snes9x2005/source/dsp4emu.c

1243 lines
31 KiB
C

#include "../copyright"
#include "dsp4.h"
#include "memmap.h"
#define DSP4_READ_WORD(x) \
READ_WORD(DSP4.parameters+x)
#define DSP4_WRITE_WORD(x,d) \
WRITE_WORD(DSP4.output+x,d);
// used to wait for dsp i/o
#define DSP4_WAIT(x) \
DSP4_Logic = x; \
return
int32_t DSP4_Multiply(int16_t Multiplicand, int16_t Multiplier)
{
return Multiplicand * Multiplier;
}
int16_t DSP4_UnknownOP11(int16_t A, int16_t B, int16_t C, int16_t D)
{
return ((A * 0x0155 >> 2) & 0xf000) | ((B * 0x0155 >> 6) & 0x0f00) | ((C * 0x0155 >> 10) & 0x00f0) | ((D * 0x0155 >> 14) & 0x000f);
}
void DSP4_Op06(bool size, bool msb)
{
// save post-oam table data for future retrieval
op06_OAM[op06_index] |= (msb << (op06_offset + 0));
op06_OAM[op06_index] |= (size << (op06_offset + 1));
op06_offset += 2;
if (op06_offset == 8)
{
// move to next byte in buffer
op06_offset = 0;
op06_index++;
}
}
void DSP4_Op01(void)
{
int16_t plane;
int16_t index, lcv;
int16_t py_dy, px_dx;
int16_t y_out, x_out;
uint16_t command;
DSP4.waiting4command = false;
switch (DSP4_Logic) // op flow control
{
case 1:
goto resume1;
break;
case 2:
goto resume2;
break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_focalx = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
project_pitchylow = DSP4_READ_WORD(0x16);
project_pitchy = DSP4_READ_WORD(0x18);
project_pitchxlow = DSP4_READ_WORD(0x1a);
project_pitchx = DSP4_READ_WORD(0x1c);
far_plane = DSP4_READ_WORD(0x1e);
project_y1low = DSP4_READ_WORD(0x22);
// pre-compute
view_plane = PLANE_START;
// find starting projection points
project_x1 = project_focalx;
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
// multi-op storage
multi_index1 = 0;
multi_index2 = 0;
////////////////////////////////////////////////////
// command check
do
{
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1);
resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for termination
if(command == 0x8000)
break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 8;
DSP4_WAIT(2);
////////////////////////////////////////////////////
// process one iteration of projection
// inspect inputs
resume2:
plane = DSP4_READ_WORD(0);
px_dx = 0;
// ignore invalid data
if((uint16_t) plane == 0x8001)
continue;
// one-time init
if (far_plane)
{
// setup final parameters
project_focalx += plane;
project_x1 = project_focalx;
project_y1 = project_focaly;
plane = far_plane;
far_plane = 0;
}
// use proportional triangles to project new coords
project_x2 = project_focalx * plane / view_plane;
project_y2 = project_focaly * plane / view_plane;
// quadratic regression (rough)
if (project_focaly >= -0x0f)
py_dy = (int16_t)(project_focaly * project_focaly * -0.20533553 - 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (int16_t)(project_focaly * project_focaly * -0.000657035759 - 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = ABS(project_y2 - project_y1);
// prevent overdraw
if(project_y2 >= raster)
segments = 0;
else
raster = project_y2;
// don't draw outside the window
if(project_y2 < viewport_top)
segments = 0;
// project new positions
if (segments > 0)
px_dx = ((project_x2 - project_x1) << 8) / segments; // interpolate between projected points
// prepare output
DSP4.out_count = 8 + 2 + 6 * segments;
// pre-block data
DSP4_WRITE_WORD(0, project_focalx);
DSP4_WRITE_WORD(2, project_x2);
DSP4_WRITE_WORD(4, project_focaly);
DSP4_WRITE_WORD(6, project_y2);
DSP4_WRITE_WORD(8, segments);
index = 10;
for (lcv = 0; lcv < segments; lcv++) // iterate through each point
{
// step through the projected line
y_out = project_y + ((py_dy * lcv) >> 8);
x_out = project_x + ((px_dx * lcv) >> 8);
// data
DSP4_WRITE_WORD(index + 0, project_ptr);
DSP4_WRITE_WORD(index + 2, y_out);
DSP4_WRITE_WORD(index + 4, x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// post-update
project_y += ((py_dy * lcv) >> 8);
project_x += ((px_dx * lcv) >> 8);
if (segments > 0) // new positions
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_focaly[multi_index2++] = project_focaly;
multi_farplane[1] = plane;
multi_raster[1] = project_y1 - 1;
}
// update projection points
project_pitchy += (int8_t)DSP4.parameters[3];
project_pitchx += (int8_t)DSP4.parameters[5];
project_focaly += project_pitchy;
project_focalx += project_pitchx;
} while (1);
// terminate op
DSP4.waiting4command = true;
DSP4.out_count = 0;
}
void DSP4_Op07(void)
{
uint16_t command;
int16_t plane;
int16_t index, lcv;
int16_t y_out, x_out;
int16_t py_dy, px_dx;
DSP4.waiting4command = false;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1;
break;
case 2:
goto resume2;
break;
}
////////////////////////////////////////////////////
// sort inputs
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_x1 = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// pre-compute
view_plane = PLANE_START;
// find projection targets
project_y1 = project_focaly;
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
// multi-op storage
multi_index2 = 0;
////////////////////////////////////////////////////
// command check
do
{
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1);
resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for opcode termination
if(command == 0x8000)
break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 12;
DSP4_WAIT(2);
////////////////////////////////////////////////////
// process one loop of projection
resume2:
px_dx = 0;
// inspect inputs
plane = DSP4_READ_WORD(0);
project_y2 = DSP4_READ_WORD(2);
project_x2 = DSP4_READ_WORD(6);
// ignore invalid data
if((uint16_t) plane == 0x8001)
continue;
// multi-op storage
project_focaly = multi_focaly[multi_index2];
// quadratic regression (rough)
if (project_focaly >= -0x0f)
py_dy = (int16_t)(project_focaly * project_focaly * -0.20533553 - 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (int16_t)(project_focaly * project_focaly * -0.000657035759 - 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = ABS(project_y2 - project_y1);
// prevent overdraw
if(project_y2 >= raster)
segments = 0;
else
raster = project_y2;
// don't draw outside the window
if(project_y2 < viewport_top)
segments = 0;
// project new positions
if (segments > 0)
{
// interpolate between projected points
px_dx = ((project_x2 - project_x1) << 8) / segments;
}
// prepare pre-output
DSP4.out_count = 4 + 2 + 6 * segments;
DSP4_WRITE_WORD(0, project_x2);
DSP4_WRITE_WORD(2, project_y2);
DSP4_WRITE_WORD(4, segments);
index = 6;
for (lcv = 0; lcv < segments; lcv++)
{
// pre-compute
y_out = project_y + ((py_dy * lcv) >> 8);
x_out = project_x + ((px_dx * lcv) >> 8);
// data
DSP4_WRITE_WORD(index + 0, project_ptr);
DSP4_WRITE_WORD(index + 2, y_out);
DSP4_WRITE_WORD(index + 4, x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// update internal variables
project_y += ((py_dy * lcv) >> 8);
project_x += ((px_dx * lcv) >> 8);
// new positions
if (segments > 0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_index2++;
}
} while (1);
DSP4.waiting4command = true;
DSP4.out_count = 0;
}
void DSP4_Op08(void)
{
uint16_t command;
// used in envelope shaping
int16_t x1_final;
int16_t x2_final;
int16_t plane, x_left, y_left, x_right, y_right;
int16_t envelope1, envelope2;
DSP4.waiting4command = false;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1;
break;
case 2:
goto resume2;
break;
}
////////////////////////////////////////////////////
// process initial inputs
// clip values
path_clipRight[0] = DSP4_READ_WORD(0x00);
path_clipRight[1] = DSP4_READ_WORD(0x02);
path_clipRight[2] = DSP4_READ_WORD(0x04);
path_clipRight[3] = DSP4_READ_WORD(0x06);
path_clipLeft[0] = DSP4_READ_WORD(0x08);
path_clipLeft[1] = DSP4_READ_WORD(0x0a);
path_clipLeft[2] = DSP4_READ_WORD(0x0c);
path_clipLeft[3] = DSP4_READ_WORD(0x0e);
// path positions
path_pos[0] = DSP4_READ_WORD(0x20);
path_pos[1] = DSP4_READ_WORD(0x22);
path_pos[2] = DSP4_READ_WORD(0x24);
path_pos[3] = DSP4_READ_WORD(0x26);
// data locations
path_ptr[0] = DSP4_READ_WORD(0x28);
path_ptr[1] = DSP4_READ_WORD(0x2a);
path_ptr[2] = DSP4_READ_WORD(0x2c);
path_ptr[3] = DSP4_READ_WORD(0x2e);
// project_y1 lines
path_raster[0] = DSP4_READ_WORD(0x30);
path_raster[1] = DSP4_READ_WORD(0x32);
path_raster[2] = DSP4_READ_WORD(0x34);
path_raster[3] = DSP4_READ_WORD(0x36);
// viewport_top
path_top[0] = DSP4_READ_WORD(0x38);
path_top[1] = DSP4_READ_WORD(0x3a);
path_top[2] = DSP4_READ_WORD(0x3c);
path_top[3] = DSP4_READ_WORD(0x3e);
// unknown (constants)
view_plane = PLANE_START;
////////////////////////////////////////////////////
// command check
do
{
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1);
resume1:
// inspect input
command = DSP4_READ_WORD(0);
// terminate op
if(command == 0x8000)
break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 18;
DSP4_WAIT(2);
resume2:
////////////////////////////////////////////////////
// projection begins
// look at guidelines
plane = DSP4_READ_WORD(0x00);
x_left = DSP4_READ_WORD(0x02);
y_left = DSP4_READ_WORD(0x04);
x_right = DSP4_READ_WORD(0x06);
y_right = DSP4_READ_WORD(0x08);
// envelope guidelines (one frame only)
envelope1 = DSP4_READ_WORD(0x0a);
envelope2 = DSP4_READ_WORD(0x0c);
// ignore invalid data
if((uint16_t) plane == 0x8001)
continue;
// first init
if (plane == 0x7fff)
{
int32_t pos1, pos2;
// initialize projection
path_x[0] = x_left;
path_x[1] = x_right;
path_y[0] = y_left;
path_y[1] = y_right;
// update coordinates
path_pos[0] -= x_left;
path_pos[1] -= x_left;
path_pos[2] -= x_right;
path_pos[3] -= x_right;
pos1 = path_pos[0] + envelope1;
pos2 = path_pos[1] + envelope2;
// clip offscreen data
if(pos1 < path_clipLeft[0])
pos1 = path_clipLeft[0];
if(pos1 > path_clipRight[0])
pos1 = path_clipRight[0];
if(pos2 < path_clipLeft[1])
pos2 = path_clipLeft[1];
if(pos2 > path_clipRight[1])
pos2 = path_clipRight[1];
path_plane[0] = plane;
path_plane[1] = plane;
// initial output
DSP4.out_count = 2;
DSP4.output[0] = pos1 & 0xFF;
DSP4.output[1] = pos2 & 0xFF;
}
// proceed with projection
else
{
int16_t index = 0, lcv;
int16_t left_inc = 0, right_inc = 0;
int16_t dx1 = 0, dx2 = 0, dx3, dx4;
// # segments to traverse
segments = ABS(y_left - path_y[0]);
// prevent overdraw
if(y_left >= path_raster[0])
segments = 0;
else
path_raster[0] = y_left;
// don't draw outside the window
if(path_raster[0] < path_top[0])
segments = 0;
// proceed if visibility rules apply
if (segments > 0)
{
// use previous data
dx1 = (envelope1 * path_plane[0] / view_plane);
dx2 = (envelope2 * path_plane[0] / view_plane);
// use temporary envelope pitch (this frame only)
dx3 = (envelope1 * plane / view_plane);
dx4 = (envelope2 * plane / view_plane);
// project new shapes (left side)
x1_final = x_left + dx1;
x2_final = path_x[0] + dx3;
// interpolate between projected points with shaping
left_inc = ((x2_final - x1_final) << 8) / segments;
// project new shapes (right side)
x1_final = x_left + dx2;
x2_final = path_x[0] + dx4;
// interpolate between projected points with shaping
right_inc = ((x2_final - x1_final) << 8) / segments;
path_plane[0] = plane;
}
// zone 1
DSP4.out_count = (2 + 4 * segments);
DSP4_WRITE_WORD(index, segments);
index += 2;
for (lcv = 1; lcv <= segments; lcv++)
{
int16_t pos1, pos2;
// pre-compute
pos1 = path_pos[0] + ((left_inc * lcv) >> 8) + dx1;
pos2 = path_pos[1] + ((right_inc * lcv) >> 8) + dx2;
// clip offscreen data
if(pos1 < path_clipLeft[0])
pos1 = path_clipLeft[0];
if(pos1 > path_clipRight[0])
pos1 = path_clipRight[0];
if(pos2 < path_clipLeft[1])
pos2 = path_clipLeft[1];
if(pos2 > path_clipRight[1])
pos2 = path_clipRight[1];
// data
DSP4_WRITE_WORD(index, path_ptr[0]);
index += 2;
DSP4.output[index++] = pos1 & 0xFF;
DSP4.output[index++] = pos2 & 0xFF;
// post-update
path_ptr[0] -= 4;
path_ptr[1] -= 4;
}
lcv--;
if (segments > 0)
{
// project points w/out the envelopes
int16_t inc = ((path_x[0] - x_left) << 8) / segments;
// post-store
path_pos[0] += ((inc * lcv) >> 8);
path_pos[1] += ((inc * lcv) >> 8);
path_x[0] = x_left;
path_y[0] = y_left;
}
//////////////////////////////////////////////
// zone 2
segments = ABS(y_right - path_y[1]);
// prevent overdraw
if(y_right >= path_raster[2])
segments = 0;
else path_raster[2] = y_right;
// don't draw outside the window
if(path_raster[2] < path_top[2])
segments = 0;
// proceed if visibility rules apply
if (segments > 0)
{
// use previous data
dx1 = (envelope1 * path_plane[1] / view_plane);
dx2 = (envelope2 * path_plane[1] / view_plane);
// use temporary envelope pitch (this frame only)
dx3 = (envelope1 * plane / view_plane);
dx4 = (envelope2 * plane / view_plane);
// project new shapes (left side)
x1_final = x_left + dx1;
x2_final = path_x[1] + dx3;
// interpolate between projected points with shaping
left_inc = ((x2_final - x1_final) << 8) / segments;
// project new shapes (right side)
x1_final = x_left + dx2;
x2_final = path_x[1] + dx4;
// interpolate between projected points with shaping
right_inc = ((x2_final - x1_final) << 8) / segments;
path_plane[1] = plane;
}
// write out results
DSP4.out_count += (2 + 4 * segments);
DSP4_WRITE_WORD(index, segments);
index += 2;
for (lcv = 1; lcv <= segments; lcv++)
{
int16_t pos1, pos2;
// pre-compute
pos1 = path_pos[2] + ((left_inc * lcv) >> 8) + dx1;
pos2 = path_pos[3] + ((right_inc * lcv) >> 8) + dx2;
// clip offscreen data
if(pos1 < path_clipLeft[2])
pos1 = path_clipLeft[2];
if(pos1 > path_clipRight[2])
pos1 = path_clipRight[2];
if(pos2 < path_clipLeft[3])
pos2 = path_clipLeft[3];
if(pos2 > path_clipRight[3])
pos2 = path_clipRight[3];
// data
DSP4_WRITE_WORD(index, path_ptr[2]);
index += 2;
DSP4.output[index++] = pos1 & 0xFF;
DSP4.output[index++] = pos2 & 0xFF;
// post-update
path_ptr[2] -= 4;
path_ptr[3] -= 4;
}
lcv--;
if (segments > 0)
{
// project points w/out the envelopes
int16_t inc = ((path_x[1] - x_right) << 8) / segments;
// post-store
path_pos[2] += ((inc * lcv) >> 8);
path_pos[3] += ((inc * lcv) >> 8);
path_x[1] = x_right;
path_y[1] = y_right;
}
}
} while (1);
DSP4.waiting4command = true;
DSP4.out_count = 2;
DSP4_WRITE_WORD(0, 0);
}
void DSP4_Op0D(void)
{
uint16_t command;
// inspect inputs
int16_t plane;
int16_t index, lcv;
int16_t py_dy, px_dx;
int16_t y_out, x_out;
DSP4.waiting4command = false;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1;
break;
case 2:
goto resume2;
break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_x1 = DSP4_READ_WORD(0x0e);
project_focalx = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
project_pitchylow = DSP4_READ_WORD(0x16);
project_pitchy = DSP4_READ_WORD(0x18);
project_pitchxlow = DSP4_READ_WORD(0x1a);
project_pitchx = DSP4_READ_WORD(0x1c);
far_plane = DSP4_READ_WORD(0x1e);
// multi-op storage
multi_index1++;
multi_index1 %= 4;
// remap 0D->09 window data ahead of time
// index starts at 1-3,0
//
// Op0D: BL,TL,BR,TR
// Op09: TL,TR,BL,BR (1,2,3,0)
switch (multi_index1)
{
case 1:
multi_index2 = 3;
break;
case 2:
multi_index2 = 1;
break;
case 3:
multi_index2 = 0;
break;
case 0:
multi_index2 = 2;
break;
}
// pre-compute
view_plane = PLANE_START;
// figure out projection data
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
////////////////////////////////////////////////////
// command check
do
{
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1);
resume1:
// inspect input
command = DSP4_READ_WORD(0);
// terminate op
if(command == 0x8000)
break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 8;
DSP4_WAIT(2);
////////////////////////////////////////////////////
// project section of the track
resume2:
plane = DSP4_READ_WORD(0);
px_dx = 0;
// ignore invalid data
if((uint16_t) plane == 0x8001)
continue;
// one-time init
if (far_plane)
{
// setup final data
project_x1 = project_focalx;
project_y1 = project_focaly;
plane = far_plane;
far_plane = 0;
}
// use proportional triangles to project new coords
project_x2 = project_focalx * plane / view_plane;
project_y2 = project_focaly * plane / view_plane;
// quadratic regression (rough)
if (project_focaly >= -0x0f)
py_dy = (int16_t)(project_focaly * project_focaly * -0.20533553 - 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (int16_t)(project_focaly * project_focaly * -0.000657035759 - 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = ABS(project_y2 - project_y1);
// prevent overdraw
if(project_y2 >= raster)
segments = 0;
else
raster = project_y2;
// don't draw outside the window
if(project_y2 < viewport_top)
segments = 0;
// project new positions
if (segments > 0)
{
// interpolate between projected points
px_dx = ((project_x2 - project_x1) << 8) / segments;
}
// prepare output
DSP4.out_count = 8 + 2 + 6 * segments;
DSP4_WRITE_WORD(0, project_focalx);
DSP4_WRITE_WORD(2, project_x2);
DSP4_WRITE_WORD(4, project_focaly);
DSP4_WRITE_WORD(6, project_y2);
DSP4_WRITE_WORD(8, segments);
index = 10;
for (lcv = 0; lcv < segments; lcv++) // iterate through each point
{
// step through the projected line
y_out = project_y + ((py_dy * lcv) >> 8);
x_out = project_x + ((px_dx * lcv) >> 8);
// data
DSP4_WRITE_WORD(index + 0, project_ptr);
DSP4_WRITE_WORD(index + 2, y_out);
DSP4_WRITE_WORD(index + 4, x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// post-update
project_y += ((py_dy * lcv) >> 8);
project_x += ((px_dx * lcv) >> 8);
if (segments > 0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_farplane[multi_index2] = plane;
multi_raster[multi_index2] = project_y1;
}
// update focal projection points
project_pitchy += (int8_t)DSP4.parameters[3];
project_pitchx += (int8_t)DSP4.parameters[5];
project_focaly += project_pitchy;
project_focalx += project_pitchx;
} while (1);
DSP4.waiting4command = true;
DSP4.out_count = 0;
}
void DSP4_Op09(void)
{
uint16_t command;
bool clip;
int16_t sp_x, sp_y, sp_oam, sp_msb;
int16_t sp_dx, sp_dy;
DSP4.waiting4command = false;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1;
break;
case 2:
goto resume2;
break;
case 3:
goto resume3;
break;
case 4:
goto resume4;
break;
case 5:
goto resume5;
break;
case 6:
goto resume6;
break;
case 7:
goto resume7;
break;
}
////////////////////////////////////////////////////
// process initial inputs
// grab screen information
view_plane = PLANE_START;
center_x = DSP4_READ_WORD(0x00);
center_y = DSP4_READ_WORD(0x02);
viewport_left = DSP4_READ_WORD(0x06);
viewport_right = DSP4_READ_WORD(0x08);
viewport_top = DSP4_READ_WORD(0x0a);
viewport_bottom = DSP4_READ_WORD(0x0c);
// expand viewport dimensions
viewport_left -= 8;
// cycle through viewport window data
multi_index1++;
multi_index1 %= 4;
// convert track line to the window region
project_y2 = center_y + multi_raster[multi_index1] * (viewport_bottom - center_y) / (0x33 - 0);
if (!op09_mode)
project_y2 -= 2;
goto no_sprite;
do
{
////////////////////////////////////////////////////
// check for new sprites
do
{
uint16_t second;
DSP4.in_count = 4;
DSP4.in_index = 2;
DSP4_WAIT(1);
resume1:
// try to classify sprite
second = DSP4_READ_WORD(2);
// op termination
if(second == 0x8000)
goto terminate;
second >>= 8;
sprite_type = 0;
// vehicle sprite
if (second == 0x90)
{
sprite_type = 1;
break;
}
// terrain sprite
else if (second != 0)
{
sprite_type = 2;
break;
}
no_sprite:
// no sprite. try again
DSP4.in_count = 2;
DSP4_WAIT(2);
resume2:;
} while (1);
////////////////////////////////////////////////////
// process projection information
sprite_found:
// vehicle sprite
if (sprite_type == 1)
{
int16_t plane;
int16_t car_left, car_right;
int16_t focal_back;
int32_t height;
// we already have 4 bytes we want
DSP4.in_count = 6 + 12;
DSP4.in_index = 4;
DSP4_WAIT(3);
resume3:
// filter inputs
project_y1 = DSP4_READ_WORD(0x00);
focal_back = DSP4_READ_WORD(0x06);
car_left = DSP4_READ_WORD(0x0c);
plane = DSP4_READ_WORD(0x0e);
car_right = DSP4_READ_WORD(0x10);
// calculate car's x-center
project_focalx = car_right - car_left;
// determine how far into the screen to project
project_focaly = focal_back;
project_x = project_focalx * plane / view_plane;
segments = 0x33 - project_focaly * plane / view_plane;
far_plane = plane;
// prepare memory
sprite_x = center_x + project_x;
sprite_y = viewport_bottom - segments;
far_plane = plane;
// make the car's x-center available
DSP4.out_count = 2;
DSP4_WRITE_WORD(0, project_focalx);
// grab a few remaining vehicle values
DSP4.in_count = 4;
DSP4_WAIT(4);
resume4: // store final values
height = DSP4_READ_WORD(0);
sprite_offset = DSP4_READ_WORD(2);
// vertical lift factor
sprite_y += height;
}
else if (sprite_type == 2) // terrain sprite
{
int16_t plane;
// we already have 4 bytes we want
DSP4.in_count = 6 + 6 + 2;
DSP4.in_index = 4;
DSP4_WAIT(5);
resume5:
// sort loop inputs
project_y1 = DSP4_READ_WORD(0x00);
plane = DSP4_READ_WORD(0x02);
project_centerx = DSP4_READ_WORD(0x04);
project_focalx = DSP4_READ_WORD(0x08);
project_focaly = DSP4_READ_WORD(0x0a);
sprite_offset = DSP4_READ_WORD(0x0c);
// determine distances into virtual world
segments = 0x33 - project_y1;
project_x = project_focalx * plane / view_plane;
project_y = project_focaly * plane / view_plane;
// prepare memory
sprite_x = center_x + project_x - project_centerx;
sprite_y = viewport_bottom - segments + project_y;
far_plane = plane;
}
// default sprite size: 16x16
sprite_size = true;
// convert tile data to OAM
do
{
DSP4.in_count = 2;
DSP4_WAIT(6);
resume6:
command = DSP4_READ_WORD(0);
// opcode termination
if(command == 0x8000)
goto terminate;
// toggle sprite size
if (command == 0x0000)
{
sprite_size = !sprite_size;
continue;
}
// new sprite information
command >>= 8;
if (command != 0x20 && command != 0x40 && command != 0x60 && command != 0xa0 && command != 0xc0 && command != 0xe0)
break;
DSP4.in_count = 6;
DSP4.in_index = 2;
DSP4_WAIT(7);
/////////////////////////////////////
// process tile data
resume7:
// sprite deltas
sp_dy = DSP4_READ_WORD(2);
sp_dx = DSP4_READ_WORD(4);
// update coordinates
sp_y = sprite_y + sp_dy;
sp_x = sprite_x + sp_dx;
// reject points outside the clipping window
clip = false;
if(sp_x < viewport_left || sp_x > viewport_right)
clip = true;
if(sp_y < viewport_top || sp_y > viewport_bottom)
clip = true;
// track depth sorting
if(far_plane <= multi_farplane[multi_index1] && sp_y >= project_y2)
clip = true;
// don't draw offscreen coordinates
DSP4.out_count = 0;
if (!clip)
{
int16_t out_index = 0;
int16_t offset = DSP4_READ_WORD(0);
// update sprite nametable/attribute information
sp_oam = sprite_offset + offset;
sp_msb = (sp_x < 0 || sp_x > 255);
// emit transparency information
if((sprite_offset & 0x08) && ((sprite_type == 1 && sp_y >= 0xcc) || (sprite_type == 2 && sp_y >= 0xbb)))
{
DSP4.out_count = 6;
// one block of OAM data
DSP4_WRITE_WORD(0, 1);
// OAM: x,y,tile,no attr
DSP4.output[2] = sp_x & 0xFF;
DSP4.output[3] = (sp_y + 6) & 0xFF;
DSP4_WRITE_WORD(4, 0xEE);
out_index = 6;
// OAM: size,msb data
DSP4_Op06(sprite_size, (int8_t) sp_msb);
}
// normal data
DSP4.out_count += 8;
// one block of OAM data
DSP4_WRITE_WORD(out_index + 0, 1);
// OAM: x,y,tile,attr
DSP4.output[out_index + 2] = sp_x & 0xFF;
DSP4.output[out_index + 3] = sp_y & 0xFF;
DSP4_WRITE_WORD(out_index + 4, sp_oam);
// no following OAM data
DSP4_WRITE_WORD(out_index + 6, 0);
// OAM: size,msb data
DSP4_Op06(sprite_size, (int8_t) sp_msb);
}
// no sprite information
if (DSP4.out_count == 0)
{
DSP4.out_count = 2;
DSP4_WRITE_WORD(0, 0);
}
} while (1);
/////////////////////////////////////
// special cases: plane == 0x0000
// special vehicle case
if (command == 0x90)
{
sprite_type = 1;
// shift bytes
DSP4.parameters[2] = DSP4.parameters[0];
DSP4.parameters[3] = DSP4.parameters[1];
DSP4.parameters[0] = 0;
DSP4.parameters[1] = 0;
goto sprite_found;
}
else if (command != 0x00 && command != 0xff) // special terrain case
{
sprite_type = 2;
// shift bytes
DSP4.parameters[2] = DSP4.parameters[0];
DSP4.parameters[3] = DSP4.parameters[1];
DSP4.parameters[0] = 0;
DSP4.parameters[1] = 0;
goto sprite_found;
}
} while (1);
terminate:
DSP4.waiting4command = true;
DSP4.out_count = 0;
}