoduck@yahoo.com)
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com),
_Demo_ (_demo_@zsnes.com), and Nach
C4 C++ code
(c) Copyright 2003 Brad Jorsch
DSP-1 emulator code
(c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson,
John Weidman, neviksti (neviksti@hotmail.com),
Kris Bleakley, Andreas Naive
DSP-2 emulator code
(c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and
Lord Nightmare (lord_nightmare@users.sourceforge.net
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight, John Weidman, and Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive and John Weidman
S-RTC C emulator code
(c) Copyright 2001 John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and distribute Snes9x in both binary and
source form, for non-commercial purposes, is hereby granted without fee,
providing that this license information and copyright notice appear with
all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes
charging money for Snes9x or software derived from Snes9x.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
*******************************************************************************/
#ifdef __DJGPP__
#include <allegro.h>
#undef TRUE
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#define CLIP16(v) \
if ((v) < -32768) \
(v) = -32768; \
else \
if ((v) > 32767) \
(v) = 32767
#define CLIP16_latch(v,l) \
if ((v) < -32768) \
{ (v) = -32768; (l)++; }\
else \
if ((v) > 32767) \
{ (v) = 32767; (l)++; }
#define CLIP24(v) \
if ((v) < -8388608) \
(v) = -8388608; \
else \
if ((v) > 8388607) \
(v) = 8388607
#define CLIP8(v) \
if ((v) < -128) \
(v) = -128; \
else \
if ((v) > 127) \
(v) = 127
#include "snes9x.h"
#include "soundux.h"
#include "apu.h"
#include "memmap.h"
#include "cpuexec.h"
extern int32 Echo [24000];
extern int32 DummyEchoBuffer [SOUND_BUFFER_SIZE];
extern int32 MixBuffer [SOUND_BUFFER_SIZE];
extern int32 EchoBuffer [SOUND_BUFFER_SIZE];
extern int32 FilterTaps [8];
static uint8 FilterTapDefinitionBitfield;
// In the above, bit I is set if FilterTaps[I] is non-zero.
extern unsigned long Z;
extern int32 Loop [16];
extern long FilterValues[4][2];
extern int32 NoiseFreq [32];
static int32 noise_gen;
#undef ABS
#define ABS(a) ((a) < 0 ? -(a) : (a))
#define FIXED_POINT 0x10000UL
#define FIXED_POINT_REMAINDER 0xffffUL
#define FIXED_POINT_SHIFT 16
#define VOL_DIV8 0x8000
#define VOL_DIV16 0x0080
#define ENVX_SHIFT 24
void DecodeBlockAsm(int8*, int16*, int32*, int32*);
void DecodeBlockAsm2(int8*, int16*, int32*, int32*);
// F is channel's current frequency and M is the 16-bit modulation waveform
// from the previous channel multiplied by the current envelope volume level.
#define PITCH_MOD(F,M) ((F) * ((((unsigned long) (M)) + 0x800000) >> 16) >> 7)
//#define PITCH_MOD(F,M) ((F) * ((((M) & 0x7fffff) >> 14) + 1) >> 8)
#define LAST_SAMPLE 0xffffff
#define JUST_PLAYED_LAST_SAMPLE(c) ((c)->sample_pointer >= LAST_SAMPLE)
void S9xSetEightBitConsoleSound(bool8 Enabled)
{
if (Settings.EightBitConsoleSound != Enabled)
{
Settings.EightBitConsoleSound = Enabled;
int i;
for (i = 0; i < 8; i++)
SoundData.channels[i].needs_decode = TRUE;
}
}
STATIC inline uint8* S9xGetSampleAddress(int sample_number)
{
uint32 addr = (((APU.DSP[APU_DIR] << 8) + (sample_number << 2)) & 0xffff);
return (IAPU.RAM + addr);
}
void S9xAPUSetEndOfSample(int i, Channel* ch)
{
ch->state = SOUND_SILENT;
ch->mode = MODE_NONE;
APU.DSP [APU_ENDX] |= 1 << i;
APU.DSP [APU_KON] &= ~(1 << i);
APU.DSP [APU_KOFF] &= ~(1 << i);
APU.KeyedChannels &= ~(1 << i);
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xAPUSetEndOfSample)
#endif
void S9xAPUSetEndX(int ch)
{
APU.DSP [APU_ENDX] |= 1 << ch;
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xAPUSetEndX)
#endif
void S9xSetEnvRate(Channel* ch, unsigned long rate, int direction, int target)
{
ch->envx_target = target;
if (rate == ~0UL)
{
ch->direction = 0;
rate = 0;
}
else
ch->direction = direction;
static int64 steps [] =
{
// 0, 64, 1238, 1238, 256, 1, 64, 109, 64, 1238
0,
(int64) FIXED_POINT * 1000 * 64,
(int64) FIXED_POINT * 1000 * 619,
(int64) FIXED_POINT * 1000 * 619,
(int64) FIXED_POINT * 1000 * 128,
(int64) FIXED_POINT * 1000 * 1,
(int64) FIXED_POINT * 1000 * 64,
(int64) FIXED_POINT * 1000 * 55,
(int64) FIXED_POINT * 1000 * 64,
(int64) FIXED_POINT * 1000 * 619
};
if (rate == 0 || so.playback_rate == 0)
ch->erate = 0;
else
{
ch->erate = (unsigned long)
(steps [ch->state] / (rate * so.playback_rate));
}
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xSetEnvRate);
#endif
void S9xSetEnvelopeRate(int channel, unsigned long rate, int direction,
int target)
{
S9xSetEnvRate(&SoundData.channels [channel], rate, direction, target);
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xSetEnvelopeRate);
#endif
void S9xSetSoundVolume(int channel, short volume_left, short volume_right)
{
Channel* ch = &SoundData.channels[channel];
ch->volume_left = volume_left;
ch->volume_right = volume_right;
ch-> left_vol_level = (ch->envx * volume_left) / 128;
ch->right_vol_level = (ch->envx * volume_right) / 128;
}
void S9xSetMasterVolume(short volume_left, short volume_right)
{
if (Settings.DisableMasterVolume || SNESGameFixes.EchoOnlyOutput)
SoundData.master_volume [0] = SoundData.master_volume [1] = 127;
else
{
SoundData.master_volume [0] = volume_left;
SoundData.master_volume [1] = volume_right;
}
}
void S9xSetEchoVolume(short volume_left, short volume_right)
{
SoundData.echo_volume [0] = volume_left;
SoundData.echo_volume [1] = volume_right;
}
void S9xSetEchoEnable(uint8 byte)
{
SoundData.echo_channel_enable = byte;
if (!SoundData.echo_write_enabled || Settings.DisableSoundEcho)
byte = 0;
if (byte && !SoundData.echo_enable)
{
memset(Echo, 0, sizeof(Echo));
memset(Loop, 0, sizeof(Loop));
}
SoundData.echo_enable = byte;
int i;
for (i = 0; i < NUM_CHANNELS; i++)
{
if (byte & (1 << i))
SoundData.channels [i].echo_buf_ptr = EchoBuffer;
else
SoundData.channels [i].echo_buf_ptr = DummyEchoBuffer;
}
}
void S9xSetEchoFeedback(int feedback)
{
CLIP8(feedback);
SoundData.echo_feedback = feedback;
}
void S9xSetEchoDelay(int delay)
{
SoundData.echo_buffer_size = (512 * delay * so.playback_rate) / 32000;
SoundData.echo_buffer_size <<= 1;
if (SoundData.echo_buffer_size)
SoundData.echo_ptr %= SoundData.echo_buffer_size;
else
SoundData.echo_ptr = 0;
S9xSetEchoEnable(APU.DSP [APU_EON]);
}
void S9xSetEchoWriteEnable(uint8 byte)
{
SoundData.echo_write_enabled = byte;
S9xSetEchoDelay(APU.DSP [APU_EDL] & 15);
}
void S9xSetFrequencyModulationEnable(uint8 byte)
{
SoundData.pitch_mod = byte & ~1;
}
void S9xSetSoundKeyOff(int channel)
{
Channel* ch = &SoundData.channels[channel];
if (ch->state != SOUND_SILENT)
{
ch->state = SOUND_RELEASE;
ch->mode = MODE_RELEASE;
S9xSetEnvRate(ch, 8, -1, 0);
}
}
void S9xFixSoundAfterSnapshotLoad()
{
SoundData.echo_write_enabled = !(APU.DSP [APU_FLG] & 0x20);
SoundData.echo_channel_enable = APU.DSP [APU_EON];
S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf);
S9xSetEchoFeedback((signed char) APU.DSP [APU_EFB]);
S9xSetFilterCoefficient(0, (signed char) APU.DSP [APU_C0]);
S9xSetFilterCoefficient(1, (signed char) APU.DSP [APU_C1]);
S9xSetFilterCoefficient(2, (signed char) APU.DSP [APU_C2]);
S9xSetFilterCoefficient(3, (signed char) APU.DSP [APU_C3]);
S9xSetFilterCoefficient(4, (signed char) APU.DSP [APU_C4]);
S9xSetFilterCoefficient(5, (signed char) APU.DSP [APU_C5]);
S9xSetFilterCoefficient(6, (signed char) APU.DSP [APU_C6]);
S9xSetFilterCoefficient(7, (signed char) APU.DSP [APU_C7]);
int i;
for (i = 0; i < 8; i++)
{
SoundData.channels[i].needs_decode = TRUE;
S9xSetSoundFrequency(i, SoundData.channels[i].hertz);
SoundData.channels [i].envxx = SoundData.channels [i].envx << ENVX_SHIFT;
SoundData.channels [i].next_sample = 0;
SoundData.channels [i].interpolate = 0;
SoundData.channels [i].previous [0] = (int32)
SoundData.channels [i].previous16 [0];
SoundData.channels [i].previous [1] = (int32)
SoundData.channels [i].previous16 [1];
}
IAPU.Scanline = 0;
}
void S9xSetFilterCoefficient(int tap, int value)
{
FilterTaps [tap & 7] = value;
if (value == 0 || (tap == 0 && value == 127))
FilterTapDefinitionBitfield &= ~(1 << (tap & 7));
else
FilterTapDefinitionBitfield |= 1 << (tap & 7);
}
void S9xSetSoundADSR(int channel, int attack_rate, int decay_rate,
int sustain_rate, int sustain_level, int release_rate)
{
Channel* ch = &SoundData.channels[channel];
ch->attack_rate = attack_rate;
ch->decay_rate = decay_rate;
ch->sustain_rate = sustain_rate;
ch->release_rate = release_rate;
ch->sustain_level = sustain_level + 1;
switch (SoundData.channels[channel].state)
{
case SOUND_ATTACK:
S9xSetEnvRate(ch, attack_rate, 1, 127);
break;
case SOUND_DECAY:
S9xSetEnvRate(ch, decay_rate, -1,
(MAX_ENVELOPE_HEIGHT * (sustain_level + 1)) >> 3);
break;
case SOUND_SUSTAIN:
S9xSetEnvRate(ch, sustain_rate, -1, 0);
break;
}
}
void S9xSetEnvelopeHeight(int channel, int level)
{
Channel* ch = &SoundData.channels[channel];
ch->envx = level;
ch->envxx = level << ENVX_SHIFT;
ch->left_vol_level = (level * ch->volume_left) / 128;
ch->right_vol_level = (level * ch->volume_right) / 128;
if (ch->envx == 0 && ch->state != SOUND_SILENT && ch->state != SOUND_GAIN)
S9xAPUSetEndOfSample(channel, ch);
}
int S9xGetEnvelopeHeight(int channel)
{
if ((Settings.SoundEnvelopeHeightReading ||
SNESGameFixes.SoundEnvelopeHeightReading2) &&
SoundData.channels[channel].state != SOUND_SILENT &&
SoundData.channels[channel].state != SOUND_GAIN)
return (SoundData.channels[channel].envx);
//siren fix from XPP
if (SNESGameFixes.SoundEnvelopeHeightReading2 &&
SoundData.channels[channel].state != SOUND_SILENT)
return (SoundData.channels[channel].envx);
return (0);
}
#if 1
void S9xSetSoundSample(int channel, uint16 sample_number)
{
}
#else
void S9xSetSoundSample(int channel, uint16 sample_number)
{
register Channel* ch = &SoundData.channels[channel];
if (ch->state != SOUND_SILENT &&
sample_number != ch->sample_number)
{
int keep = ch->state;
ch->state = SOUND_SILENT;
ch->sample_number = sample_number;
ch->loop = FALSE;
ch->needs_decode = TRUE;
ch->last_block = FALSE;
ch->previous [0] = ch->previous[1] = 0;
uint8* dir = S9xGetSampleAddress(sample_number);
ch->block_pointer = READ_WORD(dir);
ch->sample_pointer = 0;
ch->state = keep;
}
}
#endif
void S9xSetSoundFrequency(int channel, int hertz)
{
if (so.playback_rate)
{
if (SoundData.channels[channel].type == SOUND_NOISE)
hertz = NoiseFreq [APU.DSP [APU_FLG] & 0x1f];
SoundData.channels[channel].frequency = (int)
(((int64) hertz * FIXED_POINT) / so.playback_rate);
if (Settings.FixFrequency)
{
SoundData.channels[channel].frequency =
(unsigned long)(SoundData.channels[channel].frequency * 49 / 50);
}
}
}
void S9xSetSoundHertz(int channel, int hertz)
{
SoundData.channels[channel].hertz = hertz;
S9xSetSoundFrequency(channel, hertz);
}
void S9xSetSoundType(int channel, int type_of_sound)
{
SoundData.channels[channel].type = type_of_sound;
}
void DecodeBlock(Channel* ch)
{
int32 out;
unsigned char filter;
unsigned char shift;
signed char sample1, sample2;
unsigned char i;
bool invalid_header;
if (ch->block_pointer > 0x10000 - 9)
{
ch->last_block = TRUE;
ch->loop = FALSE;
ch->block = ch->decoded;
return;
}
if (Settings.EightBitConsoleSound)
{
signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer];
filter = *compressed;
if ((ch->last_block = filter & 1))
ch->loop = (filter & 2) != 0;
int16 interim[16];
uint8 interim_byte = 0;
compressed++;
signed short* raw = ch->block = ch->decoded;
// Seperate out the header parts used for decoding
shift = filter >> 4;
// Header validity check: if range(shift) is over 12, ignore
// all bits of the data for that block except for the sign bit of each
invalid_header = (shift >= 0xD);
filter = filter & 0x0c;
int32 prev0 = ch->previous [0];
int32 prev1 = ch->previous [1];
int16 amplitude = 0;
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
//Sample 2 = Bottom Nibble, Sign Extended.
sample2 >>= 4;
//Sample 1 = Top Nibble, shifted down and Sign Extended.
sample1 >>= 4;
if (invalid_header)
{
sample1 >>= 3;
sample2 >>= 3;
}
int nybblesmp;
for (nybblesmp = 0; nybblesmp < 2; nybblesmp++)
{
out = (((nybblesmp) ? sample2 : sample1) << shift);
out >>= 1;
switch (filter)
{
case 0x00:
// Method0 - [Smp]
break;
case 0x04:
// Method1 - [Delta]+[Smp-1](15/16)
out += (prev0 >> 1) + ((-prev0) >> 5);
break;
case 0x08:
// Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16)
out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5);
break;
default:
// Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16)
out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) -
(prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4);
break;
}
CLIP16(out);
int16 result = (signed short)(out << 1);
if (abs(result) > amplitude)
amplitude = abs(result);
interim[interim_byte++] = out;
prev1 = (signed short)prev0;
prev0 = (signed short)(out << 1);
}
}
ch->previous [0] = prev0;
ch->previous [1] = prev1;
int32 total_deviation_from_previous = 0;
for (i = 1; i < 16; i++)
total_deviation_from_previous += abs(interim[i] - interim[i - 1]);
if (total_deviation_from_previous >= (int32) amplitude * 4)
{
/* Looks like noise. Generate noise. */
for (i = 0; i < 16; i++)
{
int feedback = (noise_gen << 13) ^ (noise_gen << 14);
noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1);
ch->decoded[i] = (noise_gen << 17) >> 17;
}
}
else if (interim[0] < interim[1] && interim[1] < interim[2]
&& interim[2] < interim[3]
&& interim[4] > interim[5] && interim[5] > interim[6]
&& interim[6] > interim[7] && interim[7] > interim[8]
&& interim[8] > interim[9] && interim[9] > interim[10]
&& interim[10] > interim[11]
&& interim[12] < interim[13] && interim[13] < interim[14]
&& interim[14] < interim[15])
{
/* Looks like a sine or triangle wave. Make it a
* triangle wave with an amplitude equivalent to that
* of the highest amplitude sample of the block. */
ch->decoded[0] = ch->decoded[8] = 0;
ch->decoded[1] = ch->decoded[7] = amplitude / 4;
ch->decoded[2] = ch->decoded[6] = amplitude / 2;
ch->decoded[3] = ch->decoded[5] = amplitude * 3 / 4;
ch->decoded[4] = amplitude;
ch->decoded[9] = ch->decoded[15] = -(amplitude / 4);
ch->decoded[10] = ch->decoded[14] = -(amplitude / 2);
ch->decoded[11] = ch->decoded[13] = -(amplitude * 3 / 4);
ch->decoded[12] = -amplitude;
}
else if (interim[0] > interim[1] && interim[1] > interim[2]
&& interim[2] > interim[3]
&& interim[4] < interim[5] && interim[5] < interim[6]
&& interim[6] < interim[7] && interim[7] < interim[8]
&& interim[8] < interim[9] && interim[9] < interim[10]
&& interim[10] < interim[11]
&& interim[12] > interim[13] && interim[13] > interim[14]
&& interim[14] > interim[15])
{
/* Inverted triangle wave. */
ch->decoded[0] = ch->decoded[8] = 0;
ch->decoded[1] = ch->decoded[7] = -(amplitude / 4);
ch->decoded[2] = ch->decoded[6] = -(amplitude / 2);
ch->decoded[3] = ch->decoded[5] = -(amplitude * 3 / 4);
ch->decoded[4] = -amplitude;
ch->decoded[9] = ch->decoded[15] = amplitude / 4;
ch->decoded[10] = ch->decoded[14] = amplitude / 2;
ch->decoded[11] = ch->decoded[13] = amplitude * 3 / 4;
ch->decoded[12] = amplitude;
}
else if (interim[0] < interim[1] && interim[1] < interim[2]
&& interim[2] < interim[3] && interim[3] < interim[4]
&& interim[4] < interim[5] && interim[5] < interim[6]
&& interim[6] < interim[7]
&& interim[8] > interim[9] && interim[9] > interim[10]
&& interim[10] > interim[11] && interim[11] > interim[12]
&& interim[12] > interim[13] && interim[13] > interim[14]
&& interim[14] > interim[15])
{
/* Looks like a V wave. Make it a half-triangle wave
* with an amplitude equivalent to that
* of the highest amplitude sample of the block. */
ch->decoded[0] = 0;
ch->decoded[1] = ch->decoded[15] = amplitude / 8;
ch->decoded[2] = ch->decoded[14] = amplitude / 4;
ch->decoded[3] = ch->decoded[13] = amplitude * 3 / 8;
ch->decoded[4] = ch->decoded[12] = amplitude / 2;
ch->decoded[5] = ch->decoded[11] = amplitude * 5 / 8;
ch->decoded[6] = ch->decoded[10] = amplitude * 3 / 4;
ch->decoded[7] = ch->decoded[9] = amplitude * 7 / 8;
ch->decoded[8] = amplitude;
}
else if (interim[0] > interim[1] && interim[1] > interim[2]
&& interim[2] > interim[3] && interim[3] > interim[4]
&& interim[4] > interim[5] && interim[5] > interim[6]
&& interim[6] > interim[7]
&& interim[8] < interim[9] && interim[9] < interim[10]
&& interim[10] < interim[11] && interim[11] < interim[12]
&& interim[12] < interim[13] && interim[13] < interim[14]
&& interim[14] < interim[15])
{
/* Inverted V wave. */
ch->decoded[0] = 0;
ch->decoded[1] = ch->decoded[15] = -(amplitude / 8);
ch->decoded[2] = ch->decoded[14] = -(amplitude / 4);
ch->decoded[3] = ch->decoded[13] = -(amplitude * 3 / 8);
ch->decoded[4] = ch->decoded[12] = -(amplitude / 2);
ch->decoded[5] = ch->decoded[11] = -(amplitude * 5 / 8);
ch->decoded[6] = ch->decoded[10] = -(amplitude * 3 / 4);
ch->decoded[7] = ch->decoded[9] = -(amplitude * 7 / 8);
ch->decoded[8] = -amplitude;
}
else
{
// Make it a square wave with an amplitude equivalent to that
// of the highest amplitude sample of the block.
// But actually put half of the amplitude, because
// square waves are just loud.
for (i = 0; i < 8; i++)
ch->decoded[i] = amplitude / 2;
for (i = 8; i < 16; i++)
ch->decoded[i] = -(amplitude / 2);
}
}
else
{
signed char* compressed = (signed char*) &IAPU.RAM [ch->block_pointer];
filter = *compressed;
if ((ch->last_block = filter & 1))
ch->loop = (filter & 2) != 0;
compressed++;
signed short* raw = ch->block = ch->decoded;
// Seperate out the header parts used for decoding
shift = filter >> 4;
// Header validity check: if range(shift) is over 12, ignore
// all bits of the data for that block except for the sign bit of each
invalid_header = (shift >= 0xD);
filter = filter & 0x0c;
int32 prev0 = ch->previous [0];
int32 prev1 = ch->previous [1];
for (i = 8; i != 0; i--)
{
sample1 = *compressed++;
sample2 = sample1 << 4;
//Sample 2 = Bottom Nibble, Sign Extended.
sample2 >>= 4;
//Sample 1 = Top Nibble, shifted down and Sign Extended.
sample1 >>= 4;
if (invalid_header)
{
sample1 >>= 3;
sample2 >>= 3;
}
int nybblesmp;
for (nybblesmp = 0; nybblesmp < 2; nybblesmp++)
{
out = (((nybblesmp) ? sample2 : sample1) << shift);
out >>= 1;
switch (filter)
{
case 0x00:
// Method0 - [Smp]
break;
case 0x04:
// Method1 - [Delta]+[Smp-1](15/16)
out += (prev0 >> 1) + ((-prev0) >> 5);
break;
case 0x08:
// Method2 - [Delta]+[Smp-1](61/32)-[Smp-2](15/16)
out += (prev0) + ((-(prev0 + (prev0 >> 1))) >> 5) - (prev1 >> 1) + (prev1 >> 5);
break;
default:
// Method3 - [Delta]+[Smp-1](115/64)-[Smp-2](13/16)
out += (prev0) + ((-(prev0 + (prev0 << 2) + (prev0 << 3))) >> 7) -
(prev1 >> 1) + ((prev1 + (prev1 >> 1)) >> 4);
break;
}
CLIP16(out);
*raw++ = (signed short)(out << 1);
prev1 = (signed short)prev0;
prev0 = (signed short)(out << 1);
}
}
ch->previous [0] = prev0;
ch->previous [1] = prev1;
}
ch->block_pointer += 9;
}
static inline void MixStereo(int sample_count)
{
static int32 wave[SOUND_BUFFER_SIZE];
int pitch_mod = SoundData.pitch_mod & ~APU.DSP[APU_NON];
uint32 J;
for (J = 0; J < NUM_CHANNELS; J++)
{
Channel* ch = &SoundData.channels[J];
if (ch->state == SOUND_SILENT || !(so.sound_switch & (1 << J)))
continue;
int32 VL, VR;
unsigned long freq0 = ch->frequency;
// freq0 = (unsigned long) ((double) freq0 * 0.985);//uncommented by jonathan gevaryahu, as it is necessary for most cards in linux
freq0 = freq0 * 985 / 1000;
bool8 mod = pitch_mod & (1 << J);
if (ch->needs_decode)
{
DecodeBlock(ch);
ch->needs_decode = FALSE;
ch->sample = ch->block[0];
ch->sample_pointer = freq0 >> FIXED_POINT_SHIFT;
if (ch->sample_pointer == 0)
ch->sample_pointer = 1;
if (ch->sample_pointer > SOUND_DECODE_LENGTH)
ch->sample_pointer = SOUND_DECODE_LENGTH - 1;
ch->next_sample = ch->block[ch->sample_pointer];
ch->interpolate = 0;
if (Settings.InterpolatedSound && freq0 < FIXED_POINT && !mod)
ch->interpolate = ((ch->next_sample - ch->sample) *
(long) freq0) / (long) FIXED_POINT;
}
VL = (ch->sample * ch-> left_vol_level) / 128;
VR = (ch->sample * ch->right_vol_level) / 128;
uint32 I;
for (I = 0; I < (uint32) sample_count; I += 2)
{
unsigned long freq = freq0;
if (mod)
freq = PITCH_MOD(freq, wave [I / 2]);
ch->env_error += ch->erate;
if (ch->env_error >= FIXED_POINT)
{
uint32 step = ch->env_error >> FIXED_POINT_SHIFT;
switch (ch->state)
{
case SOUND_ATTACK:
ch->env_error &= FIXED_POINT_REMAINDER;
ch->envx += step << 1;
ch->envxx = ch->envx << ENVX_SHIFT;
if (ch->envx >= 126)
{
ch->envx = 127;
ch->envxx = 127 << ENVX_SHIFT;
ch->state = SOUND_DECAY;
if (ch->sustain_level != 8)
{
S9xSetEnvRate(ch, ch->decay_rate, -1,
(MAX_ENVELOPE_HEIGHT * ch->sustain_level)
>> 3);
break;
}
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate(ch, ch->sustain_rate, -1, 0);
}
break;
case SOUND_DECAY:
while (ch->env_error >= FIXED_POINT)
{
ch->envxx = (ch->envxx >> 8) * 255;
ch->env_error -= FIXED_POINT;
}
ch->envx = ch->envxx >> ENVX_SHIFT;
if (ch->envx <= ch->envx_target)
{
if (ch->envx <= 0)
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
ch->state = SOUND_SUSTAIN;
S9xSetEnvRate(ch, ch->sustain_rate, -1, 0);
}
break;
case SOUND_SUSTAIN:
while (ch->env_error >= FIXED_POINT)
{
ch->envxx = (ch->envxx >> 8) * 255;
ch->env_error -= FIXED_POINT;
}
ch->envx = ch->envxx >> ENVX_SHIFT;
if (ch->envx <= 0)
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
break;
case SOUND_RELEASE:
while (ch->env_error >= FIXED_POINT)
{
ch->envxx -= (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256;
ch->env_error -= FIXED_POINT;
}
ch->envx = ch->envxx >> ENVX_SHIFT;
if (ch->envx <= 0)
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
break;
case SOUND_INCREASE_LINEAR:
ch->env_error &= FIXED_POINT_REMAINDER;
ch->envx += step << 1;
ch->envxx = ch->envx << ENVX_SHIFT;
if (ch->envx >= 126)
{
ch->envx = 127;
ch->envxx = 127 << ENVX_SHIFT;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate(ch, 0, -1, 0);
}
break;
case SOUND_INCREASE_BENT_LINE:
if (ch->envx >= (MAX_ENVELOPE_HEIGHT * 3) / 4)
{
while (ch->env_error >= FIXED_POINT)
{
ch->envxx += (MAX_ENVELOPE_HEIGHT << ENVX_SHIFT) / 256;
ch->env_error -= FIXED_POINT;
}
ch->envx = ch->envxx >> ENVX_SHIFT;
}
else
{
ch->env_error &= FIXED_POINT_REMAINDER;
ch->envx += step << 1;
ch->envxx = ch->envx << ENVX_SHIFT;
}
if (ch->envx >= 126)
{
ch->envx = 127;
ch->envxx = 127 << ENVX_SHIFT;
ch->state = SOUND_GAIN;
ch->mode = MODE_GAIN;
S9xSetEnvRate(ch, 0, -1, 0);
}
break;
case SOUND_DECREASE_LINEAR:
ch->env_error &= FIXED_POINT_REMAINDER;
ch->envx -= step << 1;
ch->envxx = ch->envx << ENVX_SHIFT;
if (ch->envx <= 0)
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
break;
case SOUND_DECREASE_EXPONENTIAL:
while (ch->env_error >= FIXED_POINT)
{
ch->envxx = (ch->envxx >> 8) * 255;
ch->env_error -= FIXED_POINT;
}
ch->envx = ch->envxx >> ENVX_SHIFT;
if (ch->envx <= 0)
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
break;
case SOUND_GAIN:
S9xSetEnvRate(ch, 0, -1, 0);
break;
}
ch-> left_vol_level = (ch->envx * ch->volume_left) / 128;
ch->right_vol_level = (ch->envx * ch->volume_right) / 128;
VL = (ch->sample * ch-> left_vol_level) / 128;
VR = (ch->sample * ch->right_vol_level) / 128;
}
ch->count += freq;
if (ch->count >= FIXED_POINT)
{
VL = ch->count >> FIXED_POINT_SHIFT;
ch->sample_pointer += VL;
ch->count &= FIXED_POINT_REMAINDER;
ch->sample = ch->next_sample;
if (ch->sample_pointer >= SOUND_DECODE_LENGTH)
{
if (JUST_PLAYED_LAST_SAMPLE(ch))
{
S9xAPUSetEndOfSample(J, ch);
goto stereo_exit;
}
do
{
ch->sample_pointer -= SOUND_DECODE_LENGTH;
if (ch->last_block)
{
if (!ch->loop)
{
ch->sample_pointer = LAST_SAMPLE;
ch->next_sample = ch->sample;
break;
}
else
{
S9xAPUSetEndX(J);
ch->last_block = FALSE;
uint8* dir = S9xGetSampleAddress(ch->sample_number);
ch->block_pointer = READ_WORD(dir + 2);
}
}
DecodeBlock(ch);
}
while (ch->sample_pointer >= SOUND_DECODE_LENGTH);
if (!JUST_PLAYED_LAST_SAMPLE(ch))
ch->next_sample = ch->block [ch->sample_pointer];
}
else
ch->next_sample = ch->block [ch->sample_pointer];
if (ch->type == SOUND_SAMPLE)
{
if (Settings.InterpolatedSound && freq < FIXED_POINT && !mod)
{
ch->interpolate = ((ch->next_sample - ch->sample) *
(long) freq) / (long) FIXED_POINT;
ch->sample = (int16)(ch->sample + (((ch->next_sample - ch->sample) *
(long)(ch->count)) / (long) FIXED_POINT));
}
else
ch->interpolate = 0;
}
else
{
// Snes9x 1.53's SPC_DSP.cpp, by blargg
int feedback = (noise_gen << 13) ^ (noise_gen << 14);
noise_gen = (feedback & 0x4000) ^ (noise_gen >> 1);
ch->sample = (noise_gen << 17) >> 17;
ch->interpolate = 0;
}
VL = (ch->sample * ch-> left_vol_level) / 128;
VR = (ch->sample * ch->right_vol_level) / 128;
}
else
{
if (ch->interpolate)
{
int32 s = (int32) ch->sample + ch->interpolate;
CLIP16(s);
ch->sample = (int16) s;
VL = (ch->sample * ch-> left_vol_level) / 128;
VR = (ch->sample * ch->right_vol_level) / 128;
}
}
if (pitch_mod & (1 << (J + 1)))
wave [I / 2] = ch->sample * ch->envx;
MixBuffer [I ] += VL;
MixBuffer [I + 1] += VR;
ch->echo_buf_ptr [I ] += VL;
ch->echo_buf_ptr [I + 1] += VR;
}
stereo_exit:
;
}
}
#ifdef __DJGPP
END_OF_FUNCTION(MixStereo);
#endif
#ifdef __sun
extern uint8 int2ulaw(int);
#endif
// For backwards compatibility with older port specific code
void S9xMixSamplesO(uint8* buffer, int sample_count, int byte_offset)
{
S9xMixSamples(buffer + byte_offset, sample_count);
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xMixSamplesO);
#endif
void S9xMixSamples(uint8* buffer, int sample_count)
{
int J;
int I;
if (SoundData.echo_enable)
memset(EchoBuffer, 0, sample_count * sizeof(EchoBuffer [0]));
memset(MixBuffer, 0, sample_count * sizeof(MixBuffer [0]));
MixStereo(sample_count);
/* Mix and convert waveforms */
int byte_count = sample_count << 1;
if (SoundData.echo_enable && SoundData.echo_buffer_size)
{
// 16-bit stereo sound with echo enabled ...
if (FilterTapDefinitionBitfield == 0)
{
// ... but no filter defined.
for (J = 0; J < sample_count; J++)
{
int E = Echo [SoundData.echo_ptr];
Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 +
EchoBuffer [J];
if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer [J] *
SoundData.master_volume [J & 1] +
E * SoundData.echo_volume [J & 1]) / VOL_DIV16;
CLIP16(I);
((signed short*) buffer)[J] = I;
}
}
else
{
// ... with filter defined.
for (J = 0; J < sample_count; J++)
{
int E = Echo [SoundData.echo_ptr];
Loop [(Z - 0) & 15] = E;
E = E * FilterTaps [0];
if (FilterTapDefinitionBitfield & 0x02) E += Loop [(Z - 2) & 15] *
FilterTaps [1];
if (FilterTapDefinitionBitfield & 0x04) E += Loop [(Z - 4) & 15] *
FilterTaps [2];
if (FilterTapDefinitionBitfield & 0x08) E += Loop [(Z - 6) & 15] *
FilterTaps [3];
if (FilterTapDefinitionBitfield & 0x10) E += Loop [(Z - 8) & 15] *
FilterTaps [4];
if (FilterTapDefinitionBitfield & 0x20) E += Loop [(Z - 10) & 15] *
FilterTaps [5];
if (FilterTapDefinitionBitfield & 0x40) E += Loop [(Z - 12) & 15] *
FilterTaps [6];
if (FilterTapDefinitionBitfield & 0x80) E += Loop [(Z - 14) & 15] *
FilterTaps [7];
E /= 128;
Z++;
Echo [SoundData.echo_ptr] = (E * SoundData.echo_feedback) / 128 +
EchoBuffer [J];
if ((SoundData.echo_ptr += 1) >= SoundData.echo_buffer_size)
SoundData.echo_ptr = 0;
I = (MixBuffer [J] *
SoundData.master_volume [J & 1] +
E * SoundData.echo_volume [J & 1]) / VOL_DIV16;
CLIP16(I);
((signed short*) buffer)[J] = I;
}
}
}
else
{
// 16-bit mono or stereo sound, no echo
for (J = 0; J < sample_count; J++)
{
I = (MixBuffer [J] *
SoundData.master_volume [J & 1]) / VOL_DIV16;
CLIP16(I);
((signed short*) buffer)[J] = I;
}
}
}
#ifdef __DJGPP
END_OF_FUNCTION(S9xMixSamples);
#endif
void S9xResetSound(bool8 full)
{
int i;
for (i = 0; i < 8; i++)
{
SoundData.channels[i].state = SOUND_SILENT;
SoundData.channels[i].mode = MODE_NONE;
SoundData.channels[i].type = SOUND_SAMPLE;
SoundData.channels[i].volume_left = 0;
SoundData.channels[i].volume_right = 0;
SoundData.channels[i].hertz = 0;
SoundData.channels[i].count = 0;
SoundData.channels[i].loop = FALSE;
SoundData.channels[i].envx_target = 0;
SoundData.channels[i].env_error = 0;
SoundData.channels[i].erate = 0;
SoundData.channels[i].envx = 0;
SoundData.channels[i].envxx = 0;
SoundData.channels[i].left_vol_level = 0;
SoundData.channels[i].right_vol_level = 0;
SoundData.channels[i].direction = 0;
SoundData.channels[i].attack_rate = 0;
SoundData.channels[i].decay_rate = 0;
SoundData.channels[i].sustain_rate = 0;
SoundData.channels[i].release_rate = 0;
SoundData.channels[i].sustain_level = 0;
SoundData.echo_ptr = 0;
SoundData.echo_feedback = 0;
SoundData.echo_buffer_size = 1;
}
FilterTaps [0] = 127;
FilterTaps [1] = 0;
FilterTaps [2] = 0;
FilterTaps [3] = 0;
FilterTaps [4] = 0;
FilterTaps [5] = 0;
FilterTaps [6] = 0;
FilterTaps [7] = 0;
FilterTapDefinitionBitfield = 0;
noise_gen = 1;
so.sound_switch = 255;
so.samples_mixed_so_far = 0;
so.play_position = 0;
so.err_counter = 0;
if (full)
{
SoundData.echo_enable = 0;
SoundData.echo_write_enabled = 0;
SoundData.echo_channel_enable = 0;
SoundData.pitch_mod = 0;
SoundData.dummy[0] = 0;
SoundData.dummy[1] = 0;
SoundData.dummy[2] = 0;
SoundData.master_volume[0] = 0;
SoundData.master_volume[1] = 0;
SoundData.echo_volume[0] = 0;
SoundData.echo_volume[1] = 0;
SoundData.noise_hertz = 0;
}
SoundData.master_volume [0] = SoundData.master_volume [1] = 127;
if (so.playback_rate)
so.err_rate = (uint32)(FIXED_POINT * SNES_SCANLINE_TIME /
(1.0 / so.playback_rate));
else
so.err_rate = 0;
}
void S9xSetPlaybackRate(uint32 playback_rate)
{
so.playback_rate = playback_rate;
so.err_rate = (uint32)(SNES_SCANLINE_TIME * FIXED_POINT / (1.0 /
(double) so.playback_rate));
S9xSetEchoDelay(APU.DSP [APU_EDL] & 0xf);
int i;
for (i = 0; i < 8; i++)
S9xSetSoundFrequency(i, SoundData.channels [i].hertz);
}
bool8 S9xInitSound(int mode, bool8 stereo, int buffer_size)
{
so.sound_fd = -1;
so.sound_switch = 255;
so.playback_rate = 0;
so.buffer_size = 0;
so.encoded = FALSE;
if (!(mode & 7))
return (1);
return (1);
}
bool8 S9xSetSoundMode(int channel, int mode)
{
Channel* ch = &SoundData.channels[channel];
switch (mode)
{
case MODE_RELEASE:
if (ch->mode != MODE_NONE)
{
ch->mode = MODE_RELEASE;
return (TRUE);
}
break;
case MODE_DECREASE_LINEAR:
case MODE_DECREASE_EXPONENTIAL:
case MODE_GAIN:
if (ch->mode != MODE_RELEASE)
{
ch->mode = mode;
if (ch->state != SOUND_SILENT)
ch->state = mode;
return (TRUE);
}
break;
case MODE_INCREASE_LINEAR:
case MODE_INCREASE_BENT_LINE:
if (ch->mode != MODE_RELEASE)
{
ch->mode = mode;
if (ch->state != SOUND_SILENT)
ch->state = mode;
return (TRUE);
}
break;
case MODE_ADSR:
if (ch->mode == MODE_NONE || ch->mode == MODE_ADSR)
{
ch->mode = mode;
return (TRUE);
}
}
return (FALSE);
}
void S9xSetSoundControl(int sound_switch)
{
so.sound_switch = sound_switch;
}
void S9xPlaySample(int channel)
{
Channel* ch = &SoundData.channels[channel];
ch->state = SOUND_SILENT;
ch->mode = MODE_NONE;
ch->envx = 0;
ch->envxx = 0;
S9xFixEnvelope(channel,
APU.DSP [APU_GAIN + (channel << 4)],
APU.DSP [APU_ADSR1 + (channel << 4)],
APU.DSP [APU_ADSR2 + (channel << 4)]);
ch->sample_number = APU.DSP [APU_SRCN + channel * 0x10];
if (APU.DSP [APU_NON] & (1 << channel))
ch->type = SOUND_NOISE;
else
ch->type = SOUND_SAMPLE;
S9xSetSoundFrequency(channel, ch->hertz);
ch->loop = FALSE;
ch->needs_decode = TRUE;
ch->last_block = FALSE;
ch->previous [0] = ch->previous[1] = 0;
uint8* dir = S9xGetSampleAddress(ch->sample_number);
ch->block_pointer = READ_WORD(dir);
ch->sample_pointer = 0;
ch->env_error = 0;
ch->next_sample = 0;
ch->interpolate = 0;
switch (ch->mode)
{
case MODE_ADSR:
if (ch->attack_rate == 0)
{
if (ch->decay_rate == 0 || ch->sustain_level == 8)
{
ch->state = SOUND_SUSTAIN;
ch->envx = (MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3;
S9xSetEnvRate(ch, ch->sustain_rate, -1, 0);
}
else
{
ch->state = SOUND_DECAY;
ch->envx = MAX_ENVELOPE_HEIGHT;
S9xSetEnvRate(ch, ch->decay_rate, -1,
(MAX_ENVELOPE_HEIGHT * ch->sustain_level) >> 3);
}
ch-> left_vol_level = (ch->envx * ch->volume_left) / 128;
ch->right_vol_level = (ch->envx * ch->volume_right) / 128;
}
else
{
ch->state = SOUND_ATTACK;
ch->envx = 0;
ch->left_vol_level = 0;
ch->right_vol_level = 0;
S9xSetEnvRate(ch, ch->attack_rate, 1, MAX_ENVELOPE_HEIGHT);
}
ch->envxx = ch->envx << ENVX_SHIFT;
break;
case MODE_GAIN:
ch->state = SOUND_GAIN;
break;
case MODE_INCREASE_LINEAR:
ch->state = SOUND_INCREASE_LINEAR;
break;
case MODE_INCREASE_BENT_LINE:
ch->state = SOUND_INCREASE_BENT_LINE;
break;
case MODE_DECREASE_LINEAR:
ch->state = SOUND_DECREASE_LINEAR;
break;
case MODE_DECREASE_EXPONENTIAL:
ch->state = SOUND_DECREASE_EXPONENTIAL;
break;
default:
break;
}
S9xFixEnvelope(channel,
APU.DSP [APU_GAIN + (channel << 4)],
APU.DSP [APU_ADSR1 + (channel << 4)],
APU.DSP [APU_ADSR2 + (channel << 4)]);
}