snes9x2005/source/dma.c
2017-08-26 00:26:09 +01:00

759 lines
24 KiB
C

#include "../copyright"
#include "snes9x.h"
#include "memmap.h"
#include "ppu.h"
#include "cpuexec.h"
#include "dma.h"
#include "apu.h"
#include "sa1.h"
#include "sdd1emu.h"
#include "spc7110.h"
#include "spc7110dec.h"
static uint8_t sdd1_decode_buffer[0x10000];
extern int32_t HDMA_ModeByteCounts [8];
extern uint8_t* HDMAMemPointers [8];
extern uint8_t* HDMABasePointers [8];
/**********************************************************************************************/
/* S9xDoDMA() */
/* This function preforms the general dma transfer */
/**********************************************************************************************/
void S9xDoDMA(uint8_t Channel)
{
uint8_t Work;
int32_t count;
int32_t inc;
SDMA* d;
bool in_sa1_dma = false;
uint8_t* in_sdd1_dma = NULL;
uint8_t* spc7110_dma = NULL;
bool s7_wrap = false;
if (Channel > 7 || CPU.InDMA)
return;
CPU.InDMA = true;
d = &DMA[Channel];
count = d->TransferBytes;
/* Prepare for custom chip DMA */
if (count == 0)
count = 0x10000;
inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1);
if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80 && !d->TransferDirection)
{
d->AAddress += d->TransferBytes;
/* Does an invalid DMA actually take time?
* I'd say yes, since 'invalid' is probably just the WRAM chip
* not being able to read and write itself at the same time */
CPU.Cycles += (d->TransferBytes + 1) * SLOW_ONE_CYCLE;
goto update_address;
}
switch (d->BAddress)
{
case 0x18:
case 0x19:
if (IPPU.RenderThisFrame)
FLUSH_REDRAW();
break;
}
if (Settings.SDD1)
{
if (d->AAddressFixed && Memory.FillRAM [0x4801] > 0)
{
uint8_t* in_ptr;
/* XXX: Should probably verify that we're DMAing from ROM?
* And somewhere we should make sure we're not running across a mapping boundary too. */
inc = !d->AAddressDecrement ? 1 : -1;
in_ptr = GetBasePointer(((d->ABank << 16) | d->AAddress));
if (in_ptr)
{
in_ptr += d->AAddress;
SDD1_decompress(sdd1_decode_buffer, in_ptr, d->TransferBytes);
}
in_sdd1_dma = sdd1_decode_buffer;
}
Memory.FillRAM [0x4801] = 0;
}
if (Settings.SPC7110 && (d->AAddress == 0x4800 || d->ABank == 0x50))
{
int32_t c, icount;
spc7110_dma = &s7r.bank50[0];
for(c = 0; c < count; c++)
s7r.bank50[c] = spc7110dec_read();
icount = (s7r.reg4809 | (s7r.reg480A << 8)) - count;
s7r.reg4809 = 0x00ff & icount;
s7r.reg480A = (0xff00 & icount) >> 8;
inc = 1;
d->AAddress -= count;
}
if (d->BAddress == 0x18 && SA1.in_char_dma && (d->ABank & 0xf0) == 0x40)
{
/* Perform packed bitmap to PPU character format conversion on the
* data before transmitting it to V-RAM via-DMA. */
int32_t i;
int32_t num_chars = 1 << ((Memory.FillRAM [0x2231] >> 2) & 7);
int32_t depth = (Memory.FillRAM [0x2231] & 3) == 0 ? 8 : (Memory.FillRAM [0x2231] & 3) == 1 ? 4 : 2;
int32_t bytes_per_char = 8 * depth;
int32_t bytes_per_line = depth * num_chars;
int32_t char_line_bytes = bytes_per_char * num_chars;
uint32_t addr = (d->AAddress / char_line_bytes) * char_line_bytes;
uint8_t* base = GetBasePointer((d->ABank << 16) + addr) + addr;
uint8_t* buffer = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
uint8_t* p = buffer;
uint32_t inc = char_line_bytes - (d->AAddress % char_line_bytes);
uint32_t char_count = inc / bytes_per_char;
in_sa1_dma = true;
switch (depth)
{
case 2:
for (i = 0 ; i < count ; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars)
{
uint32_t j;
uint8_t* line = base + (num_chars - char_count) * 2;
for (j = 0 ; j < char_count && p - buffer < count ; j++, line += 2)
{
int32_t b, l;
uint8_t* q = line;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 2; b++)
{
uint8_t r = *(q + b);
p[0] = (p[0] << 1) | ((r >> 0) & 1);
p[1] = (p[1] << 1) | ((r >> 1) & 1);
p[0] = (p[0] << 1) | ((r >> 2) & 1);
p[1] = (p[1] << 1) | ((r >> 3) & 1);
p[0] = (p[0] << 1) | ((r >> 4) & 1);
p[1] = (p[1] << 1) | ((r >> 5) & 1);
p[0] = (p[0] << 1) | ((r >> 6) & 1);
p[1] = (p[1] << 1) | ((r >> 7) & 1);
}
p += 2;
}
}
}
break;
case 4:
for (i = 0 ; i < count ; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars)
{
uint32_t j;
uint8_t* line = base + (num_chars - char_count) * 4;
for (j = 0 ; j < char_count && p - buffer < count ; j++, line += 4)
{
uint8_t* q = line;
int32_t b, l;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 4; b++)
{
uint8_t r = *(q + b);
p[0] = (p[0] << 1) | ((r >> 0) & 1);
p[1] = (p[1] << 1) | ((r >> 1) & 1);
p[16] = (p[16] << 1) | ((r >> 2) & 1);
p[17] = (p[17] << 1) | ((r >> 3) & 1);
p[0] = (p[0] << 1) | ((r >> 4) & 1);
p[1] = (p[1] << 1) | ((r >> 5) & 1);
p[16] = (p[16] << 1) | ((r >> 6) & 1);
p[17] = (p[17] << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 32 - 16;
}
}
break;
case 8:
for(i = 0 ; i < count ; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars)
{
uint8_t* line = base + (num_chars - char_count) * 8;
uint32_t j;
for(j = 0 ; j < char_count && p - buffer < count ; j++, line += 8)
{
uint8_t* q = line;
int32_t b, l;
for (l = 0; l < 8; l++, q += bytes_per_line)
{
for (b = 0; b < 8; b++)
{
uint8_t r = *(q + b);
p[0] = (p[0] << 1) | ((r >> 0) & 1);
p[1] = (p[1] << 1) | ((r >> 1) & 1);
p[16] = (p[16] << 1) | ((r >> 2) & 1);
p[17] = (p[17] << 1) | ((r >> 3) & 1);
p[32] = (p[32] << 1) | ((r >> 4) & 1);
p[33] = (p[33] << 1) | ((r >> 5) & 1);
p[48] = (p[48] << 1) | ((r >> 6) & 1);
p[49] = (p[49] << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 64 - 16;
}
}
break;
}
}
if (!d->TransferDirection)
{
uint8_t* base;
uint16_t p;
/* XXX: DMA is potentially broken here for cases where we DMA across
* XXX: memmap boundries. A possible solution would be to re-call
* XXX: GetBasePointer whenever we cross a boundry, and when
* XXX: GetBasePointer returns (0) to take the 'slow path' and use
* XXX: S9xGetByte instead of *base. GetBasePointer() would want to
* XXX: return 0 for MAP_PPU and whatever else is a register range
* XXX: rather than a RAM/ROM block, and we'd want to detect MAP_PPU
* XXX: (or specifically, Address Bus B addresses $2100-$21FF in
* XXX: banks $00-$3F) specially and treat it as MAP_NONE (since
* XXX: PPU->PPU transfers don't work).
*/
/* reflects extra cycle used by DMA */
CPU.Cycles += SLOW_ONE_CYCLE * (count + 1);
base = GetBasePointer((d->ABank << 16) + d->AAddress);
p = d->AAddress;
if (!base)
base = Memory.ROM;
if (in_sa1_dma)
{
base = &Memory.ROM [MAX_ROM_SIZE - 0x10000];
p = 0;
}
if (in_sdd1_dma)
{
base = in_sdd1_dma;
p = 0;
}
if (spc7110_dma)
{
base = spc7110_dma;
p = 0;
}
if (inc > 0)
d->AAddress += count;
else if (inc < 0)
d->AAddress -= count;
if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6)
{
switch (d->BAddress)
{
case 0x04:
do
{
Work = *(base + p);
REGISTER_2104(Work);
p += inc;
} while (--count > 0);
break;
case 0x18:
IPPU.FirstVRAMRead = true;
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2118_linear(Work);
p += inc;
} while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2118_tile(Work);
p += inc;
} while (--count > 0);
}
break;
case 0x19:
IPPU.FirstVRAMRead = true;
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2119_linear(Work);
p += inc;
} while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2119_tile(Work);
p += inc;
} while (--count > 0);
}
break;
case 0x22:
do
{
Work = *(base + p);
REGISTER_2122(Work);
p += inc;
} while (--count > 0);
break;
case 0x80:
do
{
Work = *(base + p);
REGISTER_2180(Work);
p += inc;
} while (--count > 0);
break;
default:
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
} while (--count > 0);
break;
}
}
else if (d->TransferMode == 1 || d->TransferMode == 5)
{
if (d->BAddress == 0x18)
{
/* Write to V-RAM */
IPPU.FirstVRAMRead = true;
if (!PPU.VMA.FullGraphicCount)
{
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
p += inc;
Work = *(base + p);
REGISTER_2119_linear(Work);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
}
}
else
{
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
p += inc;
Work = *(base + p);
REGISTER_2119_tile(Work);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
}
}
}
else
{
/* DMA mode 1 general case */
while (count > 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
count -= 2;
}
if (count == 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
}
}
}
else if (d->TransferMode == 3 || d->TransferMode == 7)
{
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 1)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 2)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
if (count <= 3)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
count -= 4;
} while (count > 0);
}
else if (d->TransferMode == 4)
{
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
p += inc;
if (count <= 1)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
p += inc;
if (count <= 2)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2102 + d->BAddress);
p += inc;
if (count <= 3)
break;
Work = *(base + p);
S9xSetPPU(Work, 0x2103 + d->BAddress);
p += inc;
count -= 4;
} while (count > 0);
}
}
else
{
/* XXX: DMA is potentially broken here for cases where the dest is
* XXX: in the Address Bus B range. Note that this bad dest may not
* XXX: cover the whole range of the DMA though, if we transfer
* XXX: 65536 bytes only 256 of them may be Address Bus B.
*/
do
{
switch (d->TransferMode)
{
case 0:
case 2:
case 6:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
--count;
break;
case 1:
case 5:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
case 3:
case 7:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
case 4:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2102 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
if (!--count)
break;
Work = S9xGetPPU(0x2103 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
d->AAddress += inc;
count--;
break;
default:
count = 0;
break;
}
} while (count);
}
#ifndef USE_BLARGG_APU
IAPU.APUExecuting = Settings.APUEnabled;
APU_EXECUTE();
#endif
if (Settings.SuperFX)
while (CPU.Cycles > CPU.NextEvent)
S9xDoHBlankProcessing_SFX();
else
while (CPU.Cycles > CPU.NextEvent)
S9xDoHBlankProcessing_NoSFX();
if (Settings.SPC7110 && spc7110_dma && s7_wrap)
free(spc7110_dma);
update_address:
/* Super Punch-Out requires that the A-BUS address be updated after the DMA transfer. */
Memory.FillRAM[0x4302 + (Channel << 4)] = (uint8_t) d->AAddress;
Memory.FillRAM[0x4303 + (Channel << 4)] = d->AAddress >> 8;
/* Secret of Mana requires that the DMA bytes transfer count be set to zero when DMA has completed. */
Memory.FillRAM [0x4305 + (Channel << 4)] = 0;
Memory.FillRAM [0x4306 + (Channel << 4)] = 0;
DMA[Channel].IndirectAddress = 0;
d->TransferBytes = 0;
CPU.InDMA = false;
}
void S9xStartHDMA(void)
{
uint8_t i;
IPPU.HDMA = Memory.FillRAM [0x420c];
if (IPPU.HDMA != 0)
CPU.Cycles += ONE_CYCLE * 3;
for (i = 0; i < 8; i++)
{
if (IPPU.HDMA & (1 << i))
{
CPU.Cycles += SLOW_ONE_CYCLE;
DMA [i].LineCount = 0;
DMA [i].FirstLine = true;
DMA [i].Address = DMA [i].AAddress;
if (DMA[i].HDMAIndirectAddressing)
CPU.Cycles += (SLOW_ONE_CYCLE << 2);
}
HDMAMemPointers [i] = NULL;
}
}
uint8_t S9xDoHDMA(uint8_t byte)
{
uint8_t mask;
SDMA* p = &DMA [0];
int32_t d = 0;
CPU.InDMA = true;
CPU.Cycles += ONE_CYCLE * 3;
for (mask = 1; mask; mask <<= 1, p++, d++)
{
if (byte & mask)
{
if (!p->LineCount)
{
uint8_t line;
/* remember, InDMA is set.
* Get/Set incur no charges! */
CPU.Cycles += SLOW_ONE_CYCLE;
line = S9xGetByte((p->ABank << 16) + p->Address);
if (line == 0x80)
{
p->Repeat = true;
p->LineCount = 128;
}
else
{
p->Repeat = !(line & 0x80);
p->LineCount = line & 0x7f;
}
/* Disable H-DMA'ing into V-RAM (register 2118) for Hook
* XXX: instead of p->BAddress == 0x18, make S9xSetPPU fail
* XXX: writes to $2118/9 when appropriate
*/
if (!p->LineCount || p->BAddress == 0x18)
{
byte &= ~mask;
p->IndirectAddress += HDMAMemPointers [d] - HDMABasePointers [d];
Memory.FillRAM [0x4305 + (d << 4)] = (uint8_t) p->IndirectAddress;
Memory.FillRAM [0x4306 + (d << 4)] = p->IndirectAddress >> 8;
continue;
}
p->Address++;
p->FirstLine = true;
if (p->HDMAIndirectAddressing)
{
p->IndirectBank = Memory.FillRAM [0x4307 + (d << 4)];
/* again, no cycle charges while InDMA is set! */
CPU.Cycles += SLOW_ONE_CYCLE << 2;
p->IndirectAddress = S9xGetWord((p->ABank << 16) + p->Address);
p->Address += 2;
}
else
{
p->IndirectBank = p->ABank;
p->IndirectAddress = p->Address;
}
HDMABasePointers [d] = HDMAMemPointers [d] = S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress);
}
else
CPU.Cycles += SLOW_ONE_CYCLE;
if (!HDMAMemPointers [d])
{
if (!p->HDMAIndirectAddressing)
{
p->IndirectBank = p->ABank;
p->IndirectAddress = p->Address;
}
if (!(HDMABasePointers [d] = HDMAMemPointers [d] = S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress)))
{
/* XXX: Instead of this, goto a slow path that first
* XXX: verifies src!=Address Bus B, then uses
* XXX: S9xGetByte(). Or make S9xGetByte return OpenBus
* XXX: (probably?) for Address Bus B while inDMA.
*/
byte &= ~mask;
continue;
}
}
if (p->Repeat && !p->FirstLine)
{
p->LineCount--;
continue;
}
switch (p->TransferMode)
{
case 0:
CPU.Cycles += SLOW_ONE_CYCLE;
S9xSetPPU(*HDMAMemPointers [d]++, 0x2100 + p->BAddress);
break;
case 5:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
HDMAMemPointers [d] += 2;
/* fall through */
case 1:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
HDMAMemPointers [d] += 2;
break;
case 2:
case 6:
CPU.Cycles += 2 * SLOW_ONE_CYCLE;
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
HDMAMemPointers [d] += 2;
break;
case 3:
case 7:
CPU.Cycles += 4 * SLOW_ONE_CYCLE;
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2101 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2101 + p->BAddress);
HDMAMemPointers [d] += 4;
break;
case 4:
CPU.Cycles += 4 * SLOW_ONE_CYCLE;
S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2102 + p->BAddress);
S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2103 + p->BAddress);
HDMAMemPointers [d] += 4;
break;
}
if (!p->HDMAIndirectAddressing)
p->Address += HDMA_ModeByteCounts [p->TransferMode];
p->IndirectAddress += HDMA_ModeByteCounts [p->TransferMode];
/* XXX: Check for p->IndirectAddress crossing a mapping boundary,
* XXX: and invalidate HDMAMemPointers[d]
*/
p->FirstLine = false;
p->LineCount--;
}
}
CPU.InDMA = false;
return byte;
}
void S9xResetDMA(void)
{
int32_t c, d;
for (d = 0; d < 8; d++)
{
DMA [d].TransferDirection = false;
DMA [d].HDMAIndirectAddressing = false;
DMA [d].AAddressFixed = true;
DMA [d].AAddressDecrement = false;
DMA [d].TransferMode = 7;
DMA [d].ABank = 0xff;
DMA [d].AAddress = 0xffff;
DMA [d].Address = 0xffff;
DMA [d].BAddress = 0xff;
DMA [d].TransferBytes = 0xffff;
DMA [d].IndirectAddress = 0xffff;
}
}